Download Assign_451_Schneider

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
COEN 451
Maxime SCHNEIDER (ID: 6718809)
Due date: September 24th 2014
COEN 451 - Assignment 1
It is required to design a circuit which controls a bar display consisting of three LEDs
as shown in Fig.1a. The operation of these LEDs is based on the level of the input
signal:
LED1 is ON when the input voltage reaches 0.5V
LED1 and LED2 are both ON when the input signal reaches1.0 V.
All LEDs are ON when the input signal reaches 1.5V.
The circuit, which controls the display that consists of three transistors, each of a
distinct threshold voltage as shown in Fig.1 b
M1 is an NMOS transistor with a VTO=0.5V.
M2 is the same type of transistor with a threshold voltage adjusted by an external
voltage Ve.
M3 is the same type transistor of M1 with a threshold voltage adjusted by an ion
implantation process.
a. Specify the threshold voltage of each of the transistors to achieve the required
operation.
b. Determine the value of the external voltage Ve.
c. Determine the type and dose of the dopant so that the threshold voltage of
M3 is adjusted from 0.5V to the required value.
The transistors have the following parameters: tox =200Ao,
n3
LED 2
n1
LED 1
Fig. 1a
VD D
LED 3
LED 2
n3
M3
VDD
LED 3
n2
LED 1
n2
n1
M2
M1
G
D
B
S
Ve
Si n
= 0.5 V1/2,
s = -0.6V
COEN 451
a/
According to the wording, we have :
(๐‘‰ )๐‘€1 = ๐‘‰๐‘ก0 = ๐ŸŽ. ๐Ÿ“ ๐‘ฝ
๐‘ก
(๐‘‰๐‘ก )๐‘€2 = ๐Ÿ. ๐ŸŽ ๐‘ฝ
(๐‘‰๐‘ก )๐‘€3 = ๐Ÿ. ๐Ÿ“ ๐‘ฝ
b/
For transistor M2, we have:
๐‘‰๐‘‡ = ๐‘‰๐‘ก 0 + ๐›พ (โˆš|๐‘‰๐‘†๐ต + ๐œ‘๐‘†| โ€“ โˆš|๐œ‘๐‘†|)
๐‘‰๐‘‡ โˆ’ ๐‘‰๐‘ก0
= โˆš|๐‘‰๐‘†๐ต + ๐œ‘๐‘†| โ€“ โˆš|๐œ‘๐‘†|
๐›พ
๐‘‰๐‘‡ โˆ’ ๐‘‰๐‘ก0
+ โˆš|โˆ’๐œ‘๐‘†| = โˆš|๐‘‰๐‘†๐ต + ๐œ‘๐‘†|
๐›พ
2
๐‘‰๐‘‡ + ๐‘‰๐‘ก0
|๐‘‰๐‘†๐ต | = (
+ โˆš๐œ‘๐‘† ) โˆ’ |๐œ‘๐‘†|
๐›พ
N.A.
VSB = ± (
1โˆ’0.5
0.5
2
+ โˆš0.6) โˆ’ (โˆ’0.6) = ±2.55 V
Since PN junctions have to be reversed biased, ๐‘‰๐‘†๐ต has to be positive
to allow drain and source to work correctly. Therefore, ๐‘‰๐‘†๐ต = 2.55V.
Finally, we get ๐‘ฝ๐’† = โˆ’๐Ÿ. ๐Ÿ“๐Ÿ“๐‘ฝ
COEN 451
c/
For transistor M3 we have:
๐‘ž ๐ท๐ผ
๐‘‰๐‘‡ = ๐‘‰๐‘‡0 +
๐ถ๐‘‚๐‘ฅ
Dopant is of p-type.
Since ๐ถ๐‘œ๐‘ฅ =
๐œ€๐‘œ๐‘ฅ
๐‘ก๐‘œ๐‘ฅ
, other formula: ๐ถ๐‘œ๐‘ฅ =
0.345
๐‘ก๐‘œ๐‘ฅ (๐ด๐‘›๐‘”๐‘ ๐‘ก๐‘Ÿ๐‘œ๐‘š)
๐ท1 =
๐‘‰๐‘‡ โˆ’ ๐‘‰๐‘ก0
๐ถ๐‘œ๐‘ฅ
๐‘ž
๐ท1 =
0.345(๐‘‰๐‘‡ โˆ’ ๐‘‰๐‘ก0 )
๐‘ž๐‘ก๐‘œ๐‘ฅ
N.A.
๐ท๐ผ =
(1.5 โˆ’ 0.5) โˆ— 0.345 0.345 19
=
10 = ๐Ÿ. ๐ŸŽ๐Ÿ•๐Ÿ– ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ ๐’‚๐’•๐’๐’Ž/๐’„๐’Ž๐Ÿ
1.6 โˆ— 10โˆ’19 โˆ— 200
320
COEN 451
Maxime SCHNEIDER (ID: 6718809)
Due date: October 1st 2014
COEN 451 - Assignment 2
Question 1
An nMOS transistor has a physical layout shown in Figure 1a. The
transistor has the following device parameters:
2
Cox
ฮผn= 500cm2/V-sec
ฮฆs = -0.6V
ฮณ = 0.3V1/2
2
ฮป = 0.015V-1
VTO = 1.0V
Note: 1division=1um
Figure 1a
a. Determine the following parasitic resistances and
capacitances:
1. The transistor gate capacitance
2. The source (drain) capacitance
Note: Neglect the effect of the silicon outside the transistor
area and metal line effect.
COEN 451
b. The above transistor is connected in a circuit with node
voltages shown in Figure 1b.
Determine the channel resistance.
Figure 1b
Question 2
Determine the regime of operation for the transistors shown in
Fig.2
Assume
VT0,N = - VT0,P = 0.8V
1/2
-
-0.6V
i.
ii.
4V
3V
4V
0V
1.5V
2V
5V
2V
Fig.2
iii.
iv.
2V
1V
1V
4V
4V
2.5V
0.5V
5V
COEN 451
Question 1
a/
Transistor gate capacitance is given by:
๐ถ๐‘”๐‘Ž๐‘ก๐‘’ = ๐ด๐‘”๐‘Ž๐‘ก๐‘’ ๐ถ๐‘œ๐‘ฅ
Area of the gate is ๐ด๐‘”๐‘Ž๐‘ก๐‘’ = ๐‘Š โˆ— ๐ฟ.
So,
๐ถ๐‘”๐‘Ž๐‘ก๐‘’ = ๐‘Š ๐ฟ ๐ถ๐‘œ๐‘ฅ
N. A.
๐ถ๐‘” = 5 โˆ— 1 โˆ— 1.5 ๏ƒจ ๐‘ช๐’ˆ = ๐Ÿ•. ๐Ÿ“ ๐’‡๐‘ญ
Gate to drain capacitance is:
๐ถ๐‘”๐‘‘ = ๐ถ๐ฝ๐‘ โˆ— ๐ด๐‘‘๐‘Ÿ๐‘Ž๐‘–๐‘› + ๐ถ๐ฝ๐‘†๐‘Š โˆ— ๐‘ƒ๐‘‘๐‘Ÿ๐‘Ž๐‘–๐‘›
Area of the drain is ๐ด๐‘‘๐‘Ÿ๐‘Ž๐‘–๐‘› = ๐ฟ๐ท ๐‘Š๐ท
Perimeter of drain is ๐‘ƒ๐‘‘๐‘Ÿ๐‘Ž๐‘–๐‘› = 2๐ฟ๐ท + ๐‘Š๐ท
Thus,
๐ถ๐‘”๐‘‘ = ๐ถ๐ฝ๐‘ โˆ— ๐ฟ๐ท ๐‘Š๐ท + ๐ถ๐ฝ๐‘†๐‘Š (2๐ฟ๐ท + ๐‘Š๐ท )
N. A.
๐ถ๐ท = 0.5 โˆ— 5 โˆ— 5 + 0.7 โˆ— (2 โˆ— 5 + 5) ๏ƒจ ๐‘ช๐‘ซ = ๐Ÿ๐Ÿ‘ ๐’‡๐‘ญ
b/
SOURCE
BULK
GATE
DRAIN
COEN 451
This is a N-MOS transistor.
To determine the channel resistance, we first have to
determine the operation region.
๐‘‰๐‘ก = ๐‘‰๐‘ก0 + ๐›พ (โˆš|๐‘‰๐‘†๐ต โˆ’ ๐œ™๐‘† | โ€“ โˆš|โˆ’๐œ™๐‘† |)
N. A.
๐‘‰๐‘ก = 1 + 0.3 (โˆš2 โˆ’ (โˆ’0.6) โˆ’ โˆš|โˆ’0.6|) = ๐Ÿ. ๐Ÿ๐Ÿ“ ๐‘ฝ
๐‘‰๐‘”๐‘  = ๐‘‰๐บ๐ด๐‘‡๐ธ โˆ’ ๐‘‰๐‘†๐‘‚๐‘ˆ๐‘…๐ถ๐ธ
N. A.
๐‘‰๐‘”๐‘  = 4 โˆ’ 2 = 2๐‘‰
๐‘‰๐‘”๐‘  > ๐‘‰๐‘ก ๏ƒจ transistor is ON.
