Download ppt

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ENGS2613 Intro Electrical Science
Week 8
Dr. George Scheets




Read 5.5 – 5.7
Problems 5.8, 9, 12, 14, 19, 23, 28, 30, & 31
Next Quiz Friday 24 March
 Chapter 5 OpAmps
 Will not have +Vcc & -Vcc defined
So don't worry about hitting a power supply rail
Quiz 4 Results
Hi = 10, Low = 2, Ave = 5.71, Deviation = 1.95
No adjustments to scores required.
Quiz #5 Friday, 24 March
Closed Book & Neighbor
 Up to 3 unattached sheets of notes OK
Keep on your desk
Have them on hand before you start
 Calculator OK
 Smart Phones NOT OK
 Reaching down for something in backpack?

 Get

permission first
All we're doing Friday
OpAmps

High Gain Devices
 Typically,
Voltage Gain = Vout/Vin > 10,000
 Vout(t) = [Vp(t) – Vn(t)]*Voltage Gain

High Input Resistance
 Rin
typically > 1 MΩ
 Ignore current into or exiting OpAmp input
 So
long as external resistors < Rin/10
Op Amp Characteristics
vp(t)
Rin
vn(t)
+Vcc
+
vout(t) =
Av(vp(t)-vn(t))
Av
-
-Vcc

Rin?
 In

M ohms
Voltage gain Av?
 On
order of 104 - 106
OpAmps

High Gain Devices
 Typically,
Voltage Gain > 10,000
 Vout(t) = [Vp(t) – Vn(t)]*Voltage Gain

High Input Resistance
 Rin
typically > 1 MΩ
 Ignore current entering OpAmp input
 So

long as external resistors < Rin/10
Negative Feedback?
 Assume
 a.k.a.
Vp(t) = Vn(t)
Virtual Short
OpAmps

On quizzes & tests, assume Ideal OpAmp…
 Voltage
Gain = ∞
 Input impedance = ∞
Absolutely no current enters/exits OpAmp input side

 Current
will generally enter or exit OpAmp output
Output can source or sink any value

 Vp
= Vn if negative feedback
 Output doesn't hit Power Supply rails

…
If +Vcc & -Vcc not shown
unless specifically stated otherwise
OpAmps (Analysis Assumptions)

Is there negative feedback?
Generally, must be "Yes" to be Linear
 Yes?
Set Vp = Vn
 No? Output likely to hit power supply rail
Assume no current thru OpAmp input
 Analyze

 Ohm's
Law
Kirchoff's Current Law
Kirchoff's Voltage Law
Op Amps: No Feedback
+Vcc
+
vin(t)
vout(t) =
Av(vp(t)-vn(t))
Av
-
-Vcc

Output likely to hit rails
 Unless

tiny voltage
Use: Comparator
 Compares
two voltages
 Yields binary output
Op Amps: Positive Feedback
& No Negative Feedback
0v
0v5v
+
Av
vin(t)
-

vout(t) =
Av[vp(t) - 0]
0v
Output likely to hit rails
 May
get stuck there
Use: None
 Suppose |Vcc| = 15 v

Op Amps: Positive Feedback
10 v if feedback & input resistors =
5v
+
Av
vin(t)
-

15 v
Output likely to hit rails
 May

vout(t) =
Av[vp(t) - 0]
get stuck there
Suppose |Vcc| = 15 v
Op Amps: Positive Feedback
7.5 v if feedback & input resistors =
0v
+
Av
vin(t)
-

15 v
Output likely to hit rails
 May

vout(t) =
Av[vp(t) - 0]
get stuck there
Suppose |Vcc| = 15 v
Op Amps: Positive Feedback
≈ 0 v if feedback & input resistors =
-15 v
vin(t)
+
Av
-
vout(t) =
Av[vp(t) - 0]
15 v
Suppose |Vcc| = 15 v



Vp slightly > 0?
 Vout can be stuck at 15 V
Vp exactly = 0?
 Unstable. Vout will end up at -15 V
Vp slightly < 0
 Vout rockets to -15 V
Op Amps: Negative Feedback
0v
-
Av
vin(t)
vout(t) =
Av[vp(t)-vn(t)]
+
0v
Safe to assume vp(t) = vn(t)
 Assume no current enters Op Amp

 If
low R outside paths exist
Op Amps: Negative Feedback
0v
0v5v
vin(t)
-
Av
+
vout(t) =
Av[v+(t) – v-(t)]
0v
Stable System
 Linear so long as don't hit Power
Supply Limits & get Clipped Output
 Suppose |Vcc| = 15 v

Op Amps: Negative Feedback
(Ideal)
0.0+ v
5v
vin(t)
-
Av
+

vout(t)
-5.0 v
Suppose…
OpAmp Voltage Gain = ∞
External elements are Resistors of R Ω
V+ = V-
Op Amps: Negative Feedback
(Actual)
0.0004999 v
5v
vin(t)
-
Av
+

vout(t) =
10,000[v+(t) – v-(t)]
-4.999 v
Suppose…
OpAmp Voltage Gain = 10,000
OpAmp Input Impedance = ∞
External elements are Resistors of R Ω
OpAmps (Analysis Assumptions)

