Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
High Power Pulsed Fiber Laser Development for CO2 Space Based DIAL System G. Canat, J. Le Gouët, L. Lombard, A. Bresson, J.B. Dherbecourt, D. Goular, A. Dolfi-Bouteyre, S. Duzellier, D. Boivin, Onera, The French Aerospace Lab, Chemin de la Hunière 91761Palaiseau, France Johan Nilsson, Jayata Sahu, Optoelectronics Research Center, University of Southampton, United Kingdom Sylvain Bordais Keopsys, 2 rue Paul Sabatier, 22300 Lannion, France Outline • System design overview • Stabilized oscillators developpment • Preliminary results for three stages power fiber amplifier • Test of a radhard version of the preamplifier 2 ICSO 2014 – G. Canat Laser transmitter specifications HEPILAS project goal: develop a fiber laser for CO2 DIAL at 1579nm. Various concepts for CO2 lidars transmitters: 1572 nm / fiber / IM-CW 1570 nm / semiconductor MOPA / RM-CW 1572 nm / fiber / pulsed ESA project HEPILAS approach: 1579 nm / fiber / pulsed CO2 IPDA + altimetry measurement 2051 nm / bulk / pulsed 2051 nm / fiber / pulsed Pulse duration 150 ns Pulse energy ON 250µJ / OFF 200 µJ (SOW 2 mJ/ 200µJ) PRF 2 kHz for ON/OFF sequence Single frequency emission M2<2.5 with good beam pointing stability Handle 10 kRad radiation 3 ICSO 2014 – G. Canat System design overview Stabilized ON1 oscillator 1579.11nm Master oscillator locked on CO2 line Stabilized ON2 oscillator 1579.12nm Fiber switch Stabilized OFF oscillator 1579.2nm Stage 1 Core pumped Stage 2 Cladding pumped Pp=300W Ep=45 µJ Preamplifier Pp=2kW Ep=250 µJ Stage 3 Core pumped Power amplifier Pump laser Optical interface Control interface Computer control 4 ICSO 2014 – G. Canat Outline • System design overview • Stabilized oscillators development • Preliminary results for three stages power fiber amplifier • Test of a radhard version of the preamplifier 5 ICSO 2014 – G. Canat Stabilized oscillator: Preliminary Design Master laser: wavelength modulation to lock it on the top of the CO2 line DFB LD Tdriver 1x2 I driver 1x2 Master Laser A output Iso. + Master : low bandwith DDS “Long term” LPF P. Co loop neededlow (WM) PD 2 Mixer Master Laser C réf. Lock Slave lasers: beatnote locking DFB LD Tdriver I driver C 1x2 2x1 Iso. Laser réf. Laser OFF (or ON) output PD Mixer VCO 0.5 or 11 GHz “Long term” Lock F to V LPF Seed lasers with good short term stability Long term stability given by locking 6 ICSO 2014 – G. Canat D or B1 Seed lasers: Preliminary Tests on 2 commercial DFB Beatnote between two independent DFB lasers measured by counter + wavemeter WAVEMETER diode 3 diode 1 -1/2 Noise 2.0 MHz.Hz 10 Diode 1 / Diode 3 20 SPECTRUM ANALYSER beatnote 1-3 -1/2 Noise 0.8 MHz.Hz HIGH SPEED COUNTER beatnote 1-3 Allan [MHz] beatnote offset (MHz) 19 18 17 16 220 155 kHz @10s 2 SPECIFICATION 0,2 MHz @10 s 1 15 14 13 0,1 12 0 50 100 150 200 0,1 1 10 time (s) 100 1000 10000 [s] Width measurement: Beatnote between two Independent DFB lasers on 15 ms Gaussian (f=1000 kHz) on 16 s Gaussian (f=2000 kHz) -10 -15 detected power (dBm) -20 2MHz @15s -25 -30 -35 -40 -45 -50 -20M -10M 0 f [Hz] 7 ICSO 2014 – G. Canat 10M 20M Locking to a CO2 line Longterm drift CO2 line LDC250 + 200 Hz filter vs LDC8002 2,10E+009 1,0 ~ 40 h Transmission ~ 50 MHz BeatNote Frequency (Hz) 0,9 2,05E+009 L=30 m, 8 mbar of CO2 Experiment HITRAN estimate 450 MHz 0,8 0,7 0,6 1578.222 nm 0,5 -3 2,00E+009 0 50000 100000 0 3 6 relative Frequency (GHz) 150000 Time (s) Error signal Locking 3 Voltage (V) 2 1 Frequency (THZ) 190,08715 Transmitted Signal Error Signal Slope of 6,7 mV/MHz 0 Imposed Perturbation 150 MHz @ 2 Hz 190,08710 190,08705 Lock "ON" 190,08700 -1 0 -0,10 -0,05 0,00 0,05 Time (s) 8 ICSO 2014 – G. Canat 0,10 10 20 Time (s) 30 Outline • System design overview • Stabilized oscillators developpment • Preliminary results