๐‘‰๐‘‘๐‘  = ๐‘‰๐ท๐‘…๐ด๐ผ๐‘ โˆ’ ๐‘‰๐‘†๐‘‚๐‘ˆ๐‘…๐ถ๐ธ
N. A.
๐‘‰๐‘‘๐‘  = 5 โˆ’ 2 = ๐Ÿ‘๐‘ฝ
๐‘‰๐‘‘๐‘  > ๐‘‰๐‘”๐‘  โˆ’ ๐‘‰๐‘ก ๏ƒจ Transistor is working in Saturation region.
In saturation region, Resistance is calculated as following:
2
๐‘…=
2
๐œ† ๐›ฝ (๐‘‰๐‘”๐‘  โˆ’๐‘‰๐‘ก )
๐‘Š
with ๐›ฝ๐‘› = ๐œ‡๐‘› ๐ถ๐‘œ๐‘ฅ๐‘› ( )
๐ฟ
๐‘›
R=
2
2
๐‘Š
๐œ† ๐œ‡๐‘› ๐ถ๐‘œ๐‘ฅ๐‘› ( ) (๐‘‰๐‘”๐‘  โˆ’ ๐‘‰๐‘ก )
๐ฟ ๐‘›
N.A.
R=
=
2
5
0.015 โˆ— 500 โˆ— 1.5 โˆ— 10โˆ’2 โˆ— 10โˆ’2 โˆ— โˆ— (2 โˆ’ 1.25)2
1
2
11.25โˆ—10โˆ’4 โˆ—0.5625
2
=
56.25โˆ—10โˆ’4
= ๐Ÿ‘๐Ÿ“๐Ÿ“ ๐‘ฒ๐›€
As ๐ถ๐‘œ๐‘ฅ๐‘› is per ๐‘š๐‘š2 and ๐œ‡๐‘› is expressed in ๐‘๐‘š2
COEN 451
Question 2
Transistor (i)
๐‘‰๐‘†๐ต = ๐‘‰๐‘†๐‘‚๐‘ˆ๐‘…๐ถ๐ธ โˆ’ ๐‘‰๐ต๐‘ˆ๐ฟ๐พ
๐‘‰๐‘†๐ต = 2 โˆ’ 0 = ๐Ÿ๐‘ฝ
๐‘‰๐‘ก = ๐‘‰๐‘ก0 + ๐›พ (โˆš|๐‘‰๐‘†๐ต โˆ’ ๐œ™๐‘† | โ€“ โˆš|โˆ’๐œ™๐‘† |)
๐‘‰๐‘ก = 0.8 + 0.5 (โˆš2 โˆ’ (โˆ’0.6) โˆ’ โˆš|โˆ’0.6|) = ๐Ÿ. ๐Ÿ๐Ÿ๐Ÿ– ๐‘ฝ
๐‘‰๐บ๐‘† = ๐‘‰๐บ๐ด๐‘‡๐ธ โˆ’ ๐‘‰๐‘†๐‘‚๐‘ˆ๐‘…๐ถ๐ธ
๐‘‰๐บ๐‘† = 3 โˆ’ 2 = ๐Ÿ๐‘ฝ
๐‘‰๐‘”๐‘  < ๐‘‰๐‘ก so Transistor is OFF, in the cut-off region.
Transistor (ii)
๐‘‰๐‘†๐ต = ๐‘‰๐‘†๐‘‚๐‘ˆ๐‘…๐ถ๐ธ โˆ’ ๐‘‰๐ต๐‘ˆ๐ฟ๐พ
๐‘‰๐‘†๐ต = 4 โˆ’ 5 = โˆ’๐Ÿ ๐‘ฝ
๐‘‰๐‘ก = ๐‘‰๐‘ก0 + ๐›พ (โˆš|๐‘‰๐‘†๐ต โˆ’ ๐œ™๐‘† | โ€“ โˆš|โˆ’๐œ™๐‘† |)
๐‘‰๐‘ก = โˆ’0.8 + 0.5 (โˆš0.6 + 1 โˆ’ โˆš|โˆ’0.6|) = โˆ’๐Ÿ. ๐ŸŽ๐Ÿ’๐Ÿ“ ๐‘ฝ
๐‘‰๐บ๐‘† = ๐‘‰๐บ๐ด๐‘‡๐ธ โˆ’ ๐‘‰๐‘†๐‘‚๐‘ˆ๐‘…๐ถ๐ธ
๐‘‰๐บ๐‘† = 1.5 โˆ’ 4 = โˆ’๐Ÿ. ๐Ÿ“๐‘ฝ
๐‘‰๐‘”๐‘  < ๐‘‰๐‘ก ๏ƒจ Transistor is ON.
๐‘‰๐ท๐‘† = ๐‘‰๐ท๐‘…๐ด๐ผ๐‘ โˆ’ ๐‘‰๐‘†๐‘‚๐‘ˆ๐‘…๐ถ๐ธ
๐‘‰๐ท๐‘† = 2 โˆ’ 4 = โˆ’๐Ÿ ๐‘ฝ
๐‘‰๐บ๐‘† โˆ’ ๐‘‰๐‘ก = โˆ’2.5 + 1.045 = โˆ’๐Ÿ. ๐Ÿ’๐Ÿ“๐Ÿ“ ๐‘ฝ
๐‘‰๐ท๐‘† < ๐‘‰๐บ๐‘† โˆ’ ๐‘‰๐‘ก ๏ƒจ Transistor is in saturation mode.
COEN 451
Transistor (iii)
๐‘‰๐‘†๐ต = ๐‘‰๐‘†๐‘‚๐‘ˆ๐‘…๐ถ๐ธ โˆ’ ๐‘‰๐ต๐‘ˆ๐ฟ๐พ
๐‘‰๐‘†๐ต = 4 โˆ’ 4 = ๐ŸŽ ๐‘ฝ
๐‘‰๐‘ก = ๐‘‰๐‘ก0 + ๐›พ (โˆš|๐‘‰๐‘†๐ต โˆ’ ๐œ™๐‘† | โ€“ โˆš|โˆ’๐œ™๐‘† |)
๐‘‰๐‘ก = ๐‘‰๐‘ก0 = โˆ’๐ŸŽ. ๐Ÿ– ๐‘ฝ
๐‘‰๐บ๐‘† = ๐‘‰๐บ๐ด๐‘‡๐ธ โˆ’ ๐‘‰๐‘†๐‘‚๐‘ˆ๐‘…๐ถ๐ธ
๐‘‰๐บ๐‘† = 1 โˆ’ 4 = โˆ’๐Ÿ‘๐‘ฝ
๐‘‰๐‘”๐‘  < ๐‘‰๐‘ก ๏ƒจ Transistor is ON.
๐‘‰๐ท๐‘† = ๐‘‰๐ท๐‘…๐ด๐ผ๐‘ โˆ’ ๐‘‰๐‘†๐‘‚๐‘ˆ๐‘…๐ถ๐ธ
๐‘‰๐ท๐‘† = 2 โˆ’ 4 = โˆ’๐Ÿ ๐‘ฝ
๐‘‰๐บ๐‘† โˆ’ ๐‘‰๐‘ก = โˆ’3 + 0.8 = โˆ’๐Ÿ. ๐Ÿ ๐‘ฝ
๐‘‰๐ท๐‘† > ๐‘‰๐บ๐‘† โˆ’ ๐‘‰๐‘ก ๏ƒจ Transistor is in linear region.
Transistor (iv)
๐‘‰๐‘†๐ต = ๐‘‰๐‘†๐‘‚๐‘ˆ๐‘…๐ถ๐ธ โˆ’ ๐‘‰๐ต๐‘ˆ๐ฟ๐พ
๐‘‰๐‘†๐ต = 1 โˆ’ 0.5 = ๐ŸŽ. ๐Ÿ“ ๐‘ฝ
๐‘‰๐‘ก = ๐‘‰๐‘ก0 + ๐›พ (โˆš|๐‘‰๐‘†๐ต โˆ’ ๐œ™๐‘† | โ€“ โˆš|โˆ’๐œ™๐‘† |)
๐‘‰๐‘ก = 0.8 + 0.5 (โˆš0.5 โˆ’ (โˆ’0.6) โˆ’ โˆš|โˆ’0.6|) = ๐ŸŽ. ๐Ÿ—๐Ÿ‘๐Ÿ• ๐‘ฝ
๐‘‰๐บ๐‘† = ๐‘‰๐บ๐ด๐‘‡๐ธ โˆ’ ๐‘‰๐‘†๐‘‚๐‘ˆ๐‘…๐ถ๐ธ
๐‘‰๐บ๐‘† = 2.5 โˆ’ 1 = ๐Ÿ. ๐Ÿ“๐‘ฝ
๐‘‰๐‘”๐‘  > ๐‘‰๐‘ก ๏ƒจ Transistor is ON.
๐‘‰๐ท๐‘† = ๐‘‰๐ท๐‘…๐ด๐ผ๐‘ โˆ’ ๐‘‰๐‘†๐‘‚๐‘ˆ๐‘…๐ถ๐ธ
๐‘‰๐ท๐‘† = 5 โˆ’ 1 = ๐Ÿ’๐‘ฝ
๐‘‰๐บ๐‘† โˆ’ ๐‘‰๐‘ก = 1.5 โˆ’ 0.937 = ๐ŸŽ. ๐Ÿ”๐Ÿ‘ ๐‘ฝ
๐‘‰๐ท๐‘† > ๐‘‰๐บ๐‘† โˆ’ ๐‘‰๐‘ก ๏ƒจ Transistor is in saturation mode.
