Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Energy-converting membranes IMPReS Lecture 5 June 2015 Werner Kühlbrandt Energy conversion in biology H+ + H energy from sunlight H+ H+ H+ H+ H+ + H+ H+ H H+ H+ + H+ H+ H+ H H+ H+ H+ H+ H+ photosynthesis electron transfer pumps protons transmembrane electrochemical gradient H+ H + H+ H+ H+ H+ energy from food respiration electron transfer pumps protons Alberts et al, Molecular Biology of the Cell, 6th edition Common principles H+ + H electron donor electron carrier H+ H+ H+ + H+ H+ H H+ H+ + H+ H+ H+ H H+ + + H H+ H+ H H+ H+ transmembrane electrochemical gradient e– proton pump H+ H+ H H+ + H + ATP synthase ADP ATP Alberts et al, Molecular Biology of the Cell, 6th edition Membrane organelles plasma membrane mitochondrion cytoplasm nucleus chloroplast ribosomes DNA vacuole endoplasmic reticulum Energy-converting organelles evolved from endosymbiontic bacteria bacterium cytoplasm inner membrane outer membrane mitochondrion chloroplast matrix cristae stroma inner membrane outer membrane thylakoid membrane Alberts et al, Molecular Biology of the Cell, 6th edition Part 1: Mitochondria The mitochondrion 100 nm = 0.0001 mm Alberts et al, Molecular Biology of the Cell The mitochondrion innerinner membrane mitochondrial membrane outer membrane outer mitochondrial membrane ATP synthase cristae H+ ATP OUT H+ H+ H ADP O2 IN O2 ATP + ADP e– H2O NADH NAD+ citric acid cycle CO2 OUT CO2 acetyl CoA pyruvate fatty acids pyruvate fatty acids FOOD MOLECULES FROM CYTOSOL Alberts et al, Molecular Biology of the Cell, 6th edition Mitochondria in cells with high energy demand mitochondria flagellar axoneme myofibril of contractile apparatus (A) CARDIAC MUSCLE (B) SPERM TAIL Alberts et al, Molecular Biology of the Cell, 6th edition Mitochondria move along microtubules Mitochondria Microtubules Alberts et al, Molecular Biology of the Cell 3D volume of a mouse heart mitochondrion outer membrane intermembrane space inner boundary membrane matrix cristae cristae junctions Alberts et al, Molecular Biology of the Cell, 6th edition (2014) The mitochondrial respiratory chain ADP + Pi NADH ATP NAD+ H+ succinate O2 H+ H+ H+ H+ H+ 2H2O H+ matrix UQ UQ cristae space + H+ H+ H H+ H+ H+ H+ cytochrome c H+ H+ H+ H+ H+ Complex I Complex III Complex II NADH dehydrogenase cytochrome c reductase succinate dehydrogenase Davies & Daum, 2013 H+ H+ Complex IV cytochrome c oxidase H+ H+ + H+ H H+ H+ Complex V ATP synthase The three proton pumps of the respiratory chain Alberts et al, Molecular Biology of the Cell, 6th edition Reversible and irreversible processes (A) COMBUSTION (B) ½O2 H2 BIOLOGICAL OXIDATION H2 ½O2 separate into H+ and electrons 2H+ + _ 2e EXPLOSIVE RELEASE OF HEAT ENERGY H2O much of the energy is harnessed and converted to a stored form _ ½O2 2e 2H+ H2O Alberts et al, Molecular Biology of the Cell, 6th edition Redox potentials in the respiratory chain H+ _400 _300 ubiquinone 25 _200 H+ 20 15 10 _100 Q NADH dehydrogenase complex cytochrome c 0 100 H+ 200 cytochrome b-c1 complex c 300 400 500 5 600 cytochrome oxidase complex 700 800 0 2H+ + ½O2 redox potential (mV) free energy per electron (kcal/mole) NADH NAD+ H2O direction of electron flow Alberts et al, Molecular Biology of the Cell, 6th edition Heme group covalently attached to protein H3C COOH COOH CH2 CH2 CH2 CH2 CH3 + N N Fe H3C H C S N+ N CH3 CH3 HC S CH3 protein Alberts et al, Molecular Biology of the Cell, 6th edition Iron-sulfur (Fe-S) cluster Cys S Fe S S Fe Fe Fe S S S S S Cys Cys Cys MBoC6 m14.23/14.14 Alberts et al, Molecular Biology of the Cell, 6th edition Ubiquinol redox reactions O e– + H+ CH3 O O CH3 O H3C H O O e– + H+ CH3 O CH3 O H3C O CH3 H O O CH3 OH H3C hydrophobic