for three stages power fiber amplifier • Test of a radhard version of the preamplifier 9 ICSO 2014 – G. Canat Brillouin scattering in optical fiber Stimulated Brillouin Scattering Pump wave at p Stokes wave at s=p-B Acoustic wave at B gBL P eff out Threshold condition: 21 A eff • Use of LMA with MFD >> 30 µm Compatibility with good beam quality ? • 10 Use of highly doped short fibers ICSO 2014 – G. Canat • Longitudinal variation of Brillouin frequency using strain… Compatibility with other requirements (beam quality, efficiency, lifetime…)? • Control of dopants concentration profile Compatibility with complex compositions, high efficiency, immunity to radiation induced attenuation ? Comparison of glass matrix with respect to RIA and gain Exploration of 3 Erbium doped glass families: • Aluminosilicate (fiber L) • Phosphosilicate (e.g. Erbium-Ytterbium) fiber EY • Aluminophosphosilicate (fiber C) Gamma ray irradiation Absorption 1,0 0,9 Erbium absorption band -0,4 0,8 Absorption (U.A.) RIA dB/m @ 10 kRad -0,2 -0,6 -0,8 -1,0 1 Fiber C Fiber EY Fiber L1 Absorption (U.A.) 0,0 0,7 0,1 Fiber C Fiber EY Fiber L1 0,6 0,01 1550 0,5 1560 0,4 0,3 Fiber EY Fiber L Fiber C -1,2 0,2 0,1 -1,4 0,0 1000 1100 1200 1300 1400 1500 1600 Wavelength (nm) 11 ICSO 2014 – G. Canat 1700 1570 1580 Wavelength (nm) 1425 1450 1475 1500 1525 Wavelength (nm) 1550 1575 1600 1590 1600 Comparison of aluminophosphosilicate based large mode area fibers for the power amplifier 1532nm pump laser 1565nm or 1579nm DFB PA MUX 8° MFA FUT 3,5 1,6 3,0 Output power (W) 1,2 2,0 Slope 59% 1,5 Slope 30% Gmax=3.9 1,0 1579nm Pin=160mW 1579nm Pin=316mW 4,5 slope 20% slope 16% 0,8 0,6 slope 5% Slope 28% Gmax=4.4 2 3 4 5 6 Launched pump power (W) Single mode fiber C Effective area ~95µm2 ICSO 2014 – G. Canat 3,0 slope 37% 2,5 2,0 slope 28% 1,0 0,0 1 3,5 1,5 0,2 0,0 380mW 100mW 4,0 slope 13% 1,0 0,4 0,5 12 1565nm Pin=126mW 1565nm Pin=281mW 1579nm Pinj=225mW 2,5 Output power (W) 1,4 1579nm Pinj=153mW Output Power (W) 1565nm Pinj=120mW 0,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5 9,0 9,5 10,0 Pump power (W) LMA fiber B Effective area ~ 500µm2 3 4 5 6 7 8 9 10 11 Launched pump power (W) Aluminosilicate LMA fiber L Effective area ~ 706µm2 Preliminary MOPFA set-up Pulse shape Supergaussian fit 1,0 RF Driver Pulse generator 0,6 0,4 0,2 0,0 0 50 100 150 200 250 300 350 400 450 500 Time (ns) 1579nm DFB laser diode Amp 11 AOM ISO Amp 21 ISO Filter L Expected SBS threshold increase MUX LMA fiber L Keopsys Raman fiber laser Mode Er 60-40/250 DC Field Adaptation 30 W peak power 150 ns pulses 20 18 Backscattered power (U.A) Power (normalized) 0,8 Unstrained fiber Strained fiber 16 14 40 MHz 12 10 225 MHz 8 6 4 2 0 10.8 10.9 11.0 11.1 11.2 11.3 Frequency (GHz) 13 ICSO 2014 – G. Canat 11.4 11.5 11.6 Experimental results 2000 FWHM=152ns 0,06 1.7 kW 1600 1400 Power (A.U.) 0,05 240 0,03 2000 180 Peak power (W) 0 100 200 300 400 500 600 700 140 1000 120 800 100 550W SBS limit standard amplifier 80 Pulse energy (µJ) 160 0,00 Time (ns) 600 Chi^2/DoF = 1589.75337 R^2 = 0.99778 200 0,02 0,01 1200 Data: Data1_B Model: gauss_beam 2500 220 0,04 Beam diameter (µm) 1800 M2 measurement 260 0,07 w0 z0 zR 40 200 20 0 0 1000 1500 2000 2500 3000 3500 1000 500 2 M <1.2 0 0 50 100 Launched pump power (mW) M2<1.2 Strain will require large strain during proof testing (250 kpsi) to provide low probability of failure of the fiber. 