Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Acrolein Literature Seminar Pihko Group Sakari Tuokko 10.10.2012 Index Characteristics of Acrolein Production of Acrolein Use of Acrolein Chemistry of Acrolein Acrolein C3H4O, MW 56.06 Alternate Name: Propenal Physical Data: mp -87 °C; bp 53 °C; d 0.839 g cm-3 Solubility: water, alcohols, most organic solvents Two rotational isomers: Production of Acrolein Produced: 150 tons per year Synthesized: - By catalytic aldol condensation of acetaldehyde and formaldehyde ( < late 1950’s) - By partial oxidation of propylene catalyzed by bismuth molybdate catalyst ( 1958 – present) - By glycerol pyrolysis (glycerol is now available in large quantities as a co-product of bio-diesel production) . L. Liu, X. P. Ye and J. J. Bozell, ChemSusChem, 2012, 5, 1162 Use of Acrolein Crude acrolein: - Production of Acrylic acid - Control of plant and algae growth in irrigation canals - Oil wells, liquid fuels, water treatment ponds (kills or controls microorganisms and bacteria) L. Liu, X. P. Ye and J. J. Bozell, ChemSusChem, 2012, 5, 1162. Use of Acrolein Refined acrolein: - ~80 % is consumed in the synthesis of methionine. L. Liu, X. P. Ye and J. J. Bozell, ChemSusChem, 2012, 5, 1162. Use of Acrolein Chemical weapon, code name “Papite” (French, WWI, 1916) E. Croddy, Chemical and Biological Warfare: a comprehensive survey for the concerned citizen, Springer-Verlag, New York, 2002. Chemistry of Acrolein Oxidation and Reduction reactions Addition reactions Aldol reactions Metathesis Morita-Baylis-Hillman reaction Pericyclic reactions Cycloadditions HOMO and LUMO Oxidation reactions Acrylic acid Hydrogen Peroxide Transition metals (vanadium, molybdenum, copper, tungsten) Multicomponent metal oxides Acetal Transacetalization conditions Glycidaldehyde Hydrogen Peroxide, pH 8-8.5 C. W. Smith and R. T. Holm, J. Org. Chem. 1957, 22, 746. J. A. VanAllan, Org. Synth. 1963, 4, 21. G. B. Pavne. J. Am. Chem. Soc. 1959, 81, 4901. Reduction reactions Selective reduction of the alkene group Triethylsilane with Wilkinson’s catalyst, followed by hydrolysis of the silyl enol ether Triethylsilane with in situ generated palladium nanoparticles in THF/H2O mixture I. Ojima, T. Kogure and Y. Nagai, Tetrahedron Lett., 1972, 5035. M. Benohoud, S. Tuokko and P. M. Pihko, Chem. Eur. J., 2011, 17, 8404. Reduction reactions Selective reduction of the carbonyl group: Monometallic catalysts strongly favour the C-C double bond reduction, generating less than 10 % of the allylic alcohol product With the alloy catalyst Ag-In/SiO2, up to 70 % of the allylic alcohol can be generated. M. Lucas and P. Claus, Chem. Eng. Technol, 2005, 28, 867. D. Loffreda, F. Delbecq, F. Vigné and P. Sautet, J. Am. Chem. Soc., 2006, 128, 1316. Addition reactions 1,2-addition vs. 1,4-addition Depends on: Reaction conditions - Kinetic and Thermodynamic control Nucleophile - Hard nucleophiles favour 1,2 - Soft nucleophiles favour 1,4 M. Lombardo, S. Morganti and C. Trombini, J. Org. Chem., 2003, 68, 997. 1,2-addition reactions With Organolithium, Organoberyllium, -zinc, -cadminium, cerium, titanium Grignard reagents Organoboranes L. A. Paquette et al., Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons Ltd., UK, 2009. H. C. Brown, M. M. Rogic, M. W. Rathe and G. W. Kabalka, J. Am. Chem. Soc., 1067, 89, 5709. R. W. Hoffmann, and T. Herold, Chem. Ber., 1981, 114, 375. A. G. M. Barrett, M. A. Seefeld, J. Chem. Soc. Chem. Commun., 1993, 339. 