Download Magnetopolaronic effects in single

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Magnetopolaronic effects in
single-molecule transistor
“Magnetopolaronic Effects in Electron Transport through a
Single-Level Vibrating Quantum Dot” ,
Fizika Nizkikh Temperatur, Vol.37, 12, (December 2011),
pp. 1295-1301.


I.V.Krive, S.I.Kulinich,
G.A.Skorobagatko
M.Jonson and R.I.Shekhter


- B.Verkin ILTPE of NAS of
Ukraine, 47 Lenin Ave.,
Kharkov 61103, Ukraine
-University of Gothenburg,
SE-412 96 Gothenburg,
Sweden
Plan.




Single-molecule transistors (experiment).
Vibrational effects: vibron-assisted tunneling, electron
shuttling, polaronic blockade.
Magnetic field-induced electromechanical coupling.
Magnetopolaronic effects in sequential and resonant electron
transport.
Single Molecule Transistor
C60 in vacuum
LUMO
- 4.76 eV
HOMO - 6.40 eV
  EL  EH  1.6eV

EL (C60
)  1.8eV
2
e

  EL (C60
)  EL (C60 ) 
 3eV
dF
Low-T characteristics of SMT
(i) Coulomb blockade
(ii) Conductance oscillations on VG (CBO)
Nature, 407, 57, (2000)
Quantized nano-mechanical oscillations of the C60 against the gold electrode (ω~1.2
THz) result in additional steps (hω~5 μeV) in I-V curves.
Nano letters, 5(2), p.203, (2005)
Nanoelectromechanics of Suspended
Carbon Nanotubes
First experiment: S Sapmaz et al., PRL, 96, 026801 (2006), H.van der Zant
group, Kavli Institute of Nanoscience, Delf Univ. of Technology
Suspended SWNT<=>vibrating QD
Low-T electron transport:
(i) T>>Г0 sequential electron tunneling
(ii) T~Г0 resonant electron tunneling
Electron tunneling in the presence of VG is
accompanied by the shift of c.m.c. of the
nanotube towards back gate (tunneling
induces mechanical vibrations of the
nanotube)
I-V curve of nanotube-based SET
(L~0.1-1 μm) revealed vibrational effects
induced by stretching mode (~0.6 meV)
Nanoelectromechanical Coupling
in Fullerene Peapods
Theory: I.V. Krive, R. Ferone, R.I. Shekhter, M. Jonson, P. Utko,
J. Nygard, New J. Phys. 10, 043043 (2008)
Experiment: P. Utko, R. Ferone, I.V. Krive, R.I. Shekhter, M. Jonson,
M. Monthioux, L. Noe, J. Nygard, Nature Com. 1, 37 (2010)
G V g , T    d  f  G BW V g ,  
Empty SWNT
 T  
G m  ~ 1 T
Gm   G m  F z 
“peapod”

2


exp

lz
/
2
I
2

nz 1  nz 
2
l
F z   exp   1  2nz  
cosh 2 lz / 2
l  

z  0 / T



 0 – mechanical frequency of cluster
oscillations
– dimensionless electromechanical
coupling
n
– Bose distribution function

Experimental Results
Vibron-assisted tunneling
H  H leads  H QD  H tun
“Toy” model (Holstein)
H leads 
H QD

(



)
a
 k j j k j ak j
j  L,R
a


,
a
kj
pm   jm ( k  p )
1 
i
  0c c  0b b   int (b  b)c c, x 
(b  b), p 
(b   b)
2
2







H tun   t (0)
a
c

H.c.,
[
b
,
b
]

