Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Name_______________________________________ Class_______________________ Date_________________ Geometry Chapter 4 Test Review Classify each triangle as acute, obtuse or right. 1. 2. 3. 30° 50° 120° 25° 65° 35° 60° 65° Classify each triangle as scalene, isosceles or equilateral. 4. 5. x 6. 23 12 x 15 x 7. Find x and the measure of each side of equilateral triangle FGH if πΉπΊ = π₯ + 5, πΊπ» = 3π₯ β 9 , and πΉπ» = 2π₯ β 2. 8. Triangle LMN is an isosceles triangle with Μ Μ Μ Μ πΏπ β Μ Μ Μ Μ πΏπ. Find b, and the measures of the sides if Μ Μ Μ Μ πΏπ = 3π β 2 , ππ = 5π β 2, and πΏπ = 2π + 1. 9. Find the missing angles. 85° 55° 1 2 40° 3 10. Find the measures of the numbered angles 3 2 1 55° 150° 70° 11. Identify the congruent triangles in each figure. a. b. 12. Name the congruent angles and sides for the following pair of congruent triangles. βπ ππ β βπΏππ 13. Determine whether βπππ β βπππ given the coordinates of the vertices. EXPLAIN P(0, 3), Q(0, -1), R(-2, -1), S(1, 2), T(1, -2), U(-1, -2) 14. Determine which postulate can be used to prove the triangles are congruent. If it is not possible to determine they are congruent, write βnot possibleβ. a. b. c. 15. βπ΄π π, βππ΄π, βππΉπ are all isosceles triangles. What is mβ π΄ππ ? X F 72º What is mβ π π΄π ? M 38º A If mβ πΉππ΄=96, what is mβ πΉππ ? R Μ Μ Μ Μ bisects Μ Μ Μ Μ 16. Triangle RSU is an equilateral triangle. π π ππ. Find x and y. R (y - 2)° 8x + 1 U T 5x S A Μ Μ Μ Μ bisects πΆπ· Μ Μ Μ Μ ; β π΄ β β π΅ 18. Given: π΄π΅ D X Prove: Μ Μ Μ Μ π΄π β Μ Μ Μ Μ π΅π C Statements 1. Μ Μ Μ Μ π΄π΅ bisects Μ Μ Μ Μ πΆπ·; β π΄ β β π΅ Reasons Μ Μ Μ Μ β ππ· Μ Μ Μ Μ 2. πΆπ 2. 3. β π΄ππΆ β β π·ππ΅ 3. 4. βπ΄ππΆ β βπ·ππ΅ 4 5. Μ Μ Μ Μ π΄π β Μ Μ Μ Μ π΅π 5. B 1. Μ Μ Μ Μ β ππ Μ Μ Μ Μ Μ ; β π β β π 19. Given: ππ Statements Prove: βπππ β βπππ V S Y T W Reasons Μ Μ Μ Μ β₯ ππΏ Μ Μ Μ Μ ; πΉπΏ Μ Μ Μ Μ β₯ ππ Μ Μ Μ Μ Μ 20. Given: πΉπ Prove: Μ Μ Μ πΉπΏΜ β Μ Μ Μ Μ Μ ππ F Statements Reasons Statements Reasons L 1 3 4 2 P M Μ Μ Μ Μ β π΅πΆ Μ Μ Μ Μ ; 21. Given: π΄π΅ D is the midpoint of Μ Μ Μ Μ π΄πΆ Prove: βπ΄π΅π· β βπΆπ΅π· B A D C Write a two column proof for each: 23. Given: 8π₯ β 5 = 2π₯ + 1 Prove: π₯ = 1 24. Given: 5(π β 3) = 4(2π β 7) β 14 Prove: π = 9 π₯ 25. Given: 4 = 5 β 16 Prove: π₯ = 100