COEN 451
Conclusion
Transistor
1 (NMOS)
2 (PMOS)
3 (PMOS)
4 (NMOS)
๐‘ฝ๐’•
1.218
-1.045
-0.8
0.937
๐‘ฝ๐’ˆ๐’”
1
-2.5
-3
1.5
๐‘ฝ๐’…๐’”
๐‘ฝ๐‘ฎ๐‘บ โˆ’ ๐‘ฝ๐’•
-2
-2
4
-1.455
-2.2
0.63
state
OFF
ON
ON
ON
region
Cut-off
Saturation
Linear
Saturation
COEN 451
APPENDIX A
Technology parameters of CMOSIS 5B
1. Specification of CMOSIS5, 0.5ฮผm technology
The model parameters of PMOS and NMOS transistor which
should be used in your calculation are listed below.
Model cmos NMOS level3:
Vto=0.6566V, kn=196.47ฮผA/V2, ฮผn=546.2cm2/V·s,
Cox=3.6e-03F/m2, Cj=5.62e-04F/m2,
Cjsw=5.0e-12F/m2, Cjgate=5.0e-12F/m2,
Cgbo=4.0239e-10F/m2, Cgdo=3.0515e-10F/m2
Cgso=3.0515e-10F/m2
Model cmosp PMOS level3:
Vto=-0.9213V, kp=48.74ฮผA/V2, ฮผp=135.52cm2/V·s,
Cox=3.6e-03F/m2,
Cj=9.35e-04F/m2,
Cjsw=289.00e-12F/m2,
Cjgate=289.00e-12F/m2
Cgbo=3.7579e-10F/m2,
Cgdo=2.3922e-10F/m2
Cgso=2.3922e-10F/m2
VDD = 3.3 voltage
COEN 451
APPENDIX B
Cgaten=(W x L)n x Cox
Cgatep=(W x L)p x Cox
Cgd= Cgbo * 2L + Cgdo * W + Cgso * W
Cdbn, Cdbp are junction capacitance of present level
Cdb= Cj * Area + Cjsw * (W +2L) + Cjgate * W
COEN 451
Maxime SCHNEIDER (ID: 6718809)
Due date: October 15th 2014
COEN 451 - Assignment 3
A CMOS inverter shown above was designed using CMOSIS 5B technology.
Process parameters are given in the appendix. The following design
parameters were used in the design:
Ln = Lp = Lmin
Wn = 4 Lmin
Wp= 2Wn
VDD = 3.8 V
Determine, VIL,max, Vth, VOH,min and the Noise Margins high and Low of this
inverter.
You may assume, LD, ฮ”W and ๏ฌ are all zero. Also you may assume that
VOL,min= 0 and VOH,max=VDD.
COEN 451
Determination of ๐‘‰๐ผ๐ฟ ๐‘€๐ด๐‘‹
P-MOS is in linear region and N-MOS is saturated. Thus, ๐ผ๐ท๐‘ = โˆ’๐ผ๐ท๐‘› leads to
๐‘˜๐‘› โ€ฒ
(๐‘‰๐‘”๐‘ ๐‘›
2
2
โˆ’ ๐‘‰๐‘ก๐‘› ) = ๐‘˜๐‘ โ€ฒ [(๐‘‰๐‘”๐‘ ๐‘ โˆ’ ๐‘‰๐‘ก๐‘ )๐‘‰๐‘‘๐‘ ๐‘ โˆ’
๐‘‰๐‘‘๐‘ ๐‘ 2
2
] (1)
For P-MOS: ๐‘‰๐‘”๐‘ ๐‘ = ๐‘‰๐‘–๐‘› โˆ’ ๐‘‰๐ท๐ท and ๐‘‰๐‘‘๐‘ ๐‘ = ๐‘‰0 โˆ’ ๐‘‰๐ท๐ท
For N-MOS: ๐‘‰๐‘”๐‘ ๐‘› = ๐‘‰๐‘–๐‘› and ๐‘‰๐‘‘๐‘ ๐‘› = ๐‘‰0
Substituting in (1),
๐‘Š๐‘› ๐‘˜๐‘› โ€ฒ
(๐‘‰๐‘–๐‘›
๐ฟ๐‘› 2
๐‘Š๐‘› ๐‘˜๐‘› โ€ฒ
(๐‘‰๐‘–๐‘›
๐ฟ๐‘› 2
โˆ’ ๐‘‰๐‘ก๐‘› )2 =
โˆ’ ๐‘‰๐‘ก๐‘› ) =
๐‘Š๐‘
๐ฟ๐‘
๐‘Š๐‘
๐ฟ๐‘
๐‘˜๐‘ โ€ฒ [(๐‘‰๐‘–๐‘› โˆ’ ๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘ก๐‘ )(๐‘‰0 โˆ’ ๐‘‰๐ท๐ท ) โˆ’
๐‘˜๐‘ โ€ฒ [(๐‘‰๐‘–๐‘› โˆ’ ๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘ก๐‘ )
๐‘‘๐‘‰0
(๐‘‰0
๐‘‘๐‘‰๐‘–๐‘›
(๐‘‰0 โˆ’๐‘‰๐ท๐ท )2
]
2
(2)
โˆ’ ๐‘‰๐ท๐ท ) โˆ’ (๐‘‰0 โˆ’ ๐‘‰๐ท๐ท )
๐‘‘๐‘‰0
]
๐‘‘๐‘‰๐‘–๐‘›
(3)
๐‘‘๐‘‰
In this region II of inverter VTC: ๐‘‰๐‘–๐‘› = ๐‘‰๐ผ๐ฟ ๐‘€๐ด๐‘‹ and ๐‘‘๐‘‰ 0 = โˆ’1
And from design parameters: ๐ฟ๐‘ = ๐ฟ๐‘› = ๐ฟ
๐‘–๐‘›
Substituting in (3),
๐‘Š
๐‘Š๐‘›
๐‘˜ โ€ฒ(๐‘‰๐ผ๐ฟ ๐‘€๐ด๐‘‹ โˆ’ ๐‘‰๐‘ก๐‘› ) = ๐ฟ๐‘ ๐‘˜๐‘ โ€ฒ(2๐‘‰0 โˆ’ ๐‘‰๐ผ๐ฟ ๐‘€๐ด๐‘‹ + ๐‘‰๐‘ก๐‘ โˆ’ ๐‘‰๐ท๐ท ) (4)
๐ฟ ๐‘›
From design parameters: ๐‘Š๐‘ƒ = 2 โˆ— ๐‘Š๐‘› and ๐‘‰๐ท๐ท = 3.8 ๐‘‰
And from CMOS 5B Datasheet,
N-MOS: ๐‘˜๐‘› โ€ฒ = 1.964 โˆ— 10โˆ’4 and ๐‘‰๐‘ก๐‘› = 0.656 6 V
P-MOS: ๐‘˜๐‘ โ€ฒ = 4.874 โˆ— 10โˆ’5 and ๐‘‰๐‘ก๐‘ = โˆ’0.921 3 V
Substituting in (2),
1.964 โˆ— 10โˆ’4 (๐‘‰๐ผ๐ฟ ๐‘€๐ด๐‘‹ โˆ’ 0.6566)
= 4 โˆ— 4.874 โˆ— 10โˆ’5 [(๐‘‰๐ผ๐ฟ ๐‘€๐ด๐‘‹ โˆ’ 3.8 + 0.921 3)(๐‘‰0 โˆ’ 3.8) โˆ’
(๐‘‰0 โˆ’ 3.8)2
]
2
โˆ’0.5 โˆ— ๐‘‰02 + (๐‘‰๐ผ๐ฟ ๐‘€๐ด๐‘‹ โˆ’ 6.67)๐‘‰0 โˆ’ 4.8 ๐‘‰๐ผ๐ฟ ๐‘€๐ด๐‘‹ + 4.33 = 0 (5)
Substituting in (4),
1.964 โˆ— 10โˆ’4 (๐‘‰๐ผ๐ฟ ๐‘€๐ด๐‘‹ โˆ’ 0.656 6) = 2 โˆ— 4.874 โˆ— 10โˆ’5 (2๐‘‰0 โˆ’ ๐‘‰๐ผ๐ฟ ๐‘€๐ด๐‘‹ โˆ’ 0.921 3 โˆ’ 3.8)
๐‘‰0 = 1.5 โˆ— ๐‘‰๐ผ๐ฟ ๐‘€๐ด๐‘‹ + 1.7 (6)
Back-substituting (6) in (5),
๐‘ฝ๐‘ฐ๐‘ณ ๐‘ด๐‘จ๐‘ฟ = ๐Ÿ. ๐Ÿ–๐Ÿ’ ๐‘ฝ
COEN 451
Determination of ๐‘‰๐‘‡๐ป
P-MOS and N-MOS are both saturated. Thus, ๐ผ๐ท๐‘ = โˆ’๐ผ๐ท๐‘› leads to
๐‘˜๐‘›
(๐‘‰๐‘”๐‘ ๐‘›
2
2
โˆ’ ๐‘‰๐‘ก๐‘› ) =
๐‘˜๐‘
2
2
(๐‘‰๐‘”๐‘ ๐‘ โˆ’ ๐‘‰๐‘ก๐‘ ) (7)
For P-MOS: ๐‘‰๐‘”๐‘ ๐‘ = ๐‘‰๐‘–๐‘› โˆ’ ๐‘‰๐ท๐ท and ๐‘‰๐‘‘๐‘ ๐‘ = ๐‘‰0 โˆ’ ๐‘‰๐ท๐ท
For N-MOS: ๐‘‰๐‘”๐‘ ๐‘› = ๐‘‰๐‘–๐‘› and ๐‘‰๐‘‘๐‘ ๐‘› = ๐‘‰0
Substituting in (7), and solving for ๐‘‰๐‘–๐‘› ,
2
