Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Présentation SiPM. Sommaire: 1- Vue d’ensemble des photo-détecteurs 2- Généralités sur les SiPMs. 3- Caractérisation. - en continue - en dynamique - sous lumière 4- Applications actuelles et futures. - merci à Nicoleta & Véronique pour l’aide qu’elles m’ont fourni Vincent CHAUMAT . LAL – RAPA- Sept 2008 A look on photon detectors characteristics VACUUM TECHNOLOGY SOLID-STATE TECHNOLOGY PMT MCP-PMT HPD PN, PIN APD GM-APD Blue 20 % 20 % 20 % 60 70 % 50 % 30% Green-yellow 40 % 40 % 40 % 80-90 % 60-70 % 50% Red 6% 6% 6% 90-100 80 % % 80 % 40% Timing / 10 ph.e 100 ps 10 ps 100 ps tens ns few ns tens of ps Gain 106 - 107 106 - 107 3 - 8x103 1 200 200V 105 - 106 1 kV 3 kV 20 kV 10-100V 100-500V 100 V Operation in the magnetic field 10-3 T Axial magnetic field 2 T Axial magnetic field 4T No sensitivity No sensitivity No sensitivity Threshold sensitivity (S/N1) 1 ph.e 1 ph.e 1 ph.e 100 ph.e 10 ph.e 1 ph.e sensible bulky compact sensible, bulky Photon detection efficiency Operation voltage Shape characteristics Vincent CHAUMAT LAL – RAPA- Sept 2008 robust, compact, mechanically rugged PIN, APD & GM-APD PIN APD GM-APD + p+ n P+ active area Depletion region P+ - Type p--type epitaxial layer P-N junction edge N – Type Silicon N-Type Silicon p+-type silicon (substrate) p-n junction p-n junction, Vbias < VBD p-n junction, Vbias > VBD Gain = 1 Gain = M (~ 50-500) - linear mode operation- Gain → infinite -Geiger-mode operation- Vincent CHAUMAT LAL – RAPA- Sept 2008 Des GM-APD aux SiPM • GM-APD – ne donne pas d’information sur l’intensité lumineuse Current (a.u.) Standardized output signal Rquenching + p+ n p--type epitaxial layer p+-type silicon (substrate) -Vbias Time (a.u.) • SiPM (présenté dans les années 90 par Zadigov et Golovin) – Matrice de µ pixel en parallèle / chaque pixel = GM-APD + Rquench – Le signal de sortie est proportionnel au nombre de pixels déclanchés Front contact Al Out Current (a.u.) h Rquenching Two pixels fired Rquench One pixel fired ARC n+ p n+ Three pixels fired GM-APD p n pixels p+ silicon wafer Back contact Vincent CHAUMAT -Vbias - Vbias LAL – RAPA- Sept 2008 Time (a.u.) Différents design de SiPM -1 FBK (Italie) Geometric characteristics: • area: 1 x 1 mm2 625 pixels /40 x 40 m2 pixel size 40 µm Front-side illumination Poly-silicon resistor Hamamatsu (Japon) Geometric characteristics • area: 1 x 1 mm 100 pixels /100 x 100 m2 pixel size 100 µm Photos done at LAL mechanical service, thanks to B. Leluan Vincent CHAUMAT LAL – RAPA- Sept 2008 Différents design de SiPM -2 Photonique (Russie) Geometric characteristics • area 1x1 mm2 556 pixels / 43 x 43 µm2 pixel size Zecotec (Russie) Front-side illumination Metal-resistive-semiconductor Geometric characteristics • area 1.08 x 1.08mm2 (1,17 mm2) 1050 pixels/ ~ 33 x 33 µm2 pixel size 33 µm Vincent CHAUMAT LAL – RAPA- Sept 2008 Listes des paramètres caractérisés – Static characteristics • breakdown voltage • leakage current • quenching resistance – Dynamic characteristics • • • • time structure of the output signal (e.g. rise time, recovery time) gain capacitance noise (e.g. thermal generation, afterpulses, optical cross-talk estimation) – Light characteristics • photon detection efficiency v.s. wavelength (e.g. white lamp and monocromator) • response linearity v.s. incident optical power density (e.g. dynamic range) • One set-up for measurements in dark conditions • Based on the hypothesis that the signal generated by an absorbed photon (the real signal) or by a thermal generated carrier (dark count signal) are identical, the AC characterization can be done studying the dark signals • One set-up for measurements in the presence of the light Vincent CHAUMAT LAL – RAPA- Sept 2008 The set-up for the tests in dark conditions Hardware: - amplifier - MITEQ – 0,01-500 MHz / 50 / 45dB gain / 5mV RMS noise - Fisher Bioblock climatic chamber -10 to +50°C, PC temperature controlled through RS232 - Keithley Source Meter 2611 (Vmax = 200V, Isensibility 2 pA, connections through triaxial cables) - home-made counter with variable threshold on the input signal - TDS 5054 oscilloscope (500 MHz, 5 GS/s) - Pt100 ohm thermometer read by an Keithley 2700 data acquisition system Software: - automatic IV and dark rate measurements by LabView program and C++ program - gain, afterpulses & cross-talk analysis by LabView program CHAUMAT - Vincent automatic monitoring of the Pt100 thermometer bySept LabView software LAL – RAPA2008 Static characteristics • IV reverse characteristic (25°C): 1,00E-06 Reverse current (A) 1,00E-07 1,00E-08 VBD 1,00E-09 30 31 32 33 34 35 36 37 38 Abs Voltage (V) - Pre-breakdown current - carriers generated both in the bulk and surface depleted region - linear with Vbias Post-breakdown current - determined by the dark events and the charges carried by each event (gain) - parabola with Vbias VBD 34V @ 25°C Ipost BD 1µA @ V=4V 2,5E-03 - IV forward characteristic (25°C) Forward current (A) 2,0E-03 1,5E-03 1,0E-03 • • 5,0E-04 0,0E+00 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 - exponential behavior given by the diode equivalent resistor - linear behavior given by the quenching resistor RSiPM ~ 555 RQ pixel = RSiPM * 625 pixels ~ 350 k 1,8 Abs Voltage (V) Vincent CHAUMAT LAL – RAPA- Sept 2008 Temperature dependence static characteristics 1,00E-06 IV W20-B10T6V2PD-3 •VBD growths with the temperature •VBD ~ 80 mV/°C ~ 0,25% / °C Reverse current (A) 1,00E-07 1,00E-08 IV 25°C IV 20°C IV 15°C IV 10°C base line 25°C base line 20°C base line 15°C base line 10°C break down 25°C break down 20°C break down 15°C break down 10°C break down point 25°C break down point 20°C break down point 15°C break down point 10°C Current mesure gain 25°C Current mesure gain 20°C Current mesure gain 15°C Current mesure gain 10°C breackdown (gain) 25°c breackdown (gain) 20°c breackdown (gain) 15°c breackdown (gain) 10°c Linéaire (base line 25°C) Linéaire (base line 20°C) Linéaire (base line 15°C) Linéaire (base line 10°C) Polynomial (break down 25°C) Polynomial (break down 20°C) Polynomial (break down 15°C) Polynomial (break down 10°C) 25°C 20°C 15°C 10°C 1,00E-09 32 33 34 35 36 37 38 Abs Vbias (V) 1,00E-05 IV W20-B10T6V2PD-3 Reverse current (A) 1,00E-06 •Diminution du courant d’obscurité avec la température à overvoltage constant. 1,00E-07 1,00E-08 25°C 20°C 15°C 10°C 1,00E-09 0 1 2 3 4 5 6 Overvoltage (V) Vincent CHAUMAT LAL – RAPA- Sept 2008 SiPM signal shape Shape avalanche photon unique • Fall time: qq nS (limité par les instruments de mesure) • Recovery time: ~50nS Vincent CHAUMAT LAL – RAPA- Sept 2008 SiPM gain • Defined as the charge developed in one pixel by a primary charge carrier: Gain Qmicrocell C VBIAS VBD microcell e e • Linear increasing with the bias voltage • the triggering probability increases linear with the bias voltage • Pixel capacitance – the slope of the linear fit gain v.s. bias voltage 2,0E+06 W3-B3-T6V1PD 25°C W20-B10-T6V2PD 25°C Linéaire (W3-B3-T6V1PD 25°C) Linéaire (W20-B10-T6V2PD 25°C) 1,8E+06 • G ~ 1,2 x 106 @ Vbias = 37 V • G ~ 1,6 x 106 @ Vbias = 38 V • Cpixel ~ 50 fF 1,6E+06 1,4E+06 gain 1,2E+06 1,0E+06 wafer 3 y = 319551x - 9E+06 Cpixel ~ 50fF 8,0E+05 wafer 20 y = 375612x - 1E+07 Cpixel ~55 fF 6,0E+05 