Download Trigonometric Substitution Trig. Substitution is often used when the

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trigonometric Substitution
Trig. Substitution is often used when the integrand involves:
a2 − u 2
or
Throughout this handout,
a>0
a2 + u 2
u2 − a2 ,
or
is a positive constant.
SUMMARY CHART
then do
i.e. do
if f (u)
Goal: Find f (u) du
need
& get
trig.
sub.
trig. sub.
has
working
reality
↓recall↓
form
form
u
R du
−1
u
u
2
2
≤ 1 - π ≤ θ ≤ π (?1 )
√
=
sin
+
c
a
−
u
u
=
a
sin
θ
θ
=
arcsin
2
2
a
a
a
2
2
a −u
R du
u
π
π
1
−1 u
2
2
a + u u = a tan θ θ = arctan a
none
- 2 < θ < 2 (?2 )
= a tan a + c
a2 +u2
R
|u|
√ du
= a1 sec−1 a + c u2 − a2 u = a sec θ θ = arcsec ua
1 ≤ ua u u2 −a2
R
(1)
(2)
(3)
(3+ )
if u is positive
a≤u
(3− )
if u is negative
u≤-a
Helpful for when
(1)
(2)
√
π
2
(?3+ )
<θ≤π
(?3− )
0≤θ<
π
2
sign is involved.
If the integrand involves a2 − u2 , then let u = a sin θ and will have:
p
p
√
(4)
(?1 )
a2 − u2 =
a2 − a2 sin2 θ = a 1 − sin2 θ = a |cos θ| =
a cos θ
If the integrand involves a2 + u2 , then let u = a tan θ and will have:
√
√
√
(4)
(?2 )
a2 + u2 =
a2 + a2 tan2 θ = a 1 + tan2 θ = a |sec θ| =
a sec θ
(3+ )
If the integrand involves u2 − a2 , then let u = a sec θ and, in the case that a ≤ u, will have:
√
√
√
(?3+ )
(4)
+ a tan θ
u2 − a2 =
a2 sec2 θ − a2 = a sec2 θ − 1 = a |tan θ| =
(3− )
If the integrand involves u2 − a2 , then let u = a sec θ and, in the case that u ≤ −a, will have:
√
√
√
(?3− )
(4)
u2 − a2 =
a2 sec2 θ − a2 = a sec2 θ − 1 = a |tan θ| =
– a tan θ
(3)
If book does not provide enough info to determine which (3) to use, then use (3+ ).
Self-check : if (4) does not follow from cos2 θ + sin2 θ = 1, then you picked the wrong trig substitution.
Logic Reduces Memorization (take a = 1 here for simplicity)
(sin θ)2 ≤ 1
(sec θ)2 ≥ 1
(tan θ)2 < ∞
0 ≤ have
so want
so pick
1 − u2
0 ≤ 1 − u2
u2 ≤ 1
u = sin θ
u2 − 1
0 ≤ u2 − 1
1 ≤ u2
u = sec θ
u2 + 1
0 ≤ u2 + 1
−1 ≤ u2
u = tan θ
Recall:
if have
17.01.01 (yr.mn.dy)
then want
Page 1 of 2
Techniques of Integration
Trigonometric Substitution
Example: Evaluate the integral
The integrand
1
(4x2 +9)2
R
1
(4x2 +9)2
dx .
contains a u2 + a2 since
4x2 + 9 = (2x)2 + (3)2 = u2 + a2
where u = 2x and a = 3.
As suggested in the Summary Chart, we try the substitution u = a tan θ to get
2x = 3 tan θ
(sub)
2 dx = 3 sec2 θ dθ
(∗)
4x2 + 9 = (2x)2 + 32 = (3 tan θ)2 + 32 = 32 tan2 θ + 32 = 32 tan2 θ + 1 = 32 sec2 θ ,
where at (∗) we used 1 + tan2 θ = sec2 θ. Now we are ready to substitute into the original integral.
Z 3
Z
Z
Z
Z
sec2 θ dθ
3 1
sec2 θ dθ
1
dθ
1
dx
2
=
=
cos2 θ dθ
2 =
2 =
4
4θ
3
2θ
3
2
2
2
2
3
sec
2
·
3
sec
2
·
3
[4x + 9]
[3 sec θ]
.
now use a half ∠ formula: cos2 θ = 1+cos(2θ)
Z 2
Z
Z
1 1
1
=
(1 + cos(2θ)) dθ = 2 3
1 dθ + cos(2θ) dθ
2 · 33 2
2 ·3
Z
Z
1
1
= 2 3
1 dθ +
cos(2θ) (2dθ)
2 ·3
2
1
1
= 2 3 θ + sin(2θ) + C
2 ·3
2
We want our answer in terms of x, not θ. Using 2x = 3 tan θ, we can compute (a trig function)(θ) but
we have sin (2θ). To get rid of that unwanted 2, we use the double ∠ formula sin(2θ) = 2 sin θ cos θ.
1
1
= 2 3 θ + 2 sin θ cos θ + C
2 ·3
2
1
1
= 2 3 θ + 2 3 sin θ cos θ + C
2 ·3
2 ·3
How to find (the needed trig function)(θ)? Reference Triangle using original substitution.
2x = 3 tan θ
⇒
2x
opposite
opp.
adj.
=
. Know : sin θ =
& cos θ =
3
adjacent
hyp.
hyp.
p
√
32 + (2x)2 = 4x2 + 9
hyp.
2x
2x
θ
θ
3
3
⇒
tan θ =
1
3
2x
1
2x
= 2 3 arctan
+ 2 3 · √
· √
+C
2 ·3
3
2 ·3
4x2 + 9
4x2 + 9
1
2x
1
x
= 2 3 arctan
+
·
+C
2 ·3
3
2 · 32
4x2 + 9
1
2x
x
=
arctan
+
+C .
108
3
18(4x2 + 9)
17.01.01 (yr.mn.dy)
Page 2 of 2
Techniques of Integration
Related documents