Download Formula Sheet - John Abbott College

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Formula Sheet for Statistical Methods (201-DDD-05)
Five number summary:
min, Q1 , median, Q3 , max
Q1 : median of smallest half
Q3 : median of largest half
Fourth spread
fs = Q 3 − Q 1
Outliers
xi is an outlier if its distance from the
closest fourth (Q1 or Q3 ) is > 1.5fs
Sample variance
1 X
s2 =
(xi − x̄)2
n−1
P
X
1
( xi ) 2
s2 =
x2i −
n−1
n
Sample standard deviation
√
s = s2
Rule for expected value
E(aX + b) = aE(X) + b
Rule for variance
V (aX + b) = a2 V (X)
Binomial distribution
X ∼ Bin(n, p):
n
px (1 − p)n−x for x = 0, 1, . . . , n
p(x) =
x
E(X) = np, V (X) = np(1 − p)
Hypergeometric distribution
n = sample size, N = population size,
M = number of successes in population
M N −M p(x) =
x
E(X) = n ·
n−x
N
n
M
N
, V (X) =
N −n
N −1
·n·
M
N
· 1−
M
N
Poisson distribution
X ∼ Poisson(λ):
e−λ λx
for x = 0, 1 . . .
x!
E(X) = λ, V (X) = λ
Permutations
n!
Pk,n =
(n − k)!
p(x) =
Combinations
n
n!
Ck,n =
=
k
k!(n − k)!
Percentiles
η = 100p th percentile of X (continuous r.v.):
P (X ≤ η) = p
Normal distribution
Addition rule
P (A ∪ B) = P (A) + P (B) − P (A ∩ B)
Multiplication rule
P (A ∩ B) = P (A)P (B|A)
Independent events
A and B are independent if P (B|A) = P (B),
equivalently P (A ∩ B) = P (A)P (B)
Law of Total Probability
X −µ
∼ N (0, 1)
σ
For Z ∼ N (0, 1) set Φ(z) = P (Z ≤ z)
If X ∼ N (µ, σ) then
Φ(zα ) = 1 − α
Statistics
X1 , . . . , Xn random sample:
1X
X=
Xi (sample mean)
n
X
1
S2 =
(Xi − X)2 (sample variance)
n−1
A1 , . . . , Ak mutually exclusive & exhaustive:
P (B) = P (A1 ∩ B) + · · · + P (Ak ∩ B)
Special case: P (E) + P (E 0 ) = 1
De Morgan’s laws
(A ∪ B)0 = A0 ∩ B 0
(A ∩
B)0
=
A0
∪
Sampling distributions
X1 , . . . , Xn random sample,
Xi ∼ distribution with mean µ and std. dev. σ:
E(X) = µ, V (X) = σ 2 /n
CLT:
X−µ
√
σ/ n
∼ N (0, 1)
(n > 30)
B0
Regression and Correlation
Expected value for a discrete r.v.
P
E(X) = µX =
xp(x)
P
E(h(X)) =
h(x)p(x)
Expected value for a continuous r.v.
R∞
E(X) = µX = −∞
xf (x)dx
R∞
E(h(X)) = −∞ h(x)f (x)dx
Variance and standard deviation
2 = E(X 2 ) − E(X)2
V (X) = σX
p
σX = V (X)
Sxx = Σx2i −
(Σxi )2
n
(Σyi )2
n
(Σxi )(Σyi )
Sxy = Σ(xi yi ) −
n
SSE = Σyi2 − βˆ0 Σyi − βˆ1 Σxi yi
Syy = Σyi2 −
SST = Syy
β̂1 =
Sxy
Sxx
Σyi −β̂1 Σxi
n
√ Sxy ,
Sxx Syy
β̂0 =
r=
s2 =
SSE
n−2
r2 = 1 −
SSE
SST
Formula Sheet for Statistical Methods (201-DDD-05)
HYPOTHESIS TESTING
(α = significance level)
One mean
H 0 : µ = µ0
x − µ0
√ ∼ N (0, 1)
s/ n
t∗ =
x − µ0
√ ∼ tn−1
s/ n
(if n > 30)
(if data normally distr.)
s
x ± zα/2 √
n
(if data normally distr.)
x1 − x2 − ∆ 0
∼ N (0, 1)
z = r
∗
s2
2
n2
+
x1 − x2 − ∆ 0
r
∼ tν
x1 − x2 ± zα/2
(if data normally distr.)
s21
s22
(if data normally distr.)
1
Fα/2,ν2 ,ν1
Slope of regression line
H0 : β1 = β10
βˆ1 − β10
√
∼ tn−2
s/ Sxx
β̂1 ± tα/2,n−2 √
(if data normally distr.)
s
Sxx
Correlation coefficient
H0 : ρ = 0
√
r n−2
∼ tn−2
t∗ = √
1 − r2
(if data normally distr.)
Test of normality (Ryan-Joiner)
H0 : population distribution is normal
test statistic: correlation coefficient r from probability plot
p̂ − p0
∼ N (0, 1)
(if n large)
p0 (1−p0 )
n
p̂(1 − p̂)
n
Difference of two proportions
H0 : p1 − p2 = ∆ 0
p̂1 − p̂2 − ∆0
p̂1 (1−p̂1 )
n1
s
p̂1 − p̂2 ± zα/2
s21
∼ Fn1 −1,n2 −1
s22
2
One proportion
H0 : p = p0
z∗ = q
Ratio of two variances
H0 : σ12 = σ22
t∗ =
1
r
!
(if n1 > 30 and n2 > 30)
+
(if n1 > 30 and n2 > 30)
n1
n2
s
s21
s2
x1 − x2 ± tα/2,ν
+ 2
(if data normally distr.)
n1
n2
2
s2
s2
1
+ n2
n1
2
where ν = 2
(s1 /n1 )2
(s2 /n2 )2
+ n2 −1
n −1
p̂ ± zα/2
(if data normally distr.)
property of critical F -values: F1−α/2,ν1 ,ν2 =
s2
2
n2
+
s
z∗ = q
(n − 1)s2
∼ χ2n−1
σ02
(n − 1)s2
(n − 1)s2
,
χ2α/2,n−1 χ21−α/2,n−1
f∗ =
Difference of two means
H0 : µ1 − µ2 = ∆0
s2
1
n1
χ2 =
(if n > 30)
s
x ± tα/2,n−1 √
n
t∗ =
CONFIDENCE INTERVALS
(100(1 − α)% confidence level)
One variance
H0 : σ 2 = σ02
z∗ =
s2
1
n1
AND
+
p̂2 (1−p̂2 )
n2
∼ N (0, 1)
p̂1 (1 − p̂1 )
p̂2 (1 − p̂2 )
+
n1
n2
(if n1 , n2 large)
if r < rc , reject H0
Related documents