Download Further Application of de Moivre`s Theorem 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Further Application of de Moivre's Theorem
1.
Trigonometric Functions of Multiple Angles
de Moivre’s Theorem can help to express cos n, sin n and tan n in terms of cos , sin  and/or tan
 , which is often useful in simplifying trigonometric expressions or solving trigonometric equations:
sin 2 = 2 sin  cos 
sin 3 = 3 sin  – 4 sin3 
sin 4 = 4 sin  cos  – 8 sin3  cos 
sin 5 = 5 sin  – 20 sin3  + 16 sin5 
sin 6 = 6 sin  cos  – 32 sin3  cos  + 32 sin5  cos 
cos 2 = 2 cos2  – 1
cos 3 = 4 cos3  – 3 cos 
cos 4 = 8 cos4  – 8 cos2  + 1
cos 5 = 16 cos5  – 20 cos3  + 5 cos 
cos 6 = 32 cos6  – 48 cos4  + 18 cos2  – 1
Example 1
(i)
cos 5
= Re (cos 5 + i sin 5)
= Re (cos  + i sin )5
by de Moivre’s Theorem
where c = cos , s = sin 
= Re (c + is)5
= Re [ c5 + 5c4is + 10c3(is)2 + 10 c2(is)3 + 5c(is)4 + (is)5 ]
= Re (c5 + 5c4is – 10c3s2 – 10 c2is3 + 5cs4 + is5)
since i2 = –1
5
3 2
4
= c – 10c s + 5cs
= c5 – 10 c3 (1 – c2) + 5 c(1 – c2)2
using s2 + c2 = 1
5
3
5
2
4
= c – 10 c + 10 c + 5 c(1 – 2 c + c )
= 16 cos5  – 20 cos3  + 5 cos 
(ii)
sin 5 = Im (cos 5 + i sin 5)
= Im (c5 + 5c4is – 10c3s2 – 10 c2is3 + 5cs4 + is5) from part (i)
= 5c4s – 10 c2s3 + s5
= 5(1 – s2)2 s – 10 (1 – s2) s3 + s5
using s2 + c2 = 1
2
4
3
5
5
= 5(1 – 2s + s ) s – 10s + 10 s + s
= 5 sin  – 20 sin3  + 16 sin5 
(iii)
tan 5
sin 5
=
cos 5
5cos4  sin  – 10 cos2  sin3  + sin5 
=
from parts (i) and (ii)
cos5  – 10cos3  sin2  + 5cos  sin4 
3
5
5 tan  – 10 tan  + tan 
(by dividing throughout by cos5 )
=
1 – 10 tan2  + 5 tan4 
2.
Powers of Trigonometric Functions
de Moivre’s Theorem can also help to express powers of cos  and sin  in terms of cosines and sines
of multiple angles. This is helpful for integrating powers of cos  and sin :
1
sin2  = 2 (1 – cos 2)
1
cos2  = 2 (1 + cos 2)
1
1
sin3  = 4 (3 sin  – sin 3)
1
cos3  = 4 (3 cos  + cos 3)
1
sin4  = 8 (3 – 4 cos 2 + cos 4)
1
cos4  = 8 (3 + 4 cos 2 + cos 4)
1
sin5  = 16 (10 sin  – 5 sin 3 + sin 5)
1
cos5  = 16 (10 cos  + 5 cos 3 + cos 5)
1
sin6  = 32 (10 – 15 cos 2 + 6 cos 4 – cos 6)
1
cos6  = 32 (10 + 15 cos 2 + 6 cos 4 + cos 6)
1
If z = cos  + i sin , we know that z = cos  – i sin , so that
1
Similarly, using zn = cos n + i sin n and zn
1
z + z = 2 cos 
1
z – z = 2i sin 
= (cos  + i sin )–n
= cos (–n) + i sin (–n) by de Moivre’s Theorem
= cos n – i sin n
1
zn + zn = 2 cos n
we get
1
zn – zn = 2i sin n
Example 2
(i)
(2 cos )5
25 cos5 
32 cos5 
cos5 
 cos5  d
(ii)
(2i sin )5
25 i5 sin5 
32i sin5 
sin5 
 sin5  d
1
= ( z + )5
z
1
1
1
1 1
= z5 + 5z4 + 10z3 2 + 10z2 3 + 5z 4 + 5
z
z
z
z z
1
1 1
= z5 + 5z3+ 10z + 10 z + 5 z3 + z5
1
1
1
= ( z5 + z5 ) + 5( z3 + z3 ) + 10(z + z )
= 2 cos 5 + 10 cos 3 + 20 cos 
1
5
5
= 16 cos 5 + 16 cos 3 + 8 cos 
5
5
1
=  16 cos 5 + 16 cos 3 + 8 cos  d
1
5
5
= 80 sin 5 + 48 sin 3 + 8 sin  + C
1
= ( z – z )5
1
1
1
1 1
= z5 – 5z4 + 10z3 2 – 10z2 3 + 5z 4 – 5
z
z
z
z z
1
1 1
5
3
= z – 5z + 10z – 10 + 5 3 – 5
z
z z
1
1
1
5
3
= ( z – z5 ) – 5( z – z3 ) + 10(z – z )
= 2i sin 5 – 10i sin 3 + 20i sin 
1
5
5
=
sin 5 – sin 3 + sin 
16
16
8
5
5
1
=  16 sin 5 – 16 sin 3 + 8 sin  d
1
5
5
= – 80 cos 5 + 48 cos 3 – 8 cos  + C
2
Related documents