1,
[
c
,
c
] 1
j
kj
k, j
Unitary transformation:
ˆ ˆ ), nˆ  c c
H  UHU  U  exp(i pn
~
H QD   p c  c  0b b
~
H t( j )   t0( j ) ak j c  eip  H.c.
k
 p   0   2 0
   2 int / 0
-polaronic shift
Sequantial electron tunneling and polaron
tunneling approximation
1. Polaronic (Franck-Condon) “blockade” (strong coupling)
0    e
 2
0 , G 
2. Non-monotonic (anomalous)
T-dependence of conductance
at T  0 (strong coupling)
3. Vibron-assisted tunneling (weak
or moderately strong coupling)


ch -2
T
2T
0  T  0
sequential tunneling
Electron Shuttling
First publication: L.Y.Gorelik et al., PRL, 80, 4526, (1998)
Single level quantum dot: D.Fedorets et al., Europhys. Lett., 58 (1), pp. 99-104,
(2002)
 xˆ  xc (t )
Nonlinear integral-differential equation for classical coordinate:
xc  02 xc  F xc (t )
F  
t j  t0 exp( jx / t ), j  ( L, R)  (, )
H
  n  xc (t )   (1) j t j Re  akj c 
x
k, j
At eV>hω0 xc=0 is unstable solution
Cyclic (stable) solution
xc (t )  Asin(t   )
Nanomechanical Shuttling of Electrons
Theory:
Gorelik, Shekhter et al, Phys. Rev. Lett., 1998
Shekhter et al., J. Comp. Th. Nanosc., 2007
current
Experiment:
H.S.Kim, H.Qin, R.Blick, arXiv:0708.1646
A.V.Moskalenko et al.,Phys.Rev B79 (2009)
J. Kotthaus et al, Nature Nanotechnology 2008
Quantum Fluctuation-Induced Aharonov-Bohm Effect
B
2



1  4 y0 LH

 1

 ,
 1,
6 kT   0 
G 
kT

 1  4 y LH 2 

G0 
0
 1
  , kT
exp  2  
0
 
 

R.I. Shekhter, L.Y. Gorelik,
L.I. Glazman, M. Jonson, PRL
95(11), 156801 (2006)
Tunneling Transport in Magnetic Field.
Hamiltonian
Single-level QD with single
vibrational mode
(bending mode for SWNT)
-is the tunneling length
-is the “size” of quantum dot
Laplace and cohesive forces.



Heisenberg equations of motion:
2 equations for fermionic operators :
Equation for coordinate operator
Cohesive force:
Laplace force:
,
Classical regime of vibrations:
where:
and
with
- Breit-Wigner transmission coefficient
- Fermi distribution
function
Quantum regime of vibrations.
Tunneling amplitude:
- is the dimensionless strength of electron-vibron coupling
I. Sequential tunneling:
Spectral weights
are defined by equation:
-noninteracting vibrons!
Equilibrium vibrons:
Magnetopolaronic Blockade; Anomalous
Temperature Dependence
; Excess current.
Conductance:
Current:
Frank-Condon factors:
Excess current:
Polaronic Effects in Resonant Electron
Tunneling
Polaron tunneling
approximation (PTA)
e ~

t
  p ~
electron dwell time

p
polaron Green function

1
GrRPA
, a  G p     r , a
G p   
By making use of the Meir-Wingreen
formula for the average current
through interaction QD we get
In particular at low
temperatures
resonant conductance
G  G0

  
n  
1
0
2 1
2
characteristic time of polaron formation
t   0 2
In this approximation
~

Im  r ,a   t / 2
1
An
0  n 0
L R G p2  
e
 f L    f R  
J   d
2
h
1  t G p   / 2


L  R  
 F   0 2  L    R  2 / 4
No polaronic effects at resonance condition
F  0
 j    e  L , R
2
Conclusion



In electron transport through a vibrating QD polaronic
effects are the same for electric field or magnetic fieldinduced electromechanical coupling.
The manifestations of polaronic (Franck-Condon) blockade
are: (i) anomalous temperature dependence of conductance
at T   , and (ii) the excess current in J-V curves at low
temperatures.
Magnetopolaronic effects are most pronounced in the
regime of sequential electron tunneling. Resonant
conductance is not renormalized by magnetic field
in polaron tunneling approximation.
Related documents