Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 50 Exercises 1. Change from degree to radian: a. 125◦ b. −32◦ c. 450◦ d. −865◦ 2. Change from radian to degree: π a. 6 3π b. − 5 π c. 2 4π d. − 7 23π e. − 6 20 f. 7 g. −1 h. 3.14 3. Find the exact value of the following: 3π a sin 4 ! π b. cos − 6 5π c. sec 4 ! 7π d. tan − 3 ! π e. csc − 2 21π f. sec 4 1 4. Suppose θ is an angle in standard position and P is the terminal point of θ, find the value of the six trigonometric functions of θ: a. P = (1, −3) √ 1 2 b. P = , 3 3 √ √ 3 c. P = − , − 3 4 √ d. P = −2, 2 5. Find the value of the other five trigonometric functions of θ from the information given: 2 a. cos θ = , terminal point of θ is in first quadrant. 5 √ 3 b. sin θ = , terminal point of θ is in second quadrant. 4 1 c. tan θ = − , terminal point of θ is in second quadrant. 5 7 d. csc θ = − , terminal point of θ is in fourth quadrant. 2 e. sec θ = 2, terminal point of θ is in fourth quadrant. √ − 3 f. cot θ = , terminal point of θ is in second quadrant. 5 1 g. cos θ = − √ , terminal point of θ is in second quadrant. 3 √ 5 h. cos θ = , terminal point of θ is in fourth quadrant. 6 2 6. If sin(θ) = , sin(−θ) =? 3 1 7. If cos(θ) = , cos(−θ) =? 4 √ 8. If tan(θ) = 2, tan(−θ) =? 1 9. If sin(θ) = , sin(4π − θ) =? 3 4 10. If cos(θ) = − , cos(−θ − 6π) =? 5 2 11. Let f (x) = 3 sin(2x − 1). a. Find the amplitude of f . b. Find the period of f . c. Graph f . In your graph, for at least one cycle of f , indicate the coordinates of the x intercept, the maximum and minimum values of f. π 12. Let f (x) = − cos(x + ). 3 a. Find the amplitude of f . b. Find the period of f . c. Graph f . In your graph, for at least one cycle of f , indicate the coordinates of the x intercept, and the maximum and minimum values of f . 13. Let f (x) = tan(x − 4). a. Find the period of f . b. Graph f . In your graph, for at least one cycle of f , indicate the coordinates of the x intercept, and the location of the vertical asymptotes. 14. Let f (x) = 2 sec(πx + 1). a. Find the period of f . b. Graph f . In your graph, for at least one cycle of f , indicate the coordinates of the x maximum and minimum values of f , and the location of the vertical asymptotes. 3 15. Verify the Identity: cos2 x − sin2 x a. = cot x − tan x cos x sin x cos x − sin x = csc x − sec x b. cos x sin x tan x + 1 c. = sin x + cos x sec x cos x sin x + 1 = d. cos x 1 − sin x e. tan x + cot x = sec x csc x ! (cos h) − 1 sin(x + h) − sin x sin h = (sin x) + (cos x) f. h h h cos x − cos 3x = tan x g. sin x + sin 3x sin x h. = (csc x)(1 + cos x) 1 − cos x sin 2x = 1 − cos 2x i. cot x sin(x − y) tan x − tan y j. = sin(x + y) tan x + tan y 2 − sec2 x = cos 2x sec2 x sin x + sin 5x l. = tan 3x cos x + cos 5x sin x + sin y x−y m. = − cot cos x − cos y 2 cos x − cos y x+y x−y = − tan tan n. cos x + cos y 2 2 k. 4 16. Find exact value of the following: a. sin−1 (0) √ 3 b. sin−1 2 c. cos−1 (−1) √ 2 d. cos−1 − 2 e. tan−1 (−1) ! 1 f. arcsin 2 √ 2 g. arccos − 2 17. Find exact value: a. arcsin(sin(3π)) 9π b. arccos(cos(− )) 2 −21π )) c. tan−1 (tan( 4 d. sin−1 (sin(4.579)) e. cos−1 (cos(−13)) 18. Find the exact value: 1 a. sin(arccos( )) 3 2 b. cos(arcsin(− )) 5 −1 c. sec(tan (3)) 2 d. tan(cos−1 ( )) 7 3 e. csc(sin−1 ( √ )) 13 5 19. Rewrite the following in terms of x so that the expression is free of any trigonometric functions: a. sin(arccos x) b. cos(tan−1 x) c. tan(sin−1 x) 20. Solve the given equation. If the range for x is indicated, only solve for x over that interval. Otherwise, solve for all possible solutions. √ 2 a. cos x = 2 √ 3 b. sin x = − 2 1 c. sin x = − 2 √ d. tan x = 3 e. cos x = −1 f. sin x = 0 g. 2 sin x + 1 = 0, 0 ≤ x ≤ 2π √ h. 2 cos x − 3 = 0, 0 ≤ x ≤ 2π i. cos x = cot x, 0 ≤ x ≤ 2π j. tan x = −2 sin x, 0 ≤ x ≤ 2π k. 2 cos2 x + 3 sin x = 0, 0 ≤ x ≤ 2π l. cos 2x = sin x m. sin 2x = 1 + cos 2x n. cos 2x = cos x − 1 6 21. Solve the triangle. If the triangle is impossible, explain. If there is more than one possible triangle, find both. a. A = 115◦ , B = 40◦ , c = 7 b. A = 22◦ , b = 5, c = 3 c. A = 92◦ , C = 41◦ , c = 10 d. a = 8, b = 5, c = 10 e. A = 50◦ , a = 10, b = 12 f. A = 46◦ , B = 76◦ , b = 5 7 22. If v = h3, −5i and u = h2, 4i are vectors in R2 , find the following: a. 3v + 4u b. 5u − 2v c. |v| d. Find a unit vector that is parallel to u e. v · u f. Is v and u perpendicular to each other? Explain g. Find the angle formed between v and u 8 23. The following points are in rectangular coordinate, change them to polar coordinate. Use exact value whenever possible. a. (0, 1) b. (3, 3) √ c. (− 3, 1) d. (0, −1) √ e. (−1, − 3) f. (−2, −3) g. (2, −5) h. (4, −1) 24. The following points are in polar coordinate, change them to rectangular coordinate. Use exact value wheneven possible. a. (1, 0) b. (−1, 0) ! 2π c. 2, 3 ! 5π d. −3, − 6 ! 9π e. −1, 4 ! π f. 1, − 2 g. (−1, 1) h. (−4, −2) 25. Describe the curve given by the following polar equation: a. r = 10 π b. θ = − 3 c. r = 2θ, 0 ≤ θ < ∞ d. r = 10 sin θ e. r = 8 cos θ f. r = −2 sin θ 9