Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
8 ÿ -6 = -48 Chapter 6, Math 065 Disclaimer: This file is a compilation of problems created by Math 065 instructors at WWCC. These problems are meant only to give students extra practice in preparation for exams or for understanding a particular topic. We do not promise that the problems below are problems that will appear on your exam in Math 065. These problems have appeared on old exams. -48 ÿ -48 ÿ -24 1 2 ÿ ÿ ÿ 3 4 6 -16 -12 -8 8 x2 - 13 x - 6 Factor out the common factor: 36 x5 y7 - 48 x8 y3 1. 36 x5 y7 - 48 x8 y3 = 12 x5 y3 I3 y4 - 4 x3 M 8 x2 + 3 x - 16 x - 6 I8 x2 + 3 xM + H-16 x - 6L xH8 x + 3L -2 H8 x + 3L H8 x + 3L Hx -2L Factor completely: 25 x3 - 10 x2 - 35 x + 14 2. 25 x3 - 10 x2 - 35 x + 14 I25 x3 - 10 x2 M + H-35 x + 14L 5 x I5 x - 2M -7 H5 x - 2L 2 H5 x - 2L I5 x2 -7M This is 25 x2 - 16 = H5 xL2 - 42 = H5 x - 4L H5 x + 4L a difference Factor: x2 - 7 x - 8 3. ÿ ÿ This -8 4 is a Factor completely: 3 x2 - 9 x - 12 3 Hx + 1L Hx -4L 3AIx3 - 2 x2 M + H-4 x + 8LE 3 Ix3 - 2 x2 - 4 x + 8M 3Ax2 Ix - 2M -4 Hx - 2LE 3 Hx - 2L Ix2 -4M 3 Hx - 2L Hx + 2L Hx - 2L -24 -12 -8 -6 Solve: 3 x2 - 7 x = -4 10. First, we get it equal to zero: None of the pairs above add to -7, so the polynomial is prime. 3 x2 - 7 x = -4 +4 + 4 Factor: 8 x - 13 x - 6 2 3 x2 - 7 x +4 = 0 8 ÿ -6 = -48 1 2 3 4 6 -48 ÿ -48 ÿ -24 ÿ ÿ ÿ -16 -12 -8 cubes: 3 x3 - 6 x2 - 12 x + 24 Factor: 4 x - 7 x + 6 6. of 3 x2 - 9 x - 12 4 ÿ 6 = 24 -1 -2 -3 -4 sum Factor completely: 3 x3 - 6 x2 - 12 x + 24 9. 2 24 ÿ ÿ ÿ ÿ 27 x3 + 125 = H3 xL3 + 53 = H3 x + 5L I9 x2 - 15 x + 25M 3 Ix2 - 3 x - 4M 5. squares: = H3 x + 5L IH3 xL2 - H3 xL H5L + 52 M x2 - 7 x - 8 Hx - 8L Hx + 1L 4. of Factor: 27 x3 + 125 8. 8 1 2 Factor: 25 x2 - 16 7. Now we factor: 3 ÿ 4 = 12 -1 -2 -3 12 ÿ -12 ÿ -6 ÿ -4 3 ÿ 4 = 12 12 ÿ -12 ÿ -6 -1 -2 -3 ÿ 3 x2 - 5 x - 2 3 x2 -6 x + 1 x - 2 I3 x2 - 6 xM + H1 x - 2L -4 3 xHx - 2L + 1 Hx - 2L Hx - 2L H3 x +1L 3 x2 - 7 x + 4 = 0 HeL 3 x2 - 4 x - 3 x + 4 = 0 I3 x2 - 4 xM + H-3 x + 4L = 0 x H3 x - 4L -1 H3 x - 4L = 0 H3 x - 4L Hx -1L = 0 3x-4=0 x-1=0 +4 + 4 +1 + 1 3x=4 x=1 3x 3 = 4 3 x= 11. 14 x3 y - 4 x2 y2 + 6 xy4 14 x3 y - 4 x2 y2 + 6 xy4 HbL HcL -1 -2 is HfL a 2 xyI7 x2 - 2 xy + 3 y3 M 1 2 3 4 36 ÿ ÿ ÿ ÿ 36 18 12 9 6 ÿ 6 4 x2 + 6 x + 6 x + 9 t - 8 t - 48 I4 x2 + 6 xM + H6 x + 9L 2 xH2 x + 3L +3 H2 x + 3L H2 x + 3L H2 x +3L t2 - 8 t - 48 Ht - 12L Ht + 4L x2 + x - 10 HgL H2 x + 3L2 xy2 - 7 y2 - 4 x + 28 xy2 - 7 y2 - 4 x + 28 Ixy2 - 7 y2 M + H-4 x + 28L y2 Ix - 7M -4 Hx - 7L 3 x2 - 5 x - 2 Hx - 7L Iy2 -4M Hx - 7L Hy + 2L Hy - 2L 3 ÿ -2 = -6 -6 ÿ ÿ squares: 4 x2 + 12 x + 9 This polynomial is prime because none of the pairs add to get 1. 1 2 of 4 x2 + 12 x + 9 2 -10 ÿ 10 ÿ 5 HdL 9 y2 - 49 = H3 yL2 - 72 = H3 y - 7L H3 y + 7L difference 4 ÿ 9 = 36 4 3 Factor each polynomial completely: HaL This 9 y2 - 49 -6 -3 12. 3 x2 - 5 x - 2 3 x2 -6 x + 1 x - 2 I3 x - 6 xM + H1 x - 2L 2 3 xHx - 2L + 1 Hx - 2L Hx - 2L H3 x +1L Solve each equation: HaL x2 + 5 x = 14 x2 + 5 x = 14 -14 - 14 x2 + 5 x - 14 = 0 Hx + 7L Hx - 2L = 0 x+7=0 x-2=0 -7 - 7 +2 + 2 x = -7 x=2 x2 + 5 x = 14 -14 - 14 HbL x2 + 5 x - 14 = 0 Hx + 7L Hx - 2L = 0 x+7=0 x-2=0 -7 - 7 +2 + 2 x = -7 x=2 5 t3 - 45 t = 0 5 t3 - 45 t = 0 5 tIt2 - 9M = 0 5 tHt + 3L Ht - 3L = 0 5t =0 5t 5 = 0 5 t=0 13. t+3=0 t-3=0 -3 - 3 +3 + 3 t = -3 t=3 The sum of two numbers is 17 and the sum of their squares is 145. Find the numbers. x= first number y= second number We get the system of equations: x + y = 17 x2 + y2 = 145 Using the method of substitution, we will solve for x in the first equation: x + y = 17 -y -y x = 17 -y And substitute it into the second equation and solve: H17 - yL2 + y2 = 145 289 -17 y -17 y +y2 + y2 = 145 2 y2 - 34 y + 289 = 145 -145 - 145 2 y2 -34 y + 144 = 0 2 Iy2 - 17 y + 72M = 0 y-8=0 +8 + 8 y=8 2 Hy - 8L Hy - 9L = 0 y-9=0 +9 + 9 y=9 We check to see that 8 + 9 = 17 and 82 + 92 = 64 + 81 = 145