Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Math 242 Midterm #1 Review Dr. Achilles A. Beros Formulas: The following formulas will be provided on the front of the exam. These are not all the formulas you need to know in order to solve the problems on the exam. 1. sin(2θ) = 2 sin(θ) cos(θ) 2. cos(2θ) = cos2 (θ) − sin2 (θ) 3. cos2 (θ) = 1+cos(2θ) 2 4. sin2 (θ) = 1−cos(2θ) 2 R 5. sec(x)dx = ln | sec(x) + tan(x)| + C R 6. csc(x)dx = − ln | csc(x) + cot(x)| + C Rb 7. Trapezoidal Method: a f (x)dx ≈ ∆x (y0 + 2y1 + · · · + 2yn−1 + yn ) 2 (b−a)3 00 If f is continuous and M is an upper bound for |f 00 | on [a, b], then |ET | ≤ M12n . 2 Rb 8. Simpson’s Method: a f (x)dx ≈ ∆x (y0 + 4y1 + 2y2 + · · · + 2yn−2 + 4yn−1 + yn ) 3 (b−a)5 (4) If f is continuous and M is an upper bound for |f (4) | on [a, b], then |ES | ≤ M180n 4 . Problem 1 Find the following derivatives. d 2 1. x tan−1 (x) dx √ d (2x + 2)2 x − 1 2. dx (x2 + 2)2 d 3. g(x)f −1 (x) dx d x sin(x) 4. 2 dx Solution d 2 x2 1. x tan−1 (x) = 2x tan−1 (x) + dx 1 + x2 1 √ √ (2x + 2)2 x − 1 d (2x + 2)2 x − 1 . Let y = 2. . 2 + 2)2 dx (x2 + 2)2 (x (2x + 2)2 √x − 1 1 ln(y) = ln = 2 ln(x + 1) + 2 ln(2) + ln(x − 1) − 2 ln(x2 + 2). 2 2 (x + 2) 2 y0 2 1 4x = (ln(y))0 = + − . Thus, y x + 1 2(x − 1) x2 + 2 √ 2 1 4x (2x + 2)2 x − 1 y0 = + − 2 x + 1 2(x − 1) x + 2 (x2 + 2)2 g(x) d −1 g(x)f (x) = g 0 (x)f −1 (x) + 0 −1 3. dx f (f (x)) d x sin(x) 4. 2 = (ex sin(x) ln(2) )0 = ln(2)(sin(x) + x cos(x))ex sin(x) ln(2) dx = ln(2)(sin(x) + x cos(x))2x sin(x) . Problem 2 Solve the differential equation dy dx = sec2 (x) tan3 (x) . y2 Solution First, separating the variables, we get Z Z 2 y dy = sec2 (x) tan3 (x)dx. Thus, y3 = 3 Z Z = = sec2 (x) tan3 (x)dx u3 du, where u = tan(x) and du = sec2 (x)dx u4 tan4 (x) +C = + C. 4 4 The general solution to the equation is y= 3 tan4 (x) 4 Problem 3 Evaluate the limits. x2 − 1 x→1 sin(πx) 1. lim 2 +C 1/3 . x2 x→0 ln(sec(x)) 2. lim Solution 2x 2 x2 − 1 = lim =− 1. By l’Hôpital’s rule, lim x→1 π cos(πx) x→1 sin(πx) π x2 2x 2 = lim = lim =2 x→0 ln(sec(x)) x→0 tan(x) x→0 sec2 (x) 2. By l’Hôpital’s rule, lim Z Problem 4 Evaluate the integral e2x cos(3x)dx. Solution e2x Z 2x e e cos(3x)dx = cos(3x) − (−3 sin(x))dx 2 2 Z 2x e2x i 3 h e2x e = cos(3x) + sin(3x) − (3 cos(x))dx 2 2 2 2 Z 1 3 9 = e2x cos(3x) + e2x sin(3x) − e2x cos(x)dx 2 4 4 Z 1 3 9 e2x cos(3x)dx = e2x cos(3x) + e2x sin(3x) + C 1+ 4 2 4 Z 2 3 e2x cos(3x)dx = e2x cos(3x) + e2x sin(3x) + C 13 13 Z 2x 3 Z Problem 5 Evaluate the integral √ x2 1 − x2 dx. Solution Z Z q √ 2 2 2 x 1 − x dx = sin (θ) 1 − sin2 (θ) cos(θ)dθ, where x = sin(θ) and dx = cos(θ)dθ Z = sin2 (θ) cos2 (θ)dθ Z 1 = (1 − cos(2θ))(1 + cos(2θ))dθ 4 Z 1 (1 − cos2 (2θ))dθ = 4 Z 1 + cos(4θ) 1 1− dθ = 4 2 1 θ sin(4θ) = − +C 4 2 8 1 2 sin(2θ) cos(2θ) = θ− +C 8 4 1 4 sin(θ) cos(θ)(cos2 (θ) − sin2 (θ)) = θ− +C 8 4 √ 1 = (sin−1 (x) − x 1 − x2 (1 − x2 − x2 )) + C 8 √ 1 = (sin−1 (x) − x 1 − x2 (1 − 2x2 )) + C 8 1 x θ √ 1 − x2 4 Z Problem 6 Evaluate the integral 2x2 − x + 1 dx. x(x − 1)2 Solution B C A 2x2 − x + 1 + = + 2 x(x − 1) x x − 1 (x − 1)2 2x2 − x + 1 = A(x − 1)2 + Bx(x − 1) + Cx x = 0 =⇒ 1 = A x = 1 =⇒ 2 = C A + B = 2 =⇒ B = 1 Z Z 2x2 − x + 1 1 1 2 + + dx dx = x(x − 1)2 x x − 1 (x − 1)2 2 = ln |x| + ln |x − 1| − +C x−1 ∞ Z Problem 7 Evaluate the improper integral 0 1 dx. 1 + x2 Solution Z 0 ∞ 1 dx = lim b→∞ 1 + x2 Z b 1 dx 2 0 1+x b = lim tan−1 (x) b→∞ 0 = lim tan−1 (b) b→∞ π = 2 There will also be an extra credit problem on numerical integration (Simpson’s Rule and Trapezoidal rule). 5