4,0E+05 2,0E+05 0,0E+00 27 28 29 30 31 32 33 34 35 36 37 38 39 Bias voltage (V) Vincent CHAUMAT LAL – RAPA- Sept 2008 40 Gain temperature dependence 2,5E+06 y = 397643x - 1E+07 R2 = 0,9992 10°C 15°C 20°C 25°C W20-B10T6V2PD-3 y = 391567x - 1E+07 R2 = 0,9994 2,0E+06 y = 382619x - 1E+07 R2 = 0,9997 1,5E+06 Gain y = 378436x - 1E+07 R2 = 0,9995 • Gain decreases with the temperature at fixed reversed bias • G ~ 0,3 x 105 / °C ~ 3% / °C 1,0E+06 Gain 25°C Gain 20°C Gain 15°C Gain 10°C Linéaire (Gain 25°C) Linéaire (Gain 15°C) Linéaire (Gain 10°C) Linéaire (Gain 20°C) 5,0E+05 0,0E+00 32 33 34 35 36 37 38 39 Abs Vbias (V) 2,5E+06 W20-B10T6V2PD-3 • Gain invariant avec la température à overvoltage constant 2,0E+06 Gain 1,5E+06 1,0E+06 Gain 25°C Gain 20°C Gain 15°C Gain 10°C Linéaire (Gain 25°C) Linéaire (Gain 20°C) Linéaire (Gain 15°C) Linéaire (Gain 10°C) 5,0E+05 0,0E+00 0 1 2 3 4 5 6 Overvoltage (V) Vincent CHAUMAT LAL – RAPA- Sept 2008 SiPM noise -1 • Dark count rate – the main source of noise limiting the SiPM performances – the number of false photon counts/ second registered by the SiPM in the absence of the light – three main contributions: • thermally • afterpulses – through Shockley-Read-Hall generation-recombination centers – carriers trapped during the avalanche discharging and release after, triggering a new avalanche • optical cross-talk – during an avalanche discharge, photons are emitted – these photons can trigger an avalanche in an adjacent cell • dark signals • s – single pixel pulse (thermal generated) • d – double pixel pulse (optical cross-talk) • a – pulses with small amplitude, following a single or a double pulse (afterpulses) Vincent CHAUMAT LAL – RAPA- Sept 2008 SiPM noise -2 1,0E+07 Wafer 20 / B10-T6V2PD - 25°C 35V 35,5V 36V 36,5V 37V 37,5V 38V 38,5V 39V; dV=5V dark count rate (Hz) 1,0E+06 1,0E+05 1,0E+04 1,0E+03 1,0E+02 1,0E+01 1,0E+00 0 100 200 300 threshold (mV) • Dark count rate (0,5 pe. threshold) • ~ 2 MHz @ Vbias = 37 V (V= 3V) • ~ 3 MHz @ Vbias = 38 V (V= 4V) Vincent CHAUMAT LAL – RAPA- Sept 2008 400 500 600 Photon detection efficiency of the SiPM Traditional PDE: PDE of the SiPM: nr. of output pulses recorded nr. of photons received by the detector SiPM QE Ptriggering geom QE – the quantum efficiency • probability that a photon generate an e/h pair in the active region of the device (e.g. n +/p junction of a pixel) wavelength dependent Ptriggering – the avalanche efficiency • probability that an electron generate an avalanche in the device (e.g. Π region of a pixel) – voltage dependent εgeom – the geometrical efficiency • Active surface to total surface ratio p--type epitaxial layer + p+ n p+-type silicon (substrate) Vincent CHAUMAT LAL – RAPA- Sept 2008 Set-up for tests in light conditions X Calibrated photodiode CCD camera Data acquisition system SiPM Halogen light source (100W) Y Grating monochromator 350-800nm Z 3D translation tables Optical bench Principle method for the PDE measurement: low incident flux (~ 107 incident photons /s/mm²) – to avoid the SiPM saturation the number of the incident photons – evaluated with a calibrated photodiode the number of the photons recorded by the SiPM – evaluated by two methods: • DC method: (Iunder illumination- Idark)/Gmean exp • Gexp mean – the exp. average value of the gain determined from the charge distribution • AC counting method: Nsignals under illumination – Nsignals dark • with particular attention on the acquisition parameters to eliminate the afterpulses and the cross-talk a good agreement (within 5%) has been found in between the two methods Vincent CHAUMAT LAL – RAPA- Sept 2008 PDE 