๐‘˜๐‘› (๐‘‰๐‘–๐‘› โˆ’ ๐‘‰๐‘ก๐‘› )2 = ๐‘˜๐‘ (๐‘‰๐‘–๐‘› โˆ’ ๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘ก๐‘ ) (8)
2
๐‘˜๐‘› [(๐‘‰๐‘–๐‘› )2 โˆ’ 2 โˆ— ๐‘‰๐‘–๐‘› ๐‘‰๐‘ก๐‘› + (๐‘‰๐‘ก๐‘› )2 ] = ๐‘˜๐‘ (๐‘‰๐‘–๐‘› โˆ’ ๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘ก๐‘ )
Since (๐‘Ž + ๐‘ + ๐‘)2 = ๐‘Ž2 + ๐‘ 2 + ๐‘ 2 + 2(๐‘Ž๐‘ + ๐‘๐‘ + ๐‘๐‘Ž)
๐‘˜
๐‘˜
๐‘‰๐‘–๐‘› (1 + โˆš๐‘˜๐‘ ) = ๐‘‰๐‘ก๐‘› + โˆš๐‘˜๐‘ (๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘ก๐‘ )
๐‘›
๐‘›
๐‘Š๐‘
๐‘˜ โ€ฒ
๐ฟ๐‘ ๐‘
๐‘Š๐‘›
๐‘˜ โ€ฒ
๐ฟ๐‘› ๐‘›
๐‘‰๐‘–๐‘› (1 + โˆš
๐‘Š๐‘
๐‘˜ โ€ฒ
๐ฟ๐‘ ๐‘
๐‘Š๐‘›
๐‘˜ โ€ฒ
๐ฟ๐‘› ๐‘›
) = ๐‘‰๐‘ก๐‘› + โˆš
(๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘ก๐‘ )
From design parameters: ๐‘Š๐‘ƒ = 2 โˆ— ๐‘Š๐‘›
2โˆ—๐‘Š๐‘› โˆ—๐‘˜๐‘ โ€ฒ
๐‘‰๐‘–๐‘› (1 + โˆš
๐‘Š๐‘› โˆ—๐‘˜๐‘› โ€ฒ
2โˆ—๐‘˜๐‘ โ€ฒ
๐‘‰๐‘–๐‘› (1 + โˆš
๐‘˜๐‘› โ€ฒ
2โˆ—๐‘Š๐‘› โˆ—๐‘˜๐‘ โ€ฒ
) = ๐‘‰๐‘ก๐‘› + โˆš
๐‘Š๐‘› โˆ—๐‘˜๐‘› โ€ฒ
2โˆ—๐‘˜๐‘ โ€ฒ
) = ๐‘‰๐‘ก๐‘› + โˆš
๐‘˜๐‘› โ€ฒ
(๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘ก๐‘ )
(๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘ก๐‘ )
In our case (region III of VTC), ๐‘‰๐‘‡๐ป is ๐‘‰๐‘–๐‘› as it is where ๐‘‰๐‘œ๐‘ข๐‘ก = ๐‘‰๐‘–๐‘›
Thus,
๐‘‰๐‘‡๐ป =
N.A.
2โˆ—๐‘˜๐‘ โ€ฒ
(๐‘‰๐ท๐ท โˆ’๐‘‰๐‘ก๐‘ )
๐‘˜๐‘› โ€ฒ
๐‘‰๐‘ก๐‘› +โˆš
2โˆ—๐‘˜๐‘ โ€ฒ
๐‘˜๐‘› โ€ฒ
(9)
1+โˆš
โˆ’5
๐‘‰๐‘‡๐ป =
2โˆ—4.874โˆ—10
0.656 6+โˆš
โˆ’4 (3.8โˆ’0.921)
1.964โˆ—10
2โˆ—4.874โˆ—10โˆ’5
1.964โˆ—10โˆ’4
1+โˆš
Finally, ๐‘ฝ๐‘ป๐‘ฏ = ๐Ÿ. ๐Ÿ—๐Ÿ” ๐‘ฝ
COEN 451
Determination of ๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘
P-MOS is saturated and N-MOS is in linear region. Thus, ๐ผ๐ท๐‘ = โˆ’๐ผ๐ท๐‘› leads to
๐‘˜๐‘›
[2(๐‘‰๐‘”๐‘ ๐‘›
2
โˆ’ ๐‘‰๐‘ก๐‘› )๐‘‰๐‘‘๐‘ ๐‘› โˆ’ ๐‘‰๐‘‘๐‘ ๐‘› 2 ] =
๐‘˜๐‘
2
2
(๐‘‰๐‘”๐‘ ๐‘ โˆ’ ๐‘‰๐‘ก๐‘ ) (10)
For P-MOS: ๐‘‰๐‘”๐‘ ๐‘ = ๐‘‰๐‘–๐‘› โˆ’ ๐‘‰๐ท๐ท and ๐‘‰๐‘‘๐‘ ๐‘ = ๐‘‰0 โˆ’ ๐‘‰๐ท๐ท
For N-MOS: ๐‘‰๐‘”๐‘ ๐‘› = ๐‘‰๐‘–๐‘› and ๐‘‰๐‘‘๐‘ ๐‘› = ๐‘‰0
Substituting in (10),
๐‘˜๐‘
2
๐‘˜๐‘›
[2(๐‘‰๐‘–๐‘› โˆ’ ๐‘‰๐‘ก๐‘› )๐‘‰0 โˆ’ ๐‘‰0 2 ] = 2 (๐‘‰๐‘–๐‘› โˆ’ ๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘ก๐‘ ) (11)
2
๐‘˜๐‘›
[(๐‘‰๐‘–๐‘›
2
๐‘‘๐‘‰
๐‘‘๐‘‰
โˆ’ ๐‘‰๐‘ก๐‘› ) ๐‘‘๐‘‰ 0 + ๐‘‰0 โˆ’ ๐‘‰0 ๐‘‘๐‘‰ 0 ] = ๐‘˜๐‘ (๐‘‰๐‘–๐‘› โˆ’ ๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘ก๐‘ ) (12)
๐‘–๐‘›
๐‘–๐‘›
In this region IV of inverter VTC: ๐‘‰๐‘–๐‘› = ๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ and
๐‘‘๐‘‰0
๐‘‘๐‘‰๐‘–๐‘›
= โˆ’1
Substituting in (12),
๐‘˜๐‘› (โˆ’๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ + ๐‘‰๐‘ก๐‘› + 2๐‘‰0 ) = ๐‘˜๐‘ (๐‘‰๐‘–๐‘› โˆ’ ๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘ก๐‘ ) (13)
From design parameters: ๐‘Š๐‘ƒ = 2 โˆ— ๐‘Š๐‘› and ๐‘‰๐ท๐ท = 3.8 ๐‘‰
And from CMOS 5B Datasheet,
N-MOS: ๐‘˜๐‘› โ€ฒ = 1.964 โˆ— 10โˆ’4 and ๐‘‰๐‘ก๐‘› = 0.656 6 V
P-MOS: ๐‘˜๐‘ โ€ฒ = 4.874 โˆ— 10โˆ’5 and ๐‘‰๐‘ก๐‘ = โˆ’0.921 3 V
Substituting in (13),
2(โˆ’๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ + 0.656 + 2๐‘‰0 ) = ๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ โˆ’ 2.9
โˆ’2๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ + 1.312 + 4๐‘‰0 = ๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ โˆ’ 2.9
3โˆ—๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ โˆ’4.212
๐‘‰0 =
(14)
4
Substituting in (11),
4(๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ โˆ’ 0.656 6)๐‘‰0 โˆ’ 2๐‘‰0 2 = (๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ โˆ’ 3.8 + 0.921 3)2
4 โˆ— ๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ ๐‘‰0 โˆ’ 2.626 4 โˆ— ๐‘‰0 โˆ’ 2 โˆ— ๐‘‰0 2 = (๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ โˆ’ 2.878 7)2
4 โˆ— ๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ ๐‘‰0 โˆ’ 2.626 4 โˆ— ๐‘‰0 โˆ’ 2 โˆ— ๐‘‰0 2 = ๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ 2 โˆ’ 5.757 4 + 8.286 9
4 โˆ— ๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ ๐‘‰0 โˆ’ 2.626 4 โˆ— ๐‘‰0 โˆ’ 2 โˆ— ๐‘‰0 2 = ๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ 2 โˆ’ 2.529 5