hydrocarbon tail oxidized ubiquinone ubisemiquinone (free radical) reduced ubiquinone Alberts et al, Molecular Biology of the Cell, 6th edition Complex I - NADH dehydrogenase NAD++ NAD NADH NADH FMN FMN 2e–- matrix arm 2e proton antiporter modules MATRIX Q Q matrix membrane arm CRISTAE (B) H+ H+ H+ H+ H H++ H H++ crista lumen adapted from Alberts et al, Molecular Biology of the Cell, 6th edition Complex III - cytochrome c reductase electrons out to cytochrome c cyt c1 e– heme c CRISTAE SPACE Fe2S2 heme bL MATRIX e– electrons in from ubiquinone (QH2) heme bH (A) cyt b (B) Alberts et al, Molecular Biology of the Cell, 6th edition The Q cycle Alberts et al, Molecular Biology of the Cell, 6th edition Complex IV - cytochrome c oxidase electrons in from cytochrome c subunit II e– Cu CRISTAE SPACE heme a Cu heme a3 MATRIX subunit I (A) (B) Alberts et al, Molecular Biology of the Cell, 6th edition Electron transfer in cytochrome oxidase e– 4 electrons entering, one at a time, from cytochrome c 4 H+ (4 pumped protons) Cu atom electrons donated, one at a time, from cytochrome c protein side chains e– CRISTAE SPACE heme a3 heme a e– MATRIX 4 H+ Fe atom Cu atom O2 + 4H inputs 2H2O outputs 4 electrons collected and O2 bound here active site Alberts et al, Molecular Biology of the Cell, 6th edition A proton channel (A) H H+ O H H H O O H H H H O O O O O H H H H H H H H O H H+ H (B) H+ H O O O – H H O HO O H O O OH H H O H O– O H H+ Alberts et al, Molecular Biology of the Cell, 6th edition Respiratory chain supercomplex Alberts et al, Molecular Biology of the Cell, 6th edition Complex V - ATP synthase (A) (B) H+ H+ H+ H+ CRISTAE SPACE Fo rotor H + H+ H+ + H H+ H+ a MATRIX H+ central stalk H+ H+ rotor Pi + ADP peripheral stalk ATP F1 head Alberts et al, Molecular Biology of the Cell, 6th edition stator ATP synthase rotor rings (A) Thomas Meier, Denys Pogoryelov, MPI of Biophysics, Frankfurt (B) Alberts et al, Molecular Biology of the Cell, 6th edition ATP synthase rotor rings Laura Preiss, PhD thesis, 2013 Bicycle gears Re-bicycle repair shop, Frankfurt Cryo-EM of ATP synthase dimers class averages re-projections Allegretti et al, Nature 2015 3D map of ATP synthase dimer Allegretti et al, Nature 2015 Fit of atomic X-ray structures 10 nm Allegretti et al, Nature 2015 Map of rotor and a-subunit Allegretti et al, Nature 2015 c-ring / subunit a interface Conserved Arg Allegretti et al, Nature 2015 Proton channel on matrix side Allegretti et al, Nature 2015 Sequence comparison of subunit a aR239 aQ295 The ATP synthases of bacteria, mitochondria and chloroplasts work in the same way Allegretti et al, Nature 2015 Proton gradient drives rotor hydrophilic cavity on lumenal side Arg a239 hydrophilic cavity on matrix side Allegretti et al, Nature 2015 The c-ring Rotor drives ATP synthesis Alberts et al, Molecular Biology of the Cell, 5th edition (2008) Dimer rows are ubiquitous 50nm rat liver bovine heart Y. lipolytica P. anserina S. cerevisiae potato green alga (101) (49) (131) (23) (121) (71) (56) mammals yeasts and fungi Karen Davies plants Model of cristae organization protons ATP synthase dimers respiratory chain proton pumps cristae junction complex (hypothetical) Mitochondrial ADP/ATP carrier Alberts et al, Molecular Biology of the Cell, 6th edition Mitochondrial protein import nucleus RNA cytoplasmic ribosome ~1500 different nuclear-encoded mitochondrial proteins TOM mitochondrial DNA TIM RNA 10–15 mitochondriallyencoded proteins mitochondrial ribosome Alberts et al, Molecular Biology of the Cell, 6th edition Mitochondrially encoded membrane proteins rpl31 rpl27 rpoA rpl20 rpl34 cox11 rpoB rpl19 rpoC rpoD rpl18 rpl32 rps1 yejR rrn5 tatC atp3 yejU sdh3 yejW vejV atp9 rps3 cox3 