Download Introduction into molecular photobiophysics / Einführung in die

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Introduction into molecular photobiophysics /
Einführung in die molekulare Photobiophysik
Table of contents - winter semester
0 Introduction
1 Structure of biological relevant molecules
1.1 Proteins
1.2 Nucleinic acids
1.3 Lipids
1.4 Tetrapyrroles
1.5 Retinals
1.6 The hydrophobic effect and the formation of three dimensional structures of biological
molecules
1.7 Pigments
(about the functional relevance of the dye bonding to proteins: Haemoglobin, Rhodopsin,
Phytochromes, antennae complexes and reaction center of photosynthesis)
2. Photophysical fundamentals
2.1 Photophysical and photochemical basic laws
2.2 The Lambert-Beer law
2.4 The molecular orbital model (MO-model)
2.4.1 Classification of molecular orbitals
2.4.2 The influence of p-electron system expansion on the absorption spectrum of molecules
2.4.3 The Jablonski-diagramm
2.5 Literature
3. Mechanism of selected (one-photon) classical photophysical processes
3.1 Absorption of light
3.1.1 Born-Oppenheimer approximation
3.1.2 Franck-Condon-principle and Stokes-shift
3.1.3 Extinction coefficient and oscillator strength
3.2 Radiative deactivation
3.2.1 Fluorescence
3.2.2 Phosphorescence
3.2.3 Delayed fluorescence
3.3 Nonradiative deactivation
3.3.1 Internal conversion (IC)
3.3.2 Intersystem crossing (ISC)
4. Nonlinear photophysical processes
4.1 One-step two photon absorption
4.2 Two step two photon absorption
4.3 Transient absorption
4.3.1 Transient dichroism
4.4 Literature
5. Examples - photophysical properties of biological relevant dyes and pigments
5.1 Electronic properties of pheophorbide a
5.2 Photoactivation of phytochromes
5.3 Phototransformation of rhodopsin
5.4 Literature
6. Energy transfer processes
6.1 Trivial energy transfer
6.2 Nonradiative Energy transfer
6.2.1 Excitonic interaction at strong coupling
6.2.1.1 Example - dimerisation of Pheophorbide a
6.2.2 Forster-Transfer
6.2.2.1 Examples
6.3 Nonclassic energy transfer
6.4 Literature
7. Photoinduced electron transfer
7.1 Primary steps in photosynthesis
7.2 Fundamentals
7.3 Classical electron transfer theory (Marcus-Theorie)
7.4 Quantenmechanical description
7.5 Examples
7.5.1 Porpyrin-Quinon-Diad
7.5.2 Series of Porphyrin-Quinon-Triads
7.5.3 Fullerene-tetrapyrrole-diads (?)
7.6 Literature
8. The photodynamic effect
8.1 The mechanism of photosensitisation
8.2 Electronic properties of molecular oxygen
8.2.1 Molecular singlet oxygen
8.2.1.1 Photosensitised generation of Sisa
8.2.1.2 Deactivation and detection of Sisa
8.2.2 The superoxide anion radical
8.2.3 The hydroxyl radical
8.2.4 Biological relevance of activated oxygen species
8.3 Photodynamic Therapy (PDT)
8.3.1 Tetrapyrroles as photosensitisers for PDT
8.3.1.1 First generation photosensitisers
8.3.1.2 Second genration photosensitisers
8.3.1.3 Third generation photosensitisers
8.4 Literature
9. Some applications
9.1 Investigation of equilibrium processes
9.1.1 Aggregation of Pheophorbide a
9.2 Fluorescence quenching (Stern-Volmer-Gleichung)
9.2.1 Dynamic fluorescence quenching
9.2.2 Static fluorescence quenching
9.2.3 Combined fluorescence quenching
9.2.4 Examples
9.2.4.1 Quenching of singlet molecular oxygen by Sodium azide
9.2.4.2 Quenching of singlet molecular oxygen by dendrimers
9.3 Fluorescence anisotropy
9.3.1 Steady-state fluorescence anisotropy
9.3.2 Dynamic fluorescence anisotropy
9.3.3 Examples
9.3.3.1 Determination of microviscosities in micelles
9.3.3.2 Dye-carrier-complexes
9.4. Literature
10. Summary
Table of contents - summer semester
I. Short summary of part I
1. Mechanism of selected classical photophysical processes
1.1 Absorption of light