โˆ’2 โˆ— ๐‘‰0 2 + (4 โˆ— ๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ โˆ’ 2.626 4)๐‘‰0 โˆ’ ๐‘‰๐ผ๐ป ๐‘€๐ผ๐‘ 2 + 2.529 5 = 0 (15)
Back-substituting (14) in (15),
๐‘ฝ๐‘ฐ๐‘ฏ ๐‘ด๐‘จ๐‘ฟ = ๐Ÿ. ๐Ÿ๐Ÿ” ๐‘ฝ
COEN 451
Noise Margins High and Low
Noise Margin Low
๐‘๐‘€๐ฟ = ๐‘‰๐ผ๐ฟ ๐‘€๐ด๐‘‹ โˆ’ ๐‘‰๐‘‚๐ฟ ๐‘€๐ด๐‘‹ =1.84 V
Noise Margin High
๐‘๐‘€๐ป = ๐‘‰๐ผ๐ป ๐‘€๐ด๐‘‹ โˆ’ ๐‘‰๐‘‚๐ป ๐‘€๐ผ๐‘ = ๐‘‰๐ท๐ท โˆ’ ๐‘‰๐‘‚๐ป ๐‘€๐ผ๐‘ = 3.8 โˆ’ 2.16 = ๐Ÿ. ๐Ÿ”๐Ÿ’ ๐‘ฝ
COEN 451
APPENDIX : CMOSIS 5 SPICE Parameters
*CMOSIS5 Design Kit V2.1 for Cadence Analog Artist
*MOS3 models for use in spectre
#ifdef n5bo
.MODEL CMOSN mos3 type=n
+PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=1
+VTO=0.6566 DELTA=6.9100E-01 LD=4.7290E-08 KP=1.9647E โ€“04
+UO=546.2 THETA=2.6840E-01 RSH=3.5120E+01 GAMMA=0.5976
+NSUB=1.3920E+17 NFS=5.9090E+11 VMAX=2.0080E+05 ETA=3.7180E-02
+KAPPA=2.8980E-02 CGDO=3.0515E-10 CGSO=3.0515E-10
+CGBO=4.0239E-10 CJ=5.62E-04 MJ=0.559 CJSW=5.00E-11
+MJSW=0.521 PB=0.99
+XW=4.108E-07
+CAPMOD=bsim XQC=0.5 XPART=0.5
*Weff = Wdrawn - Delta_W
*The suggested Delta_W is 4.1080E-07
.MODEL CMOSP mos3 type=p
+PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=-1
+VTO=-0.9213 DELTA=2.8750E-01 LD=3.5070E-08 KP=4.8740E-5
+UO=135.5 THETA=1.8070E-01 RSH=1.1000E-01 GAMMA=0.4673
+NSUB=8.5120E+16 NFS=6.5000E+11 VMAX=2.5420E+05 ETA=2.4500E-02
+KAPPA=7.9580E+00 CGDO=2.3933E-10 CGSO=2.3922E-10
+CGBO=3.7579E-10 CJ=9.35E-04 MJ=0.468 CJSW=2.89E-10
MJSW=0.505 PB=0.99
+XW=3.622E-07
+CAPMOD=bsim XQC=0.5 XPART=0.5
*Weff = Wdrawn โ€“Delta_W
*The suggested Delta_W is 3.220E-07
#endif
COEN 451
Maxime SCHNEIDER (ID: 6718809)
Due date: October 22nd 2014
COEN 451 - Assignment 4
A CMOS inverter (INV1), with a physical layout shown in Fig.1, drives a similar
inverter, and operates at a supply voltage of 3.3V.
a. Determine the delay of the inverter INV1.
b. What will be the maximum speed of operation of INV1 if it drives ten
similar inverters?
c. One of the methods to speed up the operation is to increase the size of
the driver. Determine the W/Ls of the PMOS and the NMOS transistors of
INV1 so that the speed in part (b) is doubled, assuming that the supply
voltage has been reduced by 10%. (Hint: Use twice the diffusion
capacitance of Fig.1).
d. Determine the dynamic power dissipation of the inverter (INV1) for part
c.
Use CMC technology parameters CMOSIS5B
Fig. 1 Inverter for design
COEN 451
a/ Delay of inverter ๐ผ๐‘๐‘‰1
We have:
๐‘ก๐‘ =
๐‘ก๐‘โ„Ž๐‘™ โˆ’ ๐‘ก๐‘๐‘™โ„Ž
2
๐‘ก๐‘โ„Ž๐‘™ =
๐‘ก๐‘๐‘™โ„Ž =
๐ด๐‘› ๐ถ๐ฟ
๐›ฝ๐‘› ๐‘‰๐ท๐ท
๐ด๐‘ ๐ถ๐ฟ
๐›ฝ๐‘ ๐‘‰๐ท๐ท
As a first step, we have to determine the Total Load
Capacitance (๐ถ๐ฟ ), that is computed summing the Gate
Capacitances, the Diffusion Capacitances and the Wire
Capacitance:
๐ถ๐ฟ = ๐ถ๐‘”๐‘› + ๐ถ๐‘”๐‘ + ๐ถ๐‘‘๐‘› + ๐ถ๐‘‘๐‘ + ๐ถ๐‘ค
Assumption: We ignore ๐ถ๐‘ค , the capacitance of the wire.
Diffusion Capacitances
๐ถ๐‘‘ = ๐ถ๐ฝ โˆ— ๐ด๐‘‘๐‘Ÿ๐‘Ž๐‘–๐‘› + ๐ถ๐ฝ๐‘†๐‘Š โˆ— ๐‘ƒ๐‘‘๐‘Ÿ๐‘Ž๐‘–๐‘›
Area of the drain is ๐ด๐‘‘๐‘Ÿ๐‘Ž๐‘–๐‘› = ๐ฟ๐ท ๐‘Š๐ท
Perimeter of drain is ๐‘ƒ๐‘‘๐‘Ÿ๐‘Ž๐‘–๐‘› = 2๐ฟ๐ท + 2๐‘Š๐ท = 2 โˆ— (๐ฟ๐ท + ๐‘Š๐ท )
Thus,
๐ถ๐‘‘ = ๐ถ๐ฝ โˆ— ๐ฟ๐ท โˆ— ๐‘Š๐ท + 2 โˆ— ๐ถ๐ฝ๐‘†๐‘Š โˆ— (๐ฟ๐ท + ๐‘Š๐ท )
N.A.
For P-MOS,
๐‘Š๐‘‘๐‘ = 2.0 ๐œ‡๐‘š and ๐ฟ๐‘‘๐‘ = 3.0 ๐œ‡๐‘š
๐ถ๐‘‘๐‘ = 9.35 โˆ— 10โˆ’4 ๐น๐‘šโˆ’2 โˆ— 3.0 โˆ— 10โˆ’6 โˆ— 2.0 โˆ— 10โˆ’6 ๐‘š2 + 2 โˆ— 2.89 โˆ— 10โˆ’10 ๐น๐‘šโˆ’1 (3.0 + 2.0) โˆ— 10โˆ’6 ๐‘š
โˆ’16
โˆ’16
= 5.61 โˆ— 10 ๐น + 28.9 โˆ— 10
= 5.61 ๐‘“๐น + 2.89๐‘“๐น
= ๐Ÿ–. ๐Ÿ“๐ŸŽ๐’‡๐‘ญ
๐น
For N-MOS,
๐‘Š๐‘‘๐‘› = 3.0 ๐œ‡๐‘š and ๐ฟ๐‘‘๐‘› = 2.5 ๐œ‡๐‘š
๐ถ๐‘‘๐‘› = 5.62 โˆ— 10โˆ’4 ๐น๐‘šโˆ’2 โˆ— 2.5 โˆ— 10โˆ’6 โˆ— 3.0 โˆ— 10โˆ’6 ๐‘š2 + 2 โˆ— 5 โˆ— 10โˆ’11 ๐น๐‘šโˆ’1 (2.5 + 3.0) โˆ— 10โˆ’6 ๐‘š
โˆ’16
โˆ’17
= 42.15 โˆ— 10 ๐น + 55 โˆ— 10
= 4.215 ๐‘“๐น + 0.55๐‘“๐น
= ๐Ÿ’. ๐Ÿ•๐Ÿ•๐’‡๐‘ญ
F
COEN 451
Gate Capacitances
๐ถ๐‘” = ๐ถ๐‘œ๐‘ฅ (๐‘Š + ฮ”๐‘Š)(๐ฟ + ๐›ฟ๐ฟ)
Assumption: We ignore ฮ”๐‘Š๐‘› and ๐›ฟ๐ฟ๐‘›
0.345
As ๐ถ๐‘œ๐‘ฅ =
(๐‘“๐น๐‘šโˆ’2 ), we get:
๐‘ก(๐ด๐‘›๐‘”๐‘ ๐‘ก๐‘Ÿ๐‘œ๐‘š)
๐ถ๐‘” =
N.A.
