Download Chapter 4 Review no 4.7

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Name_______________________________________ Class_______________________ Date_________________
Geometry Chapter 4 Test Review
Classify each triangle as acute, obtuse or right.
1.
2.
3.
30°
50°
120°
25°
65°
35°
60°
65°
Classify each triangle as scalene, isosceles or equilateral.
4.
5.
x
6.
23
12
x
15
x
7. Find x and the measure of each side of equilateral triangle FGH if 𝐹𝐺 = π‘₯ + 5, 𝐺𝐻 = 3π‘₯ βˆ’ 9 , and 𝐹𝐻 = 2π‘₯ βˆ’ 2.
8. Triangle LMN is an isosceles triangle with Μ…Μ…Μ…Μ…
𝐿𝑀 β‰… Μ…Μ…Μ…Μ…
𝐿𝑁. Find b, and the measures of the sides if Μ…Μ…Μ…Μ…
𝐿𝑀 = 3𝑏 βˆ’ 2 , 𝑀𝑁 =
5𝑏 βˆ’ 2, and 𝐿𝑁 = 2𝑏 + 1.
9. Find the missing angles.
85°
55°
1
2
40°
3
10. Find the measures of the numbered angles
3
2
1
55°
150°
70°
11. Identify the congruent triangles in each figure.
a.
b.
12. Name the congruent angles and sides for the following pair of congruent triangles.
βˆ†π‘…π‘†π‘‡ β‰… βˆ†πΏπ‘€π‘
13. Determine whether βˆ†π‘ƒπ‘„π‘… β‰… βˆ†π‘†π‘‡π‘ˆ given the coordinates of the vertices. EXPLAIN
P(0, 3), Q(0, -1), R(-2, -1), S(1, 2), T(1, -2), U(-1, -2)
14. Determine which postulate can be used to prove the triangles are congruent. If it is not possible to determine they are
congruent, write β€œnot possible”.
a.
b.
c.
15. βˆ†π΄π‘…π‘€, βˆ†π‘€π΄π‘‹, βˆ†π‘‹πΉπ‘€ are all isosceles triangles.
What is mβˆ π΄π‘€π‘‹ ?
X
F
72º
What is mβˆ π‘…π΄π‘‹ ?
M
38º
A
If mβˆ πΉπ‘‹π΄=96, what is mβˆ πΉπ‘€π‘… ?
R
Μ…Μ…Μ…Μ… bisects Μ…Μ…Μ…Μ…
16. Triangle RSU is an equilateral triangle. 𝑅𝑇
π‘ˆπ‘†. Find x and y.
R
(y - 2)°
8x + 1
U
T
5x
S
A
Μ…Μ…Μ…Μ… bisects 𝐢𝐷
Μ…Μ…Μ…Μ… ; ∠𝐴 β‰… ∠𝐡
18. Given: 𝐴𝐡
D
X
Prove: Μ…Μ…Μ…Μ…
𝐴𝑋 β‰… Μ…Μ…Μ…Μ…
𝐡𝑋
C
Statements
1. Μ…Μ…Μ…Μ…
𝐴𝐡 bisects Μ…Μ…Μ…Μ…
𝐢𝐷; ∠𝐴 β‰… ∠𝐡
Reasons
Μ…Μ…Μ…Μ… β‰… 𝑋𝐷
Μ…Μ…Μ…Μ…
2. 𝐢𝑋
2.
3. βˆ π΄π‘‹πΆ β‰… βˆ π·π‘‹π΅
3.
4. βˆ†π΄π‘‹πΆ β‰… βˆ†π·π‘‹π΅
4
5. Μ…Μ…Μ…Μ…
𝐴𝑋 β‰… Μ…Μ…Μ…Μ…
𝐡𝑋
5.
B
1.
Μ…Μ…Μ…Μ… β‰… π‘Œπ‘Š
Μ…Μ…Μ…Μ…Μ… ; βˆ π‘† β‰… βˆ π‘Š
19. Given: π‘†π‘Œ
Statements
Prove: βˆ†π‘†π‘Œπ‘‡ β‰… βˆ†π‘Šπ‘‰π‘Œ
V
S
Y
T
W
Reasons
Μ…Μ…Μ…Μ… βˆ₯ 𝑀𝐿
Μ…Μ…Μ…Μ… ; 𝐹𝐿
Μ…Μ…Μ…Μ… βˆ₯ 𝑀𝑃
Μ…Μ…Μ…Μ…Μ…
20. Given: 𝐹𝑃
Prove: Μ…Μ…Μ…
𝐹𝐿̅ β‰… Μ…Μ…Μ…Μ…Μ…
𝑀𝑃
F
Statements
Reasons
Statements
Reasons
L
1
3
4
2
P
M
Μ…Μ…Μ…Μ… β‰… 𝐡𝐢
Μ…Μ…Μ…Μ… ;
21. Given: 𝐴𝐡
D is the midpoint of Μ…Μ…Μ…Μ…
𝐴𝐢
Prove: βˆ†π΄π΅π· β‰… βˆ†πΆπ΅π·
B
A
D
C
Write a two column proof for each:
23. Given: 8π‘₯ βˆ’ 5 = 2π‘₯ + 1
Prove: π‘₯ = 1
24. Given: 5(𝑛 βˆ’ 3) = 4(2𝑛 βˆ’ 7) βˆ’ 14
Prove: 𝑛 = 9
π‘₯
25. Given: 4 = 5 βˆ’ 16
Prove: π‘₯ = 100
Related documents