Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Trigonometric Substitution Trig. Substitution is often used when the integrand involves: a2 − u 2 or Throughout this handout, a>0 a2 + u 2 u2 − a2 , or is a positive constant. SUMMARY CHART then do i.e. do if f (u) Goal: Find f (u) du need & get trig. sub. trig. sub. has working reality ↓recall↓ form form u R du −1 u u 2 2 ≤ 1 - π ≤ θ ≤ π (?1 ) √ = sin + c a − u u = a sin θ θ = arcsin 2 2 a a a 2 2 a −u R du u π π 1 −1 u 2 2 a + u u = a tan θ θ = arctan a none - 2 < θ < 2 (?2 ) = a tan a + c a2 +u2 R |u| √ du = a1 sec−1 a + c u2 − a2 u = a sec θ θ = arcsec ua 1 ≤ ua u u2 −a2 R (1) (2) (3) (3+ ) if u is positive a≤u (3− ) if u is negative u≤-a Helpful for when (1) (2) √ π 2 (?3+ ) <θ≤π (?3− ) 0≤θ< π 2 sign is involved. If the integrand involves a2 − u2 , then let u = a sin θ and will have: p p √ (4) (?1 ) a2 − u2 = a2 − a2 sin2 θ = a 1 − sin2 θ = a |cos θ| = a cos θ If the integrand involves a2 + u2 , then let u = a tan θ and will have: √ √ √ (4) (?2 ) a2 + u2 = a2 + a2 tan2 θ = a 1 + tan2 θ = a |sec θ| = a sec θ (3+ ) If the integrand involves u2 − a2 , then let u = a sec θ and, in the case that a ≤ u, will have: √ √ √ (?3+ ) (4) + a tan θ u2 − a2 = a2 sec2 θ − a2 = a sec2 θ − 1 = a |tan θ| = (3− ) If the integrand involves u2 − a2 , then let u = a sec θ and, in the case that u ≤ −a, will have: √ √ √ (?3− ) (4) u2 − a2 = a2 sec2 θ − a2 = a sec2 θ − 1 = a |tan θ| = – a tan θ (3) If book does not provide enough info to determine which (3) to use, then use (3+ ). Self-check : if (4) does not follow from cos2 θ + sin2 θ = 1, then you picked the wrong trig substitution. Logic Reduces Memorization (take a = 1 here for simplicity) (sin θ)2 ≤ 1 (sec θ)2 ≥ 1 (tan θ)2 < ∞ 0 ≤ have so want so pick 1 − u2 0 ≤ 1 − u2 u2 ≤ 1 u = sin θ u2 − 1 0 ≤ u2 − 1 1 ≤ u2 u = sec θ u2 + 1 0 ≤ u2 + 1 −1 ≤ u2 u = tan θ Recall: if have 17.01.01 (yr.mn.dy) then want Page 1 of 2 Techniques of Integration Trigonometric Substitution Example: Evaluate the integral The integrand 1 (4x2 +9)2 R 1 (4x2 +9)2 dx . contains a u2 + a2 since 4x2 + 9 = (2x)2 + (3)2 = u2 + a2 where u = 2x and a = 3. As suggested in the Summary Chart, we try the substitution u = a tan θ to get 2x = 3 tan θ (sub) 2 dx = 3 sec2 θ dθ (∗) 4x2 + 9 = (2x)2 + 32 = (3 tan θ)2 + 32 = 32 tan2 θ + 32 = 32 tan2 θ + 1 = 32 sec2 θ , where at (∗) we used 1 + tan2 θ = sec2 θ. Now we are ready to substitute into the original integral. Z 3 Z Z Z Z sec2 θ dθ 3 1 sec2 θ dθ 1 dθ 1 dx 2 = = cos2 θ dθ 2 = 2 = 4 4θ 3 2θ 3 2 2 2 2 3 sec 2 · 3 sec 2 · 3 [4x + 9] [3 sec θ] . now use a half ∠ formula: cos2 θ = 1+cos(2θ) Z 2 Z Z 1 1 1 = (1 + cos(2θ)) dθ = 2 3 1 dθ + cos(2θ) dθ 2 · 33 2 2 ·3 Z Z 1 1 = 2 3 1 dθ + cos(2θ) (2dθ) 2 ·3 2 1 1 = 2 3 θ + sin(2θ) + C 2 ·3 2 We want our answer in terms of x, not θ. Using 2x = 3 tan θ, we can compute (a trig function)(θ) but we have sin (2θ). To get rid of that unwanted 2, we use the double ∠ formula sin(2θ) = 2 sin θ cos θ. 1 1 = 2 3 θ + 2 sin θ cos θ + C 2 ·3 2 1 1 = 2 3 θ + 2 3 sin θ cos θ + C 2 ·3 2 ·3 How to find (the needed trig function)(θ)? Reference Triangle using original substitution. 2x = 3 tan θ ⇒ 2x opposite opp. adj. = . Know : sin θ = & cos θ = 3 adjacent hyp. hyp. p √ 32 + (2x)2 = 4x2 + 9 hyp. 2x 2x θ θ 3 3 ⇒ tan θ = 1 3 2x 1 2x = 2 3 arctan + 2 3 · √ · √ +C 2 ·3 3 2 ·3 4x2 + 9 4x2 + 9 1 2x 1 x = 2 3 arctan + · +C 2 ·3 3 2 · 32 4x2 + 9 1 2x x = arctan + +C . 108 3 18(4x2 + 9) 17.01.01 (yr.mn.dy) Page 2 of 2 Techniques of Integration