rps19 rns rps14 rnl cox1 cob nad5 nad4L atp6 atp4 rpl11 nad8 sdh4 atp1 rpl1 tufA rps10 sdh2 rpl10 secY nad2 nad1 atp8 nad3 cox2 nad4 nad6 rps13 rpl14 rps8 nad11 rps7 rpl16 rps4 Reclinomonas Marchantia nad9 rps11 rps12 rpl6 nad7 rpl2 rpl5 rps2 Acanthamoeba Plasmodium Schizosaccharomyces Alberts et al, Molecular Biology of the Cell, 6th edition Human Mitochondrial fission and fusion FISSION FUSION (B) (A) 5 µm (C) MBoC6 m14.55/14.58 Alberts et al, Molecular Biology of the Cell, 6th edition Mitochondrial fission dynamin-1 GTP targeting assembly-driven constriction Pi hydrolysis-driven constriction fission Alberts et al, Molecular Biology of the Cell, 6th edition Mitochondrial fusion GTP (low) GTP (high) outer membrane fusion inner membrane fusion Alberts et al, Molecular Biology of the Cell, 6th edition Part 2: Chloroplasts Energy-converting organelles evolved from endosymbiontic bacteria bacterium cytoplasm inner membrane outer membrane mitochondrion chloroplast matrix cristae stroma inner membrane outer membrane thylakoid membrane Alberts et al, Molecular Biology of the Cell, 6th edition The chloroplast outer envelope O2 H2O OUT inner envelope O2 H+ e– NADP+ NADPH sugars amino acids fatty acids OUT sugars amino acids fatty acids ATP ADP carbon fixation cycle IN CO2 Alberts et al, Molecular Biology of the Cell, 6th edition Chloroplasts in a leaf cell Alberts et al, Molecular Biology of the Cell, 6th edition Chloroplast grana GRANA CHLOROPLAST grana thylakoid LEAF stroma upper epidermis 2 µm lower epidermis stroma thylakoid outer membrane (A) (B) inner membrane intermembrane space 1 µm (C) Alberts et al, Molecular Biology of the Cell, 6th edition Energy-converting complexes of the chloroplast thylakoid membrane Alberts et al, Molecular Biology of the Cell, 6th edition Chlorophylls attach non-covalently CH2 CH H C H3C H H3C CH3 C C C C C N N C C N N C C Mg C C H C CH2 C H C C CH2 C C C CH C O O O C CH2 CH3 C H C CH3 O O CH3 CH2 CH C CH3 CH2 CH2 CH2 HC CH3 hydrophobic tail region CH2 CH2 CH2 HC CH3 CH2 CH2 CH2 CH CH3 CH3 Alberts et al, Molecular Biology of the Cell, 6th edition Chlorophyll absorption spectrum Alberts et al, Essential Cell Biology, 3rd edition A photosystem electron donor light e– QH2 Q Q antenna complexes Q reaction center Alberts et al, Molecular Biology of the Cell, 6th edition Light-harvesting complex of photosystem II THYLAKOID SPACE STROMA Chl a Chl b carotenoids Standfuß, Kühlbrandt et al, EMBO J 2005 Alberts et al, Molecular Biology of the Cell, 6th edition Charge separation in a reaction centre sunlight H2O special pair e– H+, O2 e– Q Q– reaction center chargeseparated H+ state QH• Solar energy is converted into a trans-membrane proton gradient Alberts et al, Molecular Biology of the Cell, 6th edition The Z scheme sunlight sunlight H2O energy transfer thylakoid space e– e– energy transfer stroma NADPH light harvesting complex photosystem II photosystem I light harvesting complex Alberts et al, Molecular Biology of the Cell, 6th edition Two light reactions photosystem I light energy harnessed to produce ATP and NADPH –1200 –1000 ferredoxinNADP reductase –800 photosystem II ferredoxin –600 an electrochemical gradient is formed that generates ATP redox potential (mV) –400 –200 Q H+ 0 200 400 light produces charge separation NADPH + H+ pC + plastocyanin 4H+ 800 1200 NADP+ cytochrome b6-f complex plastoquinone 600 1000 light produces charge separation O2 Mn 2H2O + water-splitting enzyme direction of electron flow Alberts et al, Molecular Biology of the Cell, 6th edition Photosystem II reaction centre 4 H+ O2 e– Mn cluster 2 H2O P680 THYLAKOID SPACE e– STROMA (A) b559 (B) MBoC6 n14.325/14.45 QB Alberts et al, Molecular Biology of the Cell, 6th edition QA Photosystem I reaction centre plastocycanin e– P700 THYLAKOID SPACE A0 A0 PQ PQ FX STROMA FA (A) ferrodoxin (B) Alberts et al, Molecular Biology of the Cell, 6th edition FB Cyclic electron flow around PS I light light 2 H2O O2 + 4H + 2H+ P680 PS-II Q pC QH2 QH2 Q Q 2H+ 2H+ Fd pC P700 PS-I Fd FNR Alberts et al, Molecular Biology of the Cell, 6th edition NADPH Cryo section of grana stack ATP synthase Daum et al, Plant Cell 2010 ATP-Synthase in chloroplast thylakoids Bertram Daum chloroplast ATP synthase Chloroplast ATP synthase Böttcher et al. 2005 tomographic volume sub-tomogram average ~ 85% monomeric single-particle map (Böttcher et al, 2005) ~ 15% in contact with neighbour Daum et al, CellCell 2010 Daum et Plant al, Plant 2010 Comparison of mitochondria and chloroplasts Chloroplasts are large Alberts et al, Molecular Biology of the Cell, 6th edition ATP synthase in mitochondria and chloroplasts MITOCHONDRION matrix pH 8 H+ H+ H+ intermembrane space pH 7.4 ADP + Pi ATP cristae thylakoid membrane CHLOROPLAST stroma pH 8 thylakoid space pH 5.5 ADP + Pi ATP intermembrane space pH 7.4 H+ + H H+ H+ H+ + + H+ H H H+ MBoC6 n14.328/14.49 Alberts et al, Molecular Biology of the Cell, 6th edition Respiration and photosynthesis (A) MITOCHONDRION (B) CHLOROPLAST H+ gradient H+ gradient NADH H+ pump e– light e– H+ pump e– H+ pump photosystem I photosystem II fats and carbohydrate molecules NADPH light H+ pump citric acid cycle O2 CO2 H2O products carbonfixation cycle H2O O2 carbohydrate molecules products Alberts et al, Molecular Biology of the Cell, 6th edition CO2 Electron transfer reactions NAD+ reverse electron flow Q NADH dehydrogenase NADH H+ light produces charge separation b-c complex cyt c2 + PURPLE NONSULFUR BACTERIA NADP+ H+ Q light produces charge separation b-f complex light produces charge separation H2O pC NADPH + + PLANT CHLOROPLASTS AND CYANOBACTERIA NADH NAD+ NADH dehydrogenase H+ Q b-c1 complex cyt c MITOCHONDRIA cytochrome oxidase O2 H2O Alberts et al, Molecular Biology of the Cell, 6th edition Chloroplast ATP synthase ATP synthase monomers thylakoid membrane inner membrane outer membrane stroma ~ pH 8 thylakoid lumen ~ pH 5 - 7 H+ H+ H+ H+ Model of cristae organization protons ATP synthase dimers respiratory chain proton pumps cristae junction complex (hypothetical) Evolution of reaction centres cytochrome EXTRACELLULAR SPACE Q CYTOSOL LH1 Q M L LH1 (A) PURPLE BACTERIA 2H2O THYLAKOID LUMEN LHCII STROMA O2+4H+ Mn Q Q D2 D1 LHCII core antenna protein (B) PHOTOSYSTEM II pC THYLAKOID LUMEN STROMA Q Psa B Q Psa A (C) PHOTOSYSTEM I From: Rhee, Morris, Barber, Kühlbrandt, Nature 1998 Alberts et al, Molecular Biology of the Cell, 6th edition Evolution of photosynthetic bacteria CHLOROPLASTS MITOCHONDRIA EUKARYOTES PROKARYOTES cyanobacteria gliding bacteria loss of photosynthesis loss of photosynthesis REDUCING ATMOSPHERE green filamentous bacteria purple nonsulfur bacteria blue-green bacteria OXIDIZING ATMOSPHERE rhizobacteria E. coli O2 respiration O2 respiration O2 respiration purple sulfur bacteria H2O photosynthesis carbon-fixation cycle green sulfur bacteria H2S photosynthesis ancestral fermenting bacteria Alberts et al, Molecular Biology of the Cell, 6th edition All the oxygen in the Earth’s atmosphere is a side-product of photosynthesis Alberts et al, Molecular Biology of the Cell, 6th edition (2014) Iron ore deposits show that oxygen evolution started 3.5 bn years ago (billion years) Hohmann-Marriott et al, Annu. Rev. Plant Physiol. 2011 Stromatolites are large colonies of oxygen-evolving cyanobacteria Stromatolites in Shark Bay, Western Australia 3.5 bn yr old fossil stromatolite, Pilbara, WA Wikipedia Invention of the wheel ~3 billion years ago