1,4-addition reactions Thiols, Silanes, Cuprates from Organolithium Most common nucleophiles are 1,3-dicarbonyl compounds b-keto esters Cyclic b-keto esters L. A. Paquette et al., Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons Ltd., UK, 2009. D. Bensa, T. Constantieux, J. Rodriguez, Synthesis, 2004, 923. C. Simon, J.-F. Peyronel, J. Rodriguez, Org. Lett., 2001, 3, 2145. 1,4-addition reactions Organocatalysis Organometallic catalysis S. Brandes, B. Niess, M. Bella, A. Prieto, J. Overgaard and K. A. Jørgensen, Chem. Eur. J., 2006, 12, 6039. Y. Hamashima, D. Hotta, N. Umebayashi, Y. Tsuchiya, T. Suzuki and M. Sodeoka, Adv. Synth. Catal., 2005, 347, 1576. 1,4-addition reactions Enantioselective Mukaiyama-Michael Reaction E. K. Kemppainen, G. Sahoo, A. Valkonen and P. M. Pihko, Org. Lett., 2012, 14, 1086. Other addition reactions Heck-reaction 3,4-addition with Hydrogen Bromide R. F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, London, 1985. D. C. Kriesel and O. Gosvold, J. Pharm. Sci., 1971, 60, 1250. Acrolein in Aldol reactions Variety of enolates in the presence of Lewis acid catalysts: Magnesium enolates from thioamide, lithium selenoenolates, lithium enolates Mukaiyama aldol sequence L. A. Paquette et al., Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons Ltd., UK, 2009. J. Szymoniak, H. Lefranc and H. Moise, J. Org. Chem., 1996, 61, 3926 Acrolein in Aldol reactions Acyloxazolidinones (Evans chiral auxiliary) ”Evans” syn ”non-Evans” syn C. H. Heathcock, B. L. Finkelstein, E. T. Jarvi, P. A. Radel and C. R. Hadley, J. Org. Chem., 1988, 53, 1922. M. T. Grimmins, B. W. King and E. A. Tabet, J. Am. Chem. Soc., 1997, 119, 7883. Olefin Metathesis reactions Acrolein is among the most common starting materials for olefin metathesis reactions Aldol adducts from Acrolein based aldol reactions in ring closing metathesis L. A. Paquette et al., Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons Ltd., UK, 2009. M. T. Crimmins and A. L. Choy, J. Org. Chem., 1997, 62, 7548. Morita-Baylis-Hillman reaction Acrolein as a Michael-acceptor Self-condensation is a common problem D. Basavaiah, J. Rao and T. Satyanaryana, Chem. Rev., 2003, 103, 811. Pericyclic reactions [3,3]-sigmatropic rearrangement T. Nakai, T. Mimura and A. Ari-Izumi, Tetrahedron Lett., 1977, 28, 2425. Cycloadditions Diels-Alder reaction Acrolein as a diene Formation of spriroacetals With cyclopropenes L. A. Paquette et al., Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons Ltd., UK, 2009. R. E. Ireland and D. Häbich, Tetrahedron lett., 1980, 21, 1389. J. R. Dulayami, M. s. Baird, H. H. Hussain, B. J. Alhourani, A. y. Alhabashna, S. Coles and M. B. Hursthouse, Tetrahedron Lett., 2000, 41, 4205. Cycloadditions Diels-Alder reaction Acrolein as a dienophile With electron rich and electron poor dienes With variety of substituted dienes Formation of bicyclo[2.2.2]octane-2-carbaldehyde L. A. Paquette et al., Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons Ltd., UK, 2009. Z. Zhu and J. Espenson, J. Am. Chem. Soc., 1997, 119, 3507. Cycloadditions [2+1] cycloaddition [2+2+1] cycloaddition (Pauson-Khand) Ene reactions S. Yamazaki, M. Tanaka, A. Yamaguchi and S. Yamabe, J. Am. Chem. Soc., 1994, 48, 2356. K. H. Park, I. G. Jung and Y. K. Chung, Org. Lett., 2004, 6, 1183. W. H. Miles, C. L. Berreth and C. A. Anderton, Tetrahedron Lett., 1996, 37, 7893. Conclusions General A large amount of acrolein is produced every year Acrolein has many applications outside chemistry also Chemistry Bifunctionality makes acrolein a very versatile compound for chemical reactions Michael acceptor, Aldol reactions, metathesis, Heck-reactions, cycloadditions Thank you for your attention!