Download Acrolein

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Acrolein
Literature Seminar
Pihko Group
Sakari Tuokko
10.10.2012
Index
Characteristics of Acrolein
Production of Acrolein
Use of Acrolein
Chemistry of Acrolein
Acrolein
C3H4O, MW 56.06
Alternate Name: Propenal
Physical Data: mp -87 °C; bp 53 °C; d 0.839 g cm-3
Solubility: water, alcohols, most organic solvents
Two rotational isomers:
Production of Acrolein
Produced: 150 tons per year
Synthesized:
- By catalytic aldol condensation of acetaldehyde and
formaldehyde ( < late 1950’s)
- By partial oxidation of propylene catalyzed by bismuth molybdate
catalyst ( 1958 – present)
- By glycerol pyrolysis (glycerol is now available in large quantities as
a co-product of bio-diesel production)
.
L. Liu, X. P. Ye and J. J. Bozell, ChemSusChem, 2012, 5, 1162
Use of Acrolein
Crude acrolein:
-
Production of Acrylic acid
-
Control of plant and algae growth in irrigation canals
- Oil wells, liquid fuels, water treatment ponds (kills or controls
microorganisms and bacteria)
L. Liu, X. P. Ye and J. J. Bozell, ChemSusChem, 2012, 5, 1162.
Use of Acrolein
Refined acrolein:
- ~80 % is consumed in the synthesis of methionine.
L. Liu, X. P. Ye and J. J. Bozell, ChemSusChem, 2012, 5, 1162.
Use of Acrolein
Chemical weapon, code name “Papite” (French, WWI, 1916)
E. Croddy, Chemical and Biological Warfare: a comprehensive survey for the concerned citizen,
Springer-Verlag, New York, 2002.
Chemistry of Acrolein
Oxidation and Reduction reactions
Addition reactions
Aldol reactions
Metathesis
Morita-Baylis-Hillman reaction
Pericyclic reactions
Cycloadditions
HOMO
and
LUMO
Oxidation reactions
Acrylic acid
Hydrogen Peroxide
Transition metals (vanadium, molybdenum, copper, tungsten)
Multicomponent metal oxides
Acetal
Transacetalization conditions
Glycidaldehyde
Hydrogen Peroxide, pH 8-8.5
C. W. Smith and R. T. Holm, J. Org. Chem. 1957, 22, 746.
J. A. VanAllan, Org. Synth. 1963, 4, 21.
G. B. Pavne. J. Am. Chem. Soc. 1959, 81, 4901.
Reduction reactions
Selective reduction of the alkene group
Triethylsilane with Wilkinson’s catalyst, followed by hydrolysis of the silyl
enol ether
Triethylsilane with in situ generated palladium nanoparticles in THF/H2O
mixture
I. Ojima, T. Kogure and Y. Nagai, Tetrahedron Lett., 1972, 5035.
M. Benohoud, S. Tuokko and P. M. Pihko, Chem. Eur. J., 2011, 17, 8404.
Reduction reactions
Selective reduction of the carbonyl group:
Monometallic catalysts strongly favour the C-C double bond reduction,
generating less than 10 % of the allylic alcohol product
With the alloy catalyst Ag-In/SiO2, up to 70 % of the allylic alcohol can be
generated.
M. Lucas and P. Claus, Chem. Eng. Technol, 2005, 28, 867.
D. Loffreda, F. Delbecq, F. Vigné and P. Sautet, J. Am. Chem. Soc., 2006, 128, 1316.
Addition reactions
1,2-addition vs. 1,4-addition
Depends on:
Reaction conditions
- Kinetic and Thermodynamic control
Nucleophile
- Hard nucleophiles favour 1,2
- Soft nucleophiles favour 1,4
M. Lombardo, S. Morganti and C. Trombini, J. Org. Chem., 2003, 68, 997.
1,2-addition reactions
With Organolithium, Organoberyllium, -zinc, -cadminium, cerium, titanium
Grignard reagents
Organoboranes
L. A. Paquette et al., Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons Ltd., UK, 2009.
H. C. Brown, M. M. Rogic, M. W. Rathe and G. W. Kabalka, J. Am. Chem. Soc., 1067, 89, 5709.
R. W. Hoffmann, and T. Herold, Chem. Ber., 1981, 114, 375.
A. G. M. Barrett, M. A. Seefeld, J. Chem. Soc. Chem. Commun., 1993, 339.
1,4-addition reactions
Thiols, Silanes, Cuprates from Organolithium
Most common nucleophiles are 1,3-dicarbonyl compounds
b-keto esters
Cyclic b-keto esters
L. A. Paquette et al., Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons Ltd., UK, 2009.
D. Bensa, T. Constantieux, J. Rodriguez, Synthesis, 2004, 923.
C. Simon, J.-F. Peyronel, J. Rodriguez, Org. Lett., 2001, 3, 2145.
1,4-addition reactions
Organocatalysis
Organometallic catalysis
S. Brandes, B. Niess, M. Bella, A. Prieto, J. Overgaard and K. A. Jørgensen, Chem. Eur. J., 2006, 12, 6039.
Y. Hamashima, D. Hotta, N. Umebayashi, Y. Tsuchiya, T. Suzuki and M. Sodeoka, Adv. Synth. Catal., 2005, 347, 1576.
1,4-addition reactions
Enantioselective Mukaiyama-Michael Reaction
E. K. Kemppainen, G. Sahoo, A. Valkonen and P. M. Pihko, Org. Lett., 2012, 14, 1086.
Other addition reactions
Heck-reaction
3,4-addition with Hydrogen Bromide
R. F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, London, 1985.
D. C. Kriesel and O. Gosvold, J. Pharm. Sci., 1971, 60, 1250.
Acrolein in Aldol reactions
Variety of enolates in the presence of Lewis acid catalysts:
Magnesium enolates from thioamide, lithium selenoenolates, lithium enolates
Mukaiyama aldol sequence
L. A. Paquette et al., Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons Ltd., UK, 2009.
J. Szymoniak, H. Lefranc and H. Moise, J. Org. Chem., 1996, 61, 3926
Acrolein in Aldol reactions
Acyloxazolidinones (Evans chiral auxiliary)
”Evans” syn
”non-Evans” syn
C. H. Heathcock, B. L. Finkelstein, E. T. Jarvi, P. A. Radel and C. R. Hadley, J. Org. Chem., 1988, 53, 1922.
M. T. Grimmins, B. W. King and E. A. Tabet, J. Am. Chem. Soc., 1997, 119, 7883.
Olefin Metathesis reactions
Acrolein is among the most common starting materials for olefin metathesis
reactions
Aldol adducts from Acrolein based aldol reactions in ring closing metathesis
L. A. Paquette et al., Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons Ltd., UK, 2009.
M. T. Crimmins and A. L. Choy, J. Org. Chem., 1997, 62, 7548.
Morita-Baylis-Hillman reaction
Acrolein as a Michael-acceptor
Self-condensation is a common problem
D. Basavaiah, J. Rao and T. Satyanaryana, Chem. Rev., 2003, 103, 811.
Pericyclic reactions
[3,3]-sigmatropic rearrangement
T. Nakai, T. Mimura and A. Ari-Izumi, Tetrahedron Lett., 1977, 28, 2425.
Cycloadditions
Diels-Alder reaction
Acrolein as a diene
Formation of spriroacetals
With cyclopropenes
L. A. Paquette et al., Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons Ltd., UK, 2009.
R. E. Ireland and D. Häbich, Tetrahedron lett., 1980, 21, 1389.
J. R. Dulayami, M. s. Baird, H. H. Hussain, B. J. Alhourani, A. y. Alhabashna, S. Coles and M. B. Hursthouse,
Tetrahedron Lett., 2000, 41, 4205.
Cycloadditions
Diels-Alder reaction
Acrolein as a dienophile
With electron rich and electron poor dienes
With variety of substituted dienes
Formation of bicyclo[2.2.2]octane-2-carbaldehyde
L. A. Paquette et al., Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons Ltd., UK, 2009.
Z. Zhu and J. Espenson, J. Am. Chem. Soc., 1997, 119, 3507.
Cycloadditions
[2+1] cycloaddition
[2+2+1] cycloaddition (Pauson-Khand)
Ene reactions
S. Yamazaki, M. Tanaka, A. Yamaguchi and S. Yamabe, J. Am. Chem. Soc., 1994, 48, 2356.
K. H. Park, I. G. Jung and Y. K. Chung, Org. Lett., 2004, 6, 1183.
W. H. Miles, C. L. Berreth and C. A. Anderton, Tetrahedron Lett., 1996, 37, 7893.
Conclusions
General
A large amount of acrolein is produced every year
Acrolein has many applications outside chemistry also
Chemistry
Bifunctionality makes acrolein a very versatile compound for chemical
reactions
Michael acceptor, Aldol reactions, metathesis, Heck-reactions,
cycloadditions
Thank you for your attention!
Related documents