1.2 Radiative deactivation
1.3 Nonradiative deactivation
1.4 Non-linear photophysical processes
2. Energy transfer processes
2.1 Classification
2.1.1 Excitonic interaction
2.1.2 Förster-Transfer
2.1.3 Nonclassic energy transfer
3. Photoinduced electron transfer
3.1 Classical electron transfer theory (Marcus-Theory)
3.2 Quantenmechanical description
4. Photoinduced energy - and electron transfer - importance in biophysics
4.1 Intracellular transfer
4.2 Membrane physics
4.3 Photosynthesis: light harvesting system and reaction centre
4.4 Development of biomimetic systems
II. Optical-spectroscopic methods
5. Steady-state absorption spectroscopy
5.1 Steady-state absorption
5.1.1 Absorption spectrum
5.1.2 Band shape
5.1.3 Band analysis of molecular spectra
5.1.4 Influence of the environment
5.2 Non-linear absorption spectroscopy
5.2.1 Method
5.2.2 Theory
5.2.3 Summary
5.3 Examples (lab.)
6. Steady-state luminescence spectroscopy
6.1 Fluorescence
6.1.1 Method
6.1.2 Fluorescence spectrum of molecules in different environments
6.1.3 Determination of the fluorescence quantum yield
6.2 Fluorescence anisotropy
6.2.1 Method
6.2.2 Determination of the steady-state anisotropy
6.3 Excitation spectrum
6.3.1 Method
6.4 Summary
6.5 Examples (lab.)
6.6 Steady-state phosphorescence
6.6.1 Method
6.6.2 Determination of the phosphorescence quantum yield
6.6.3 Determination of the singlet oxygen quantum yield
6.6.4 Influence of energy - and electron transfer-processes
6.7 Summary
6.7.1 Influence of environmental factors
6.7 Examples (lab.)
7. Time resolved luminescence spectroscopy
7.1 Time resolved fluorescence spectroscopy
7.1.1 Methods
7.1.2 Determination of the fluorescence lifetime
7.1.2.1 Influence of the environment
7.1.2.2 Determination of energy - and electron transfer rates
7.1.3 Examples (lab.)
7.2 Time resolved fluorescence anisotropy
7.2.1 Methods
7.2.2 Determination of the rotational correlation time
7.2.2.1 Simple molecules
7.2.2.2 Molecular complexes / macromolecules
7.2.3 Summary
7.2.3.1 Influence of the environment
7.2.3 Examples (lab.)
7.3 Time resolved phosphorescence
7.3.1 Method
7.3.2 Determination of the phosphorescence lifetime
7.3.3 Determination of the singlet oxygen lifetime
7.3.4 Summary
8. Transient absorption spectroscopy
8.1 Fundamentals
8.1.1 Pump-Probe-Method
8.1.2 Transient components
8.1.3 Jablonski-Diagram
8.1.4 Examples
8.2 Laser-flash-Photolysis (µs)
8.2.1 Method
8.2.2 Determination of triplet lifetime
8.2.3 Molecules in solution
8.2.4 Molecules in cells
8.2.5 Examples (lab.)
8.3 Ps-Transient absorption spectroscopy
8.3.1 ps-TAS
8.3.2 Method
8.3.3 Theory (compensation method)
8.3.4 Examples (lab.)
8.4 fs-TAS
8.4.1 Method
8.4.2 Theory
8.4.3 Examples
8.5 Polarisation-sensitive - TAS
8.5.1 Pol-TAS
8.5.1.1 Method
8.5.1.2 Examples (lab.)
8.5.2 Transient dichroism and birefringence spectroscopy (TDS)
8.5.2.1 Method
8.5.2.2 Theory
8.5.2.3 Examples (lab.)
8.5.3 Summary
9. Complex Examples
9.1 Photoinduced energy transfer in two-dimensional aggregates
9.2 Investigation of non-linear optical properties of phthalocyanines
9.3 Photoinduced energy transfer on the surface of dendrimers
9.4 Photoinduced electron transfer in an artificial tetrad
Literature
•
•
•
•
•
•
•
B.Röder: "Einführung in die molekulare Photobiophysik", Teubner Verlag
Autorenkollektiv: "BIOPHYSIK", Springer
H.G.O.Becker: "Einführung in die Photochemie", Deutscher Verlag der Wissenschaften
W.Demtröder: "Laserspektroskopie", Springer
J.R.Lakowicz: "Principles of Fluorescence Spectroscopy", Plenum Press
R.V.Bensasson, E.J.Land, T.G.Truscott: "Excited States and Free Radicals in Biology and
Medicine", Oxford University Press
G.J. Kavarnos: "Fundamentals of Photoinduced Electron Transfer", VCH
Related documents