Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Magnetopolaronic effects in single-molecule transistor “Magnetopolaronic Effects in Electron Transport through a Single-Level Vibrating Quantum Dot” , Fizika Nizkikh Temperatur, Vol.37, 12, (December 2011), pp. 1295-1301. I.V.Krive, S.I.Kulinich, G.A.Skorobagatko M.Jonson and R.I.Shekhter - B.Verkin ILTPE of NAS of Ukraine, 47 Lenin Ave., Kharkov 61103, Ukraine -University of Gothenburg, SE-412 96 Gothenburg, Sweden Plan. Single-molecule transistors (experiment). Vibrational effects: vibron-assisted tunneling, electron shuttling, polaronic blockade. Magnetic field-induced electromechanical coupling. Magnetopolaronic effects in sequential and resonant electron transport. Single Molecule Transistor C60 in vacuum LUMO - 4.76 eV HOMO - 6.40 eV EL EH 1.6eV EL (C60 ) 1.8eV 2 e EL (C60 ) EL (C60 ) 3eV dF Low-T characteristics of SMT (i) Coulomb blockade (ii) Conductance oscillations on VG (CBO) Nature, 407, 57, (2000) Quantized nano-mechanical oscillations of the C60 against the gold electrode (ω~1.2 THz) result in additional steps (hω~5 μeV) in I-V curves. Nano letters, 5(2), p.203, (2005) Nanoelectromechanics of Suspended Carbon Nanotubes First experiment: S Sapmaz et al., PRL, 96, 026801 (2006), H.van der Zant group, Kavli Institute of Nanoscience, Delf Univ. of Technology Suspended SWNT<=>vibrating QD Low-T electron transport: (i) T>>Г0 sequential electron tunneling (ii) T~Г0 resonant electron tunneling Electron tunneling in the presence of VG is accompanied by the shift of c.m.c. of the nanotube towards back gate (tunneling induces mechanical vibrations of the nanotube) I-V curve of nanotube-based SET (L~0.1-1 μm) revealed vibrational effects induced by stretching mode (~0.6 meV) Nanoelectromechanical Coupling in Fullerene Peapods Theory: I.V. Krive, R. Ferone, R.I. Shekhter, M. Jonson, P. Utko, J. Nygard, New J. Phys. 10, 043043 (2008) Experiment: P. Utko, R. Ferone, I.V. Krive, R.I. Shekhter, M. Jonson, M. Monthioux, L. Noe, J. Nygard, Nature Com. 1, 37 (2010) G V g , T d f G BW V g , Empty SWNT T G m ~ 1 T Gm G m F z “peapod” 2 exp lz / 2 I 2 nz 1 nz 2 l F z exp 1 2nz cosh 2 lz / 2 l z 0 / T 0 – mechanical frequency of cluster oscillations – dimensionless electromechanical coupling n – Bose distribution function Experimental Results Vibron-assisted tunneling H H leads H QD H tun “Toy” model (Holstein) H leads H QD ( ) a k j j k j ak j j L,R a , a kj pm jm ( k p ) 1 i 0c c 0b b int (b b)c c, x (b b), p (b b) 2 2 H tun t (0) a c H.c., [ b , b ] 1, [ c , c ] 1 j kj k, j Unitary transformation: ˆ ˆ ), nˆ c c H UHU U exp(i pn ~ H QD p c c 0b b ~ H t( j ) t0( j ) ak j c eip H.c. k p 0 2 0 2 int / 0 -polaronic shift Sequantial electron tunneling and polaron tunneling approximation 1. Polaronic (Franck-Condon) “blockade” (strong coupling) 0 e 2 0 , G 2. Non-monotonic (anomalous) T-dependence of conductance at T 0 (strong coupling) 3. Vibron-assisted tunneling (weak or moderately strong coupling) ch -2 T 2T 0 T 0 sequential tunneling Electron Shuttling First publication: L.Y.Gorelik et al., PRL, 80, 4526, (1998) Single level quantum dot: D.Fedorets et al., Europhys. Lett., 58 (1), pp. 99-104, (2002) xˆ xc (t ) Nonlinear integral-differential equation for classical coordinate: xc 02 xc F xc (t ) F t j t0 exp( jx / t ), j ( L, R) (, ) H n xc (t ) (1) j t j Re akj c x k, j At eV>hω0 xc=0 is unstable solution Cyclic (stable) solution xc (t ) Asin(t ) Nanomechanical Shuttling of Electrons Theory: Gorelik, Shekhter et al, Phys. Rev. Lett., 1998 Shekhter et al., J. Comp. Th. Nanosc., 2007 current Experiment: H.S.Kim, H.Qin, R.Blick, arXiv:0708.1646 A.V.Moskalenko et al.,Phys.Rev B79 (2009) J. Kotthaus et al, Nature Nanotechnology 2008 Quantum Fluctuation-Induced Aharonov-Bohm Effect B 2 1 4 y0 LH 1 , 1, 6 kT 0 G kT 1 4 y LH 2 G0 0 1 , kT exp 2 0 R.I. Shekhter, L.Y. Gorelik, L.I. Glazman, M. Jonson, PRL 95(11), 156801 (2006) Tunneling Transport in Magnetic Field. Hamiltonian Single-level QD with single vibrational mode (bending mode for SWNT) -is the tunneling length -is the “size” of quantum dot Laplace and cohesive forces. Heisenberg equations of motion: 2 equations for fermionic operators : Equation for coordinate operator Cohesive force: Laplace force: , Classical regime of vibrations: where: and with - Breit-Wigner transmission coefficient - Fermi distribution function Quantum regime of vibrations. Tunneling amplitude: - is the dimensionless strength of electron-vibron coupling I. Sequential tunneling: Spectral weights are defined by equation: -noninteracting vibrons! Equilibrium vibrons: Magnetopolaronic Blockade; Anomalous Temperature Dependence ; Excess current. Conductance: Current: Frank-Condon factors: Excess current: Polaronic Effects in Resonant Electron Tunneling Polaron tunneling approximation (PTA) e ~ t p ~ electron dwell time p polaron Green function 1 GrRPA , a G p r , a G p By making use of the Meir-Wingreen formula for the average current through interaction QD we get In particular at low temperatures resonant conductance G G0 n 1 0 2 1 2 characteristic time of polaron formation t 0 2 In this approximation ~ Im r ,a t / 2 1 An 0 n 0 L R G p2 e f L f R J d 2 h 1 t G p / 2 L R F 0 2 L R 2 / 4 No polaronic effects at resonance condition F 0 j e L , R 2 Conclusion In electron transport through a vibrating QD polaronic effects are the same for electric field or magnetic fieldinduced electromechanical coupling. The manifestations of polaronic (Franck-Condon) blockade are: (i) anomalous temperature dependence of conductance at T , and (ii) the excess current in J-V curves at low temperatures. Magnetopolaronic effects are most pronounced in the regime of sequential electron tunneling. Resonant conductance is not renormalized by magnetic field in polaron tunneling approximation.