For P-MOS,
๐‘Š๐‘ = 0.5 ๐œ‡๐‘š and ๐ฟ๐‘ = 5.5 ๐œ‡๐‘š
0.345 โˆ— ๐‘Š โˆ— ๐ฟ
๐‘ก
0.345โˆ—0.5โˆ—5.5
๐ถ๐‘”๐‘ =
96
= ๐Ÿ—. ๐Ÿ–๐Ÿ•๐’‡๐‘ญ
For N-MOS,
๐‘Š๐‘› = 2.5 ๐œ‡๐‘š and ๐ฟ๐‘› = 0.5 ๐œ‡๐‘š
0.345โˆ—2.5โˆ—0.5
๐ถ๐‘”๐‘› =
96
= ๐Ÿ’. ๐Ÿ’๐Ÿ—๐’‡๐‘ญ
Total Load Capacitance
๐ถ๐ฟ = ๐ถ๐‘”๐‘› + ๐ถ๐‘”๐‘ + ๐ถ๐‘‘๐‘› + ๐ถ๐‘‘๐‘
N.A.
๐ถ๐ฟ = (8.50 + 4.77 + 9.87 + 4.49) ๐‘“๐น
= ๐Ÿ๐Ÿ•. ๐Ÿ”๐Ÿ‘ ๐’‡๐‘ญ
As a second step, we have to determine ๐ด๐‘› and ๐ด๐‘ coefficients.
In most cases, it is done doing SPICE simulations.
Another way to calculate ๐‘ก๐‘โ„Ž๐‘™ and ๐‘ก๐‘๐‘™โ„Ž can be done using the
following formula for ๐‘ก๐‘โ„Ž๐‘™ :
๐‘ก๐‘โ„Ž๐‘™ =
๐ถ๐ฟ
๐›ฝ๐‘ (๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘ |) ๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘ |
Knowing that ๐›ฝ๐‘ =
๐‘ก๐‘โ„Ž๐‘™ =
2|๐‘‰๐‘ก๐‘ |
[
๐พ๐‘โ€ฒ ๐‘Š๐‘
๐ฟ๐‘
๐ฟ๐‘ ๐ถ๐ฟ
+ ln(
4(๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘ |
โˆ’ 1)]
๐‘‰๐ท๐ท
, we get:
[
2|๐‘‰๐‘ก๐‘ |
๐พ๐‘โ€ฒ ๐‘Š๐‘ (๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘ |) ๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘ |
+ ln(
4(๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘ |
โˆ’ 1)]
๐‘‰๐ท๐ท
COEN 451
N.A.
๐‘ก๐‘โ„Ž๐‘™
5.5 โˆ— 10โˆ’6 โˆ— 27.63 โˆ— 10โˆ’15
2 โˆ— 0.9213
4(3.3 โˆ’ 0.9213)
=
+
ln
(
โˆ’ 1)]
[
4.8740 โˆ— 10โˆ’5 โˆ— 0.5 โˆ— 10โˆ’6 (3.3 โˆ’ 0.9213) 3.3 โˆ’ 0.9213
3.3
151.965 โˆ— 10โˆ’21
[0.77462 + ln(1.88327)]
=
5.79689 โˆ— 10โˆ’11
= 26.2149 โˆ— 10โˆ’10 โˆ— [0.77462 + 0.633009]
= ๐Ÿ‘๐Ÿ•๐’‘๐’”
And this formula for ๐‘ก๐‘๐‘™โ„Ž :
๐ถ๐ฟ
2|๐‘‰๐‘ก๐‘› |
4(๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘› |
๐‘ก๐‘๐‘™โ„Ž =
+ ln(
โˆ’ 1)]
[
๐›ฝ๐‘› (๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘› |) ๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘› |
๐‘‰๐ท๐ท
Knowing that ๐›ฝ๐‘› =
๐‘ก๐‘๐‘™โ„Ž =
๐พ๐‘›โ€ฒ ๐‘Š๐‘›
๐ฟ๐‘›
, we get:
๐ฟ๐‘› ๐ถ๐ฟ
2|๐‘‰๐‘ก๐‘› |
4(๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘› |
+
ln(
โˆ’ 1)]
[
๐พ๐‘›โ€ฒ ๐‘Š๐‘› (๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘› |) ๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘› |
๐‘‰๐ท๐ท
N.A.
๐‘ก๐‘๐‘™โ„Ž =
0.5 โˆ— 10โˆ’6 โˆ— 23.63 โˆ— 10โˆ’15
2 โˆ— 0.6566
4 โˆ— (3.3 โˆ’ 0.6566)
[
+ ln (
โˆ’ 1)]
โˆ’4
โˆ’6
1.9647 โˆ— 10 โˆ— 2.5 โˆ— 10 โˆ— (3.3 โˆ’ 0.6566) 3.3 โˆ’ 0.6566
3.3
โˆ’21
11.815 โˆ— 10
[0.4968 + ln(2.2041)]
12.98372 โˆ— 10โˆ’10
= 0.90999 โˆ— 10โˆ’11 โˆ— (0.4968 + 0.79032)
= ๐Ÿ. ๐Ÿ–๐’‘๐’”
=
Finally, we can calculate ๐‘ก๐‘ that is given by:
๐‘ก๐‘โ„Ž๐‘™ โˆ’ ๐‘ก๐‘๐‘™โ„Ž
๐‘ก๐‘ =
2
N.A.
37 + 1.8
๐‘ก๐‘ =
2
38.8
=
2
= ๐Ÿ๐Ÿ—. ๐Ÿ’๐’‘๐’”
COEN 451
b/
The maximum speed of operation is given by:
1
๐‘“๐‘š๐‘Ž๐‘ฅ =
๐‘ก๐‘Ÿ + ๐‘ก๐‘“
๐พ๐‘› ๐ถ๐ฟ
๐‘ก๐‘Ÿ =
๐›ฝ๐‘› ๐‘‰๐ท๐ท
๐พ๐‘ ๐ถ๐ฟ
๐‘ก๐‘“ =
๐›ฝ๐‘ ๐‘‰๐ท๐ท
Since the circuits changes while using 10 inverters, ๐ถ๐ฟ changes:
we now have to pass through 10 inverters and therefore Diffusion
capacitances have to be taken into account ten times. This
leads to:
๐ถ๐ฟโ€ฒ = ๐ถ๐‘”๐‘› + ๐ถ๐‘”๐‘ + 10 โˆ— ๐ถโ€ฒ๐‘‘๐‘› + 10 โˆ— ๐ถโ€ฒ๐‘‘๐‘
So,
๐ถ๐ฟโ€ฒ = ๐ถ๐‘”๐‘› + ๐ถ๐‘”๐‘ + 10 โˆ— (๐ถโ€ฒ๐‘‘๐‘› + ๐ถโ€ฒ๐‘‘๐‘ )
N.A.
๐ถ๐ฟโ€ฒ = [8.50 + 4.77 + 10 โˆ— (9.87 + 4.49)] ๐‘“๐น
= ๐Ÿ๐Ÿ“๐Ÿ”. ๐Ÿ–๐Ÿ•๐’‡๐‘ญ
๐พ๐‘› and ๐พ๐‘ are computed using the following formulas:
๐พ๐‘› =
๐พ๐‘ =
1
(
1โˆ’๐‘›
1
2(๐‘›โˆ’0.1)
1โˆ’๐‘›
+ ln(19 โˆ’ 20๐‘›)) where ๐‘› =
2(โˆ’๐‘โˆ’0.1)
(
1+๐‘
1+๐‘
๐‘‰๐ท๐ท
+ ln(19 + 20๐‘)) where ๐‘ =
N.A.