16 Mesure de l'efficacité quantique du SiPM T6 W20 IRST, gain thermic, Vb 34V T= 22°C PDE 35,5V sans filtre PDE 36V sans filtre 14 PDE 36,5V sans filtre PDE 37V sans filtre PDE 37,5V sans filtre 12 PDE 38V sans filtre PDE en % 10 8 6 4 2 0 380 430 480 530 580 630 680 longueur d'onde en nm Vincent CHAUMAT LAL – RAPA- Sept 2008 730 780 Linéarité 1,00E+10 linéarité-Saturation SiPM W20 T6 IRST 37V à T = 22°C et Vb 34 V Nr. of photons/mm2/s detected by SiPM 1,00E+09 N photons enrg SiPM 37V Série2 Linéaire (Série2) y = 0,0988x + 91048 1,00E+08 1,00E+07 1,00E+06 1,00E+05 1,00E+06 1,00E+07 1,00E+08 1,00E+09 1,00E+10 Nr. of incident photons/mm^2/s Vincent CHAUMAT LAL – RAPA- Sept 2008 1,00E+11 1,00E+12 Applications & future • T2K (usine à neutrino) 50000 SiPMs utilisés sur 5 détecteurs • ILC calorimetre hadronique (étude) • Biologie: Pet détection, fluorescence, life time mesurement, etc… • Plus grande surface active (9mm²) par pixel • Matrice de SiPM -FBK -SensL …. (bonne efficacité géométrique, résolution position 2D, accroissement des surfaces de détecteurs) Vincent CHAUMAT LAL – RAPA- Sept 2008 Slides supplémentaires Vincent CHAUMAT LAL – RAPA- Sept 2008 Model of GM – APD & passive quenching (1) • Pioneering work done in the 1960 to model micro-plasma instabilities – RCA company by J. R. McIntire, IEEE Trans. Electron Devices, ED-13 (1996) 164 – Shockley Research Laboratory by R. H. Haitz, J. App.. Phys. Vol. 36, No. 10 (1965) 3123 • First order circuit model of the GM-APD with passive quenching • Diode DIODE S VBD CD RQ VBIAS – Rs – diode series impedance (~ 1 k) – Cd – total junction capacitance – VBD – breakdown voltage – S – random on-off switching of the avalanche discharge RS • Biasing circuit – RQ – quenching resistance (> 100 k) – Vbias – bias voltage Vincent CHAUMAT LAL – RAPA- Sept 2008 Model of GM – APD & passive quenching (2) DIODE RQ S VBD VBIAS CD RS current • OFF condition – No charge traversing the breakdown region – S – open – Cd – charged to Vbias – i ~ 0 through Rq • ON condition imax ~(Vbias – VBD)/RQ time V – Avalanche discharge triggered by a carrier generated in the breakdown region (e.g. photon or thermal carrier) – S – closed – Cd discharge to VBD with a time constant Rs x CD – Diode current increases to (Vbias – VBD)/RQ (RQ >> Rs) – Diode voltage decreases from Vbias to VBD • OFF condition – S – open – Cd – recharge again to Vbias with a time constant RQ x Cd Vbias VBD t0 t1 Vincent CHAUMAT t2 time • ready for a new detection LAL – RAPA- Sept 2008 FBT W20 distribution charge N Charge mean : Charge photon unique Charge BIN 0 BIN i * Nbcoup BIN i N Nbcoup Bin 0 BIN i Nb coup (Hz) 100000 distribution charge avalanche : distribution charge 37,5V : distribution charge 36,5V : distribution charge35,5V : 10000 1000 •Charge moyenne 37.5V : 332fC •Charge photon unique 37.5 V : 239fC 100 •Charge moyenne 36.5V : 216fC •Charge photon unique 36.5 V : 169fC 10 •Charge moyenne 35.5V : 227fC •Charge photon unique 35.5 V : 114fC Charge (fC) 1 0 200 400 Vincent CHAUMAT 600 800 1000 1200 1400 1600 LAL – RAPA- Sept 2008 SiPM noise -3 • Dark signals • single pixel pulse (thermal generated) • two simultaneous pixels pulse (optical cross-talk) • pulses with smaller charge, following a single or a double pulse (afterpulses) 1,0E+07 Wafer 20 / B10-T6V2PD - 25°C 35V 35,5V 36V 36,5V 37V 37,5V 38V 38,5V 39V; dV=5V dark count rate (Hz) 1,0E+06 1,0E+05 • Dark count rate (0,5 pe. threshold) • ~ 2 MHz @ Vbias = 37 V (V= 3V) • ~ 3 MHz @ Vbias = 38 V (V= 4V) 1,0E+04 1,0E+03 1,0E+02 1,0E+01 1,0E+00 0 100 Vincent CHAUMAT 200 300 threshold (mV) 400 500 600 LAL – RAPA- Sept 2008