14 ICSO 2014 – G. Canat 150 Position (mm) 4000 23% optical-optical efficiency ±31.72084 ±0.57764 ±1.68396 1500 60 400 121.08779 142.1391 6.34922 200 250 Outline • System design overview • Stabilized oscillators developpment • Preliminary results for three stages power fiber amplifier • Test of a radhard version of the preamplifier 15 ICSO 2014 – G. Canat A rad-hard fiber for the preamplifier ICSO 2014 – G. Canat Irradiation configuration of the double pass amplifier Radiation area FUT specially developed by iXFiber Mode field diameter 5.6µm PMF1550 10m Peak absorption 25.1 dB/m @ 1530nm Circ Peak absorption 15 dB/m @ 980nm 1480nm DBR pump diode Tap coupler 1% Fiber well suited for 1579nm amplification WDM 1580nm DFB seed laser diode FUT 11m 20krad Double pass well suited to reduce RIA impact Seed monitor Output monitor Input power 4 µW @ 1579nm FBG 30 dB of gain 0.8 0.6 0.4 Power density (dBm/nm) Preirradiation Postirradiation D+7 Postirradiation D+54 4 Signal output power (mW) Output power (Normalized) 10 5 1 3 2 5 10 15 20 -10 -20 -30 working point during irradiations -50 0 0 Preirradiation Postirradiation 0 -40 1 0.2 0 PMF 1550 10m 25 Doser (kRad) 0 20 40 60 80 100 120 Launched pump power (mW) -63% drop for 20 kRad dose Moderate self healing Power can be recovered by a modest increase of pump power (+25%) ICSO 2014 – G. Canat -60 1540 1560 1580 Wavelength (nm) 1600 1620 Conclusion • We report on the preliminary design of an all fiber laser emitting at 1579nm (three laser lines) • 3 stages MOPFA based on a core pumped LMA aluminosilicate fiber and a strain distribution (broadening ~x5 of Stokes spectrum) • 23% internal optical-optical efficiency • Good beam stability is preserved • Development and tests of alternative glass hosts for the various amplification stages have showed that lab grade aluminophosphosilicate fibers reduce RIA but lack of gain at 1579nm • Commercial fiber (iXFiber) well performing in the preamplifier (small core diameter) Acknowledgement to European Space Agency who funded part of this work under under ESA contract #4000104022/11/NL/CP 18 ICSO 2014 – G. Canat CW Oscillator : Prelminary Tests Free running laser fulfills requirement : 0.2 MHz – 10 sUSB?or GPIB PC Link 3) record Beatnote central frequency Laser Mount (LM14S2 or LDM4980) + Laser Diod (62759-Ax) TEC c ontroler (TED8020) PM Isolator (PMI-2-56-P-2-L-Q) PM Coupler 90/10 (PMFC-56-1-10-2-L) Synthetiser 0.5-1GHz (BSVB 13) Frequency to Voltage Converter Low Pass filter (SLP 70+ ) (based on AD650) Mixer (ZP 5LH-S+ ) Current sourc e (LDC 8001 or LDC8002 or LDX3620B-LN)) PM Isolator (PMI-2-56-P-2-L-Q) PM Coupler 90/10 (PMFC-56-1-10-2-L) Photodiod Attenuator (EigenLight 420) (SIR-5) Spectrum Analyzer (FSP-7) Coupler 4x25% (TWC-14-155-0-00-FC/APC-E) PM Isolator (PMI-2-56-P-2-L-Q) 19 PM Coupler 90/10 (PMFC-56-1-10-2-L) ICSO 2014 – G. Canat BNC-2110 PCI-6251 Computer Wavelength meter (WS-6 IR) 1) Direct wavelength Measurement (Rb referenced) 2) Beatnote spectrum measurement (~ spectrum autoconvolution) Spectral and spatial measurements Long term beam fluctuations assesment Output spectrum 520 270 0 500 260 480 -10 460 -20 Radius (pixels) Centroid position (pixels) Power (A.U.) 250 440 420 400 230 380 -30 240 360 220 340 320 1550 -40 1460 1480 1500 1520 1540 1560 1580 1600 1555 1560 1565 Wavelength (nm) 1570 1575 1580 Centroid position X/Y 210 1550 1555 1560 1565 Wavelength (nm) 1570 1575 1580 Beam radius Wavelength (nm) M2 measurement Data: Data1_B Model: gauss_beam 2500 Chi^2/DoF = 1589.75337 R^2 = 0.99778 Beam diameter (µm) 2000 w0 z0 zR 121.08779 142.1391 6.34922 0.25 ±31.72084 ±0.57764 ±1.68396 1500 1000 500 2 M <1.2 0 0 50 100 150 200 250 Position (mm) 20 ICSO 2014 – G. Canat Single frequency pulse amplification at M2<2: previous results 2200 2000 1800 Peak power (W) 1600 2 M =1 NP Photonics 2010 2 M ~2.1 ORC 2004 ONERA/IPHT 2008 2 M =1.3 1400 Erbium-Ytterbium standard core Erbium-Ytterbium multifilament Erbium-Ytterbium phosphate glass 1200 1000 800 600 Fibertek 2 2014 M =1.2 450µJ 400 RIP control difficult Aculight 2007 2 M =1 200 0 1530 1540 1550 1560 Wavelength (nm) Low efficiency Parasitic effects 21 ICSO 2014 – G. Canat 1570 NP Photonics 2 2010 M =1 80µJ 1580