No Current enters or exits inputs
 Effectively,
the OpAmp input isn't there
 But Negative Feedback make Vp = Vn
|Vcc| = 25v
Av = 10,000
vin
5Ω
1Ω
|Vcc| = 25v
Av = 10,000
1Ω
-
vin
vout
+
10 Ω
5Ω
1Ω
1Ω
-
vout
+
10 Ω
OpAmps (Analysis Assumptions)

Look for Negative Feedback
 If
yes, set Vp(t) = Vn(t)
 If no, Vp(t) ≠ Vn(t)
= [Vp(t) – Vn(t)]*Voltage Gain
 Output will probably hit a power supply rail
 Vout(t)
|Vcc| = 25v
Av = 10,000
I
vin
5Ω
1Ω
Have Negative Feedback Here
→ V- = V+ = Vout(1/11)
1Ω
vout
+
10 Ω
[Vin – V-]/5 = I = [V- – Vout]/1
[Vin – Vout/11]/5 = [Vout/11 – Vout]
→ Vout/Vin = -11/49
5v in?
I2R = 1.040 W
1.020a
-.1020v
1.020a
|Vcc| = 25v
Av = 10,000
1Ω
-
5v
5Ω
+
-11/49*5v = -1.122v
-.1020v
1Ω
.1020a
10 Ω
.1020a
Opamp Output
must sink
1.122 amps
LM741 can't do it.
Max output current =
35 – 40 ma
OpAmps: External Resistors
1.020a
-.1020v
1.020a
1Ω
|Vcc| = 25v
Av = 10,000
Rin = 1 MΩ
-
5v
5Ω
+
-11/49*5v = -1.122v
-.1020v
1Ω
.1020a
10 Ω
.1020a
Generally not too
small: X or XX
Ohms.
Current flows too
large.
5v in?
I2R = 10.4 mW
1.020 ma
-.1020v
1.020 ma
10K Ω
|Vcc| = 25v
Av = 10,000
Rin = 1 MΩ
-
5v
5K Ω
+
-11/49*5v = -1.122v
-.1020v
1K Ω
102.0 μa
10K Ω
102.0 μa
Opamp Output
must sink
1.122 m amps
LM741 can do it.
Max output current =
35 – 40 ma
OpAmps? External Resistors
1.020 ma
-.1020v
1.020 ma
10K Ω
|Vcc| = 25v
Av = 10,000
Rin = 1 MΩ
-
5v
5K Ω
+
-11/49*5v = -1.122v
-.1020v
1K Ω
102.0 μa
10K Ω
102.0 μa
Just Right if in
X or XX
K Ohm range
OpAmps: External Resistors
< 10 μa
10 μa
1 MΩ
|Vcc| = 25v
Av = 10,000
Rin = 1 MΩ
5 MΩ
Generally too
large: X or XX
M Ohms.
+
1 MΩ
10 MΩ
Current flows
in/out OpAmp
inputs cannot be
ignored.
Op Amps: Output Load
-
vin(t)
Av
+
vout(t)
Rload
Ideally, load does not effect characteristics
 Practically, load may effect characteristics

 If
Op Amp output can't source or sink
enough current
25v in?
|Vcc| = 25v
Av = 10,000
5.102 ma
-.5102 v
5.102 ma
10K Ω
-
25v
LM741 can sink
35 – 40 ma
-11/49*25v = -5.612 v
5K Ω
+
RL
-.5102 v
1K Ω
510.2 μa
10K Ω
102.0 μa
LM741 can sink
additional
29.80 – 34.80 ma
Voltage gain is
independent of load if
load > 5.612/.0298 =
188.3 Ω
5v in & 10 Ω Load?
|Vcc| = 25v
Av = 10,000
1.020 ma
-.1020v
1.020 ma
10K Ω
-
5v
LM741 can sink
35 – 40 ma
-11/49*5v = -1.122v
5K Ω
I_load
+
10 Ω
-.1020v
1K Ω
102.0 μa
10K Ω
102.0 μa
I_load =
1.122/10 = 112 mA
LM741 can't sink
this!!
Current & Voltage
Values are Incorrect
5v in?
3.651 V
269.8 μA
269.8 μA
10K Ω
-
5v
Operating outside OpAmp's
Comfort Zone?
Voltages & Currents may not be as
expected.
Here sunk current maxes out at
40 mA.
-0.3960 V
5K Ω
0.03960 A
+
10 Ω
-.03600 V
1K Ω
36.00 μA
5Ω
1Ω
5v
40 mA
vout
10K Ω
36.00 μA
1Ω
10 Ω
OpAmp with
Positive & Negative Feedback

Do see Real World Use
 In
Reality: May have some instability issues
 Ideally: Tend to be stable

On Quiz or Test
 Analyze
as if stable
vin
Vp = Vn
 Circuit gain Vout/Vin
super high?
 Indication
unstable
system is possibly
1Ω
5Ω
1Ω
|Vcc| = 25v
Av = 10,000
vout
+
10 Ω
Related documents