Download Math 50 Exercises 1. Change from degree to radian

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 50 Exercises
1. Change from degree to radian:
a. 125◦
b. −32◦
c. 450◦
d. −865◦
2. Change from radian to degree:
π
a.
6
3π
b. −
5
π
c.
2
4π
d. −
7
23π
e. −
6
20
f.
7
g. −1
h. 3.14
3. Find the exact value of the following:
3π
a sin
4
!
π
b. cos −
6
5π
c. sec
4
!
7π
d. tan −
3
!
π
e. csc −
2
21π
f. sec
4
1
4. Suppose θ is an angle in standard position and P is the terminal
point of θ, find the value of the six trigonometric functions of θ:
a. P = (1, −3)
√ 

1
2
b. P =  ,
3 3
 √

√
3
c. P = − , − 3
4
√ d. P = −2, 2
5. Find the value of the other five trigonometric functions of θ from
the information given:
2
a. cos θ = , terminal point of θ is in first quadrant.
5
√
3
b. sin θ =
, terminal point of θ is in second quadrant.
4
1
c. tan θ = − , terminal point of θ is in second quadrant.
5
7
d. csc θ = − , terminal point of θ is in fourth quadrant.
2
e. sec θ = 2, terminal point of θ is in fourth quadrant.
√
− 3
f. cot θ =
, terminal point of θ is in second quadrant.
5
1
g. cos θ = − √ , terminal point of θ is in second quadrant.
3
√
5
h. cos θ =
, terminal point of θ is in fourth quadrant.
6
2
6. If sin(θ) = , sin(−θ) =?
3
1
7. If cos(θ) = , cos(−θ) =?
4
√
8. If tan(θ) = 2, tan(−θ) =?
1
9. If sin(θ) = , sin(4π − θ) =?
3
4
10. If cos(θ) = − , cos(−θ − 6π) =?
5
2
11. Let f (x) = 3 sin(2x − 1).
a. Find the amplitude of f .
b. Find the period of f .
c. Graph f . In your graph, for at least one cycle of f , indicate the
coordinates of the x intercept, the maximum and minimum values of
f.
π
12. Let f (x) = − cos(x + ).
3
a. Find the amplitude of f .
b. Find the period of f .
c. Graph f . In your graph, for at least one cycle of f , indicate the
coordinates of the x intercept, and the maximum and minimum values
of f .
13. Let f (x) = tan(x − 4).
a. Find the period of f .
b. Graph f . In your graph, for at least one cycle of f , indicate the
coordinates of the x intercept, and the location of the vertical asymptotes.
14. Let f (x) = 2 sec(πx + 1).
a. Find the period of f .
b. Graph f . In your graph, for at least one cycle of f , indicate the
coordinates of the x maximum and minimum values of f ,
and the location of the vertical asymptotes.
3
15. Verify the Identity:
cos2 x − sin2 x
a.
= cot x − tan x
cos x sin x
cos x − sin x
= csc x − sec x
b.
cos x sin x
tan x + 1
c.
= sin x + cos x
sec x
cos x
sin x + 1
=
d.
cos x
1 − sin x
e. tan x + cot x = sec x csc x


!
(cos
h)
−
1
sin(x + h) − sin x
sin h


= (sin x)
+ (cos x)
f.
h
h
h
cos x − cos 3x
= tan x
g.
sin x + sin 3x
sin x
h.
= (csc x)(1 + cos x)
1 − cos x
sin 2x
= 1 − cos 2x
i.
cot x
sin(x − y) tan x − tan y
j.
=
sin(x + y) tan x + tan y
2 − sec2 x
= cos 2x
sec2 x
sin x + sin 5x
l.
= tan 3x
cos x + cos 5x
sin x + sin y
x−y
m.
= − cot
cos x − cos y
2
cos x − cos y
x+y
x−y
= − tan
tan
n.
cos x + cos y
2
2
k.
4
16. Find exact value of the following:
a. sin−1 (0)
√ 
3
b. sin−1  
2
c. cos−1 (−1)
 √ 
2
d. cos−1 − 
2
e. tan−1 (−1)
!
1
f. arcsin
2
 √ 
2
g. arccos − 
2
17. Find exact value:
a. arcsin(sin(3π))
9π
b. arccos(cos(− ))
2
−21π
))
c. tan−1 (tan(
4
d. sin−1 (sin(4.579))
e. cos−1 (cos(−13))
18. Find the exact value:
1
a. sin(arccos( ))
3
2
b. cos(arcsin(− ))
5
−1
c. sec(tan (3))
2
d. tan(cos−1 ( ))
7
3
e. csc(sin−1 ( √ ))
13
5
19. Rewrite the following in terms of x so that the expression is free
of any trigonometric functions:
a. sin(arccos x)
b. cos(tan−1 x)
c. tan(sin−1 x)
20. Solve the given equation. If the range for x is indicated, only solve
for x over that interval. Otherwise, solve for all possible solutions.
√
2
a. cos x =
2
√
3
b. sin x = −
2
1
c. sin x = −
2
√
d. tan x = 3
e. cos x = −1
f. sin x = 0
g. 2 sin x + 1 = 0, 0 ≤ x ≤ 2π
√
h. 2 cos x − 3 = 0, 0 ≤ x ≤ 2π
i. cos x = cot x, 0 ≤ x ≤ 2π
j. tan x = −2 sin x, 0 ≤ x ≤ 2π
k. 2 cos2 x + 3 sin x = 0, 0 ≤ x ≤ 2π
l. cos 2x = sin x
m. sin 2x = 1 + cos 2x
n. cos 2x = cos x − 1
6
21. Solve the triangle. If the triangle is impossible, explain. If there is
more than one possible triangle, find both.
a. A = 115◦ , B = 40◦ , c = 7
b. A = 22◦ , b = 5, c = 3
c. A = 92◦ , C = 41◦ , c = 10
d. a = 8, b = 5, c = 10
e. A = 50◦ , a = 10, b = 12
f. A = 46◦ , B = 76◦ , b = 5
7
22. If v = h3, −5i and u = h2, 4i are vectors in R2 , find the following:
a. 3v + 4u
b. 5u − 2v
c. |v|
d. Find a unit vector that is parallel to u
e. v · u
f. Is v and u perpendicular to each other? Explain
g. Find the angle formed between v and u
8
23. The following points are in rectangular coordinate, change them
to polar coordinate. Use exact value whenever possible.
a. (0, 1)
b. (3, 3)
√
c. (− 3, 1)
d. (0, −1)
√
e. (−1, − 3)
f. (−2, −3)
g. (2, −5)
h. (4, −1)
24. The following points are in polar coordinate, change them to rectangular coordinate. Use exact value wheneven possible.
a. (1, 0)
b. (−1, 0)
!
2π
c. 2,
3
!
5π
d. −3, −
6
!
9π
e. −1,
4
!
π
f. 1, −
2
g. (−1, 1)
h. (−4, −2)
25. Describe the curve given by the following polar equation:
a. r = 10
π
b. θ = −
3
c. r = 2θ, 0 ≤ θ < ∞
d. r = 10 sin θ
e. r = 8 cos θ
f. r = −2 sin θ
9
Related documents