For rising time,
0.6566
๐‘›=
3.3
= ๐ŸŽ. ๐Ÿ๐Ÿ—๐Ÿ–๐Ÿ”
1
2(0.1986 โˆ’ 0.1)
+ ln(19 โˆ’ 20 โˆ— 0.1986 ))
(
1 โˆ’ 0.1986
1 โˆ’ 0.1986
= 1.2478 โˆ— (0.2461 + ln(15.028))
= ๐Ÿ‘. ๐Ÿ”๐Ÿ–๐Ÿ–๐Ÿ”
๐พ๐‘› =
๐‘‰๐‘ก๐‘›
๐‘‰๐‘ก๐‘
๐‘‰๐ท๐ท
COEN 451
156.87 โˆ— 1๐‘‚โˆ’15 โˆ— 3.6886
๐‘ก๐‘Ÿ =
980 โˆ— 10โˆ’6 โˆ— 3.3
= ๐Ÿ๐Ÿ•๐Ÿ–. ๐Ÿ—๐Ÿ ๐’‘๐’”
for falling time,
โˆ’0.9213
๐‘=
3.3
= โˆ’๐ŸŽ. ๐Ÿ๐Ÿ•๐Ÿ—๐Ÿ
1
2(0.2792 โˆ’ 0.1)
+ ln(19 โˆ’ 20 โˆ— 0.2792))
(
1 โˆ’ 0.2792
1 โˆ’ 0.2792
= 1.3873(0.4972 + ln(13.416))
= ๐Ÿ’. ๐Ÿ๐Ÿ—๐Ÿ๐Ÿ–
๐พ๐‘ =
156.87 โˆ— 1๐‘‚โˆ’15 โˆ— 4.2918
๐‘ก๐‘“ =
535.7 โˆ— 10โˆ’6 โˆ— 3.3
= ๐Ÿ‘๐Ÿ–๐ŸŽ. ๐Ÿ–๐Ÿ’ ๐’‘๐’”
And finally,
1
๐‘“๐‘š๐‘Ž๐‘ฅ =
๐‘ก๐‘Ÿ + ๐‘ก๐‘“
1
(178.92 + 380.84) โˆ— 10โˆ’12
= ๐Ÿ. ๐Ÿ•๐Ÿ–๐Ÿ”๐Ÿ’ ๐‘ฎ๐‘ฏ๐’›
=
c/
The maximum speed of operation is given by:
1
๐‘“๐‘š๐‘Ž๐‘ฅ =
๐‘ก๐‘Ÿ + ๐‘ก๐‘“
Hence, ๐‘“ โ€ฒ ๐‘š๐‘Ž๐‘ฅ = 2 โˆ— 1.785๐บ๐ป๐‘ง
= ๐Ÿ‘. ๐Ÿ“๐Ÿ•๐‘ฎ๐‘ฏ๐’›
๐œ๐‘š๐‘–๐‘› = ๐‘ก๐‘“ + ๐‘ก๐‘Ÿ
=
=
๐ถ๐ฟ ๐›ฝ๐‘›
๐‘Š๐‘›
๐›ผ( )๐พ๐‘› ๐‘‰๐ท๐ท
๐ฟ๐‘›
๐ถ๐ฟ
๐›ผ๐‘‰๐ท๐ท
+
๐›ฝ๐‘›
๐‘Š๐‘›
( )๐พ๐‘›
๐ฟ๐‘›
(
๐ถ๐ฟ ๐›ฝ๐‘
๐‘Š๐‘
๐›ผ( )๐พ๐‘ ๐‘‰๐ท๐ท
๐ฟ๐‘
+
(
๐›ฝ๐‘
๐‘Š๐‘
๐ฟ๐‘
)๐พ๐‘
)
COEN 451
๏ƒจ๐›ผ=
๐ถ๐ฟ
๐œ๐‘š๐‘–๐‘› ๐‘‰๐ท๐ท
(
๐›ฝ๐‘›
๐‘Š๐‘›
( )๐พ๐‘›
๐ฟ๐‘›
+
๐›ฝ๐‘
๐‘Š๐‘
(
๐ฟ๐‘
)๐พ๐‘
)
The new Load Capacitance is
๐ถ๐ฟ = 2 โˆ— (8.5 + 4.76) + 143.6
= ๐Ÿ๐Ÿ•๐ŸŽ. ๐Ÿ๐Ÿ๐’‡๐‘ญ
Letโ€™s calculate ๐›ผ.
๐›ผ=
=
170โˆ—10โˆ’15
280โˆ—10โˆ’12 โˆ—2.97
170
3.7
3.7
4.3
(5โˆ—196โˆ—10โˆ’6 + 11โˆ—48.7โˆ—10โˆ’6)
4.3
+
(
)
280โˆ—2.97 0.98
0.535
170โˆ—11.8
=
280โˆ—2.97
= ๐Ÿ. ๐Ÿ’
Finally,
๐‘Š
( ) = 2.4 โˆ— 5
๐ฟ ๐‘›
= ๐Ÿ๐Ÿ
๐‘Š
( ) = 2.3 โˆ— 11
๐ฟ ๐‘
= ๐Ÿ๐Ÿ”
d/
Dynamic Power Dissipation is given by:
๐‘ƒ = ๐‘“๐ถ๐ฟ ๐‘‰๐ท๐ท 2
N.A.
๐‘ƒ = 170 โˆ— 10โˆ’15 โˆ— 2.972 โˆ— 3.57 โˆ— 109
= ๐Ÿ‘. ๐Ÿ‘๐Ÿ“ ๐’Ž๐‘พ
COEN 451
Appendix B: SPICE Parameters
.MODEL CMOSN mos3 type=n
+PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=1
+VTO=0.6566 DELTA=6.9100E-01 LD=4.7290E-08 KP=1.9647E โ€“04
+UO=546.2 THETA=2.6840E-01 RSH=3.5120E+01 GAMMA=0.5976
+NSUB=1.3920E+17 NFS=5.9090E+11 VMAX=2.0080E+05
ETA=3.7180E-02
+KAPPA=2.8980E-02 CGDO=3.0515E-10 CGSO=3.0515E-10
+CGBO=4.0239E-10 CJ=5.62E-04 MJ=0.559 CJSW=5.00E-11
+MJSW=0.521 PB=0.99
+XW=4.108E-07
+CAPMOD=bsim XQC=0.5 XPART=0.5
*Weff = Wdrawn - Delta_W
*The suggested Delta_W is 4.1080E-07
.MODEL CMOSP mos3 type=p
+PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=-1
+VTO=-0.9213 DELTA=2.8750E-01 LD=3.5070E-08 KP=4.8740E-5
+UO=135.5 THETA=1.8070E-01 RSH=1.1000E-01 GAMMA=0.4673
+NSUB=8.5120E+16 NFS=6.5000E+11 VMAX=2.5420E+05
ETA=2.4500E-02
+KAPPA=7.9580E+00 CGDO=2.3933E-10 CGSO=2.3922E-10
+CGBO=3.7579E-10 CJ=9.35E-04 MJ=0.468 CJSW=2.89E-10
MJSW=0.505 PB=0.99
+XW=3.622E-07
+CAPMOD=bsim XQC=0.5 XPART=0.5
*Weff = Wdrawn โ€“Delta_W
COEN 451
COEN 451
Maxime SCHNEIDER (ID: 6718809)
Due date: November 5th 2014
COEN 451 - Assignment 5
1. Design a 3 input CMOS static NAND gate for:
a) Minimum area;
b) Minimum propagation delay;
c) Equal rise and fall time;
d) Determine the worst-case rise and fall time if the NAND gate is
driving a 0.1 pF load.
2. Design a gate to implement the function F (A, B, C, D) = (AB + CD)โ€™ in
Pseudo NMOS.
Analyze the circuit for valid operation at logic high and logic
Problem 1
a/ 3 input CMOS NAND for minimum area.
Parameters of Minimum Area CMOS are:
๐‘Š๐‘ = ๐‘Š๐‘› = 3๐œ‡๐‘š
๐ฟ๐‘ = ๐ฟ๐‘› = 3๐œ‡๐‘š
Thus, for a 3 input CMOS NAND with
minimum area, we have:
๐‘Š๐‘๐ด = ๐‘Š๐‘›๐ด = ๐‘Š๐‘๐ต = ๐‘Š๐‘›๐ต = ๐‘Š๐‘๐ถ = ๐‘Š๐‘›๐ถ = 3๐œ‡๐‘š
๐ฟ๐‘๐ด = ๐ฟ๐‘›๐ด = ๐ฟ๐‘๐ต = ๐ฟ๐‘›๐ต = ๐ฟ๐‘๐ถ = ๐ฟ๐‘›๐ถ = 3๐œ‡๐‘š
COEN 451
b/ 3 input CMOS NAND for minimum propagation delay.
We have:
๐œ‡๐‘›
775
๐‘พ๐’‘ = โˆš๐๐’“ โˆ— ๐‘พ๐’ = โˆš ๐‘Š๐‘› = โˆš
๐‘Š = โˆš3.1๐‘Š๐‘› = 1.7๐‘Š๐‘›
๐œ‡๐‘
250 ๐‘›
Equivalent inverter
3 input NAND
Thus, for a 3 input CMOS NAND with minimum area, we have:
๐‘Š๐‘๐ด = ๐‘Š๐‘๐ต = ๐‘Š๐‘๐ถ = ๐‘Š๐‘ = 1.7๐‘Š๐‘š๐‘–๐‘› = 1.7 โˆ— 3 โˆ— 10โˆ’6 = 5.1๐œ‡๐‘š
๐‘Š๐‘›๐ด = ๐‘Š๐‘›๐ต = ๐‘Š๐‘›๐ถ = 3๐‘Š๐‘š๐‘–๐‘› = 9๐œ‡๐‘š
Length is kept unchanged:
๐ฟ๐‘๐ด = ๐ฟ๐‘›๐ด = ๐ฟ๐‘๐ต = ๐ฟ๐‘›๐ต = ๐ฟ๐‘๐ถ = ๐ฟ๐‘›๐ถ = 3๐œ‡๐‘š
c/ 3 input CMOS NAND for equal rise and fall times.
To get equal ๐‘ก๐‘Ÿ and ๐‘ก๐‘“ we need to have equal ๐›ฝ๐‘ and ๐›ฝ๐‘› .
We have:
๐‘พ๐’‘ = ๐Ÿ‘๐‘พ๐’
COEN 451
Equivalent inverter
3 input NAND
Thus, for a 3 input CMOS NAND with equal rise and fall times, we have:
๐‘Š๐‘๐ด = ๐‘Š๐‘๐ต = ๐‘Š๐‘๐ถ = 3๐‘Š๐‘š๐‘–๐‘› = 9๐œ‡๐‘š
๐‘Š๐‘›๐ด = ๐‘Š๐‘›๐ต = ๐‘Š๐‘›๐ถ = 3๐‘Š๐‘š๐‘–๐‘› = 9๐œ‡๐‘š
Length is kept unchanged:
๐ฟ๐‘๐ด = ๐ฟ๐‘›๐ด = ๐ฟ๐‘๐ต = ๐ฟ๐‘›๐ต = ๐ฟ๐‘๐ถ = ๐ฟ๐‘›๐ถ = 3๐œ‡๐‘š
d/ Worst-case rise time and fall time with a 0.1 pF Load Capacitance.
Rise time
Worst-case rise time occurs when one input is LOW and the two others are
HIGH, with top two NMOS at HIGH state.
Thus, to study worst-case rise time, we have:
A
1
B
1
C
0
OUT
1
COEN 451
We have:
๐‘ก๐‘Ÿ = 2.2 ๐œ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’
Assuming that
- ๐ถ๐‘‘ = ๐ถ๐‘  = ๐ถ
- ๐‘Š๐‘ = ๐ฟ๐‘ = 3๐œ‡๐‘š
๐œ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ = ๐‘…๐‘ [3๐ถ๐‘‘๐‘ƒ + 3๐ถ๐‘‘๐‘ + 2๐ถ๐‘ ๐‘ + ๐ถ๐ฟ ]
= ๐‘…๐‘ [8๐ถ + ๐ถ๐ฟ ]
๐‘…๐‘ =
=
๐พ๐‘โ€ฒ
1
(|๐‘‰
๐›ฝ๐‘ ๐บ๐‘† โˆ’๐‘‰๐‘ก |)
1
๐‘Š๐‘
(|๐‘‰๐บ๐‘† โˆ’๐‘‰๐‘ก |)
๐ฟ๐‘
1
= 12โˆ—10โˆ’6 โˆ—4.2
= 19.8๐‘˜ฮฉ
๐ถ๐‘‘ = ๐ถ๐‘— โˆ— ๐ด๐‘‘ + ๐ถ๐‘—๐‘ ๐‘ค โˆ— ๐‘ƒ๐‘‘ + ๐ถ๐บ๐‘†๐‘‚ โˆ— ๐‘Š
COEN 451
Assuming that ๐ถ๐‘‘ = 40๐‘“๐น,
๐ถ = 40๐‘“๐น
Then, we have:
๐‘ก๐‘Ÿ = 2.2 ๐‘…๐‘ [8๐ถ + ๐ถ๐ฟ ]
= 2.2 โˆ— 19.8 โˆ— 103 โˆ— [8 โˆ— 40 โˆ— 10โˆ’15 + 0.1 โˆ— 10โˆ’12 ]
๐’•๐’“ = ๐Ÿ๐Ÿ–. ๐Ÿ‘๐’๐’”
Fall time
Worst-case fall time occurs when the three inputs are HIGH, leading to LOW
output state.
Thus, to study worst-case fall time, we have:
A
1
B
1
C
1
We have:
๐‘ก๐‘“ = 2.2 ๐œ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’
Assuming that
- ๐ถ๐‘‘ = ๐ถ๐‘  = ๐ถ
OUT
0
COEN 451
-
๐‘Š๐‘› = ๐ฟ๐‘› = 3๐œ‡๐‘š
๐œ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ = 3๐‘…๐‘› [3๐ถ๐‘‘๐‘ƒ + 3๐ถ๐‘‘๐‘ + 2๐ถ๐‘ ๐‘ + ๐ถ๐ฟ ]
= 3๐‘…๐‘› [8๐ถ + ๐ถ๐ฟ ]
๐‘…๐‘› =
=
๐พ๐‘โ€ฒ
1
๐›ฝ๐‘ (|๐‘‰๐บ๐‘† โˆ’๐‘‰๐‘ก |)
1
๐‘Š๐‘
(|๐‘‰๐บ๐‘† โˆ’๐‘‰๐‘ก |)
๐ฟ๐‘
1
= 40โˆ—10โˆ’6 โˆ—4.3
= 5.8๐‘˜ฮฉ
๐ถ๐‘‘ = ๐ถ๐‘— โˆ— ๐ด๐‘‘ + ๐ถ๐‘—๐‘ ๐‘ค โˆ— ๐‘ƒ๐‘‘ + ๐ถ๐บ๐‘†๐‘‚ โˆ— ๐‘Š
Assuming that ๐ถ๐‘‘ = 40๐‘“๐น,
๐ถ = 40๐‘“๐น
Then, we have:
๐‘ก๐‘Ÿ = 2.2 ๐‘…๐‘š๐‘–๐‘› [8๐ถ + ๐ถ๐ฟ ]
= 2.2 โˆ— 3 โˆ— 5.8 โˆ— 103 โˆ— [8 โˆ— 40 โˆ— 10โˆ’15 + 0.1 โˆ— 10โˆ’12 ]
๐’•๐’“ = ๐Ÿ๐Ÿ”. ๐Ÿ๐’๐’”
COEN 451
Problem 2
๐นฬ… (A, B, C, D) = (AB + CD)โ€™
Pseudo NMOS circuit
Equivalent inverter
Assuming:
- ๐‘‰๐บ๐‘† = 5๐‘‰
- |๐‘‰๐‘ก๐‘ | = ๐‘‰๐‘ก๐‘› = 1๐‘‰
- we neglect ๐‘‰๐ท๐‘†๐‘› 2
- ๐ฟ๐‘ = ๐ฟ๐‘› = 3๐œ‡๐‘š
PMOS is saturated: ๐ผ๐‘ =
๐›ฝ๐‘
2
(๐‘‰๐บ๐‘†๐‘ โˆ’ ๐‘‰๐‘ก๐‘ )
2
NMOS is linear: ๐ผ๐‘› = ๐›ฝ๐‘› (๐‘‰๐บ๐‘†๐‘› โˆ’ ๐‘‰๐‘ก๐‘› )๐‘‰๐ท๐‘†๐‘› โˆ’
๐‘‰๐ท๐‘†๐‘› 2
2
๐ผ๐‘ = ๐ผ๐‘›
๏ƒณ
๐›ฝ๐‘
2
2
(๐‘‰๐บ๐‘†๐‘ โˆ’ ๐‘‰๐‘ก๐‘ ) = ๐›ฝ๐‘› (๐‘‰๐บ๐‘†๐‘› โˆ’ ๐‘‰๐‘ก๐‘› )๐‘‰๐ท๐‘†๐‘› โˆ’
๐‘‰๐ท๐‘†๐‘› 2
2
COEN 451
As ๐‘‰๐ท๐‘†๐‘› = ๐‘‰๐‘‚๐ฟ , we have,
2
๐›ฝ๐‘
(๐‘‰๐บ๐‘†๐‘ โˆ’ ๐‘‰๐‘ก๐‘ ) = ๐›ฝ๐‘› (๐‘‰๐บ๐‘†๐‘› โˆ’ ๐‘‰๐‘ก๐‘› )๐‘‰๐‘‚๐ฟ
2
๏ƒณ
๐›ฝ๐‘
2
(5 โˆ’ 1)2 = ๐›ฝ๐‘› (5 โˆ’ 1)๐‘‰๐‘‚๐ฟ
๏ƒณ 16 โˆ—
๐›ฝ๐‘
2
= 4 โˆ— ๐›ฝ๐‘› ๐‘‰๐‘‚๐ฟ
๐›ฝ๐‘
๏ƒณ๐‘‰๐‘‚๐ฟ = 2 โˆ— ๐›ฝ
=2โˆ—
=2โˆ—
๐‘Š๐‘
๐ฟ๐‘
๐‘Š๐‘›
๐พ๐‘› โ€ฒ
๐ฟ๐‘›
๐พ๐‘โ€ฒ ๐‘Š๐‘
๐พ๐‘›โ€ฒ ๐‘Š๐‘›
๐‘›
๐พ๐‘ โ€ฒ
We have:
๐พ๐‘โ€ฒ = 12 โˆ— 10โˆ’6
๐พ๐‘›โ€ฒ = 40 โˆ— 10โˆ’6
12 ๐‘Š๐‘
Then, ๐‘‰๐‘‚๐ฟ = 2 40 ๐‘Š
๐‘Š๐‘
๐‘›
๏ƒจ๐‘‰๐‘‚๐ฟ = 0.6 ๐‘Š
๐‘›
Assuming ๐‘‰๐‘‚๐ฟ = 0.5๐‘‰,
๐‘Š๐‘
0.6
=
๐‘Š๐‘›
0.5
๏ƒณ ๐‘พ๐’‘ = ๐ŸŽ. ๐Ÿ–๐Ÿ‘ ๐‘พ๐’
Smallest Width is 3๐œ‡๐‘š. So we choose ๐‘Š๐‘ = 3๐œ‡๐‘š
3
And then ๐‘Š๐‘› = 0.83 = 3.6๐œ‡๐‘š
3.6
3
= 1.2 ๏ƒจ ๐‘Š๐‘› = 1.2๐‘Š๐‘š๐‘–๐‘›
COEN 451
Finally, we get
๐‘Š๐‘› = ๐‘Š๐‘š๐‘–๐‘› = 3๐œ‡๐‘š
๐‘Š๐‘›๐ด = ๐‘Š๐‘›๐ต = ๐‘Š๐‘›๐ถ = ๐‘Š๐‘›๐ท = 2 โˆ— 1.2๐‘Š๐‘š๐‘–๐‘› = 2 โˆ— 3.6 = 7.2๐œ‡๐‘š
Length is kept unchanged:
๐ฟ๐‘๐ด = ๐ฟ๐‘›๐ด = ๐ฟ๐‘๐ต = ๐ฟ๐‘›๐ต = ๐ฟ๐‘๐ถ = ๐ฟ๐‘›๐ถ = ๐ฟ๐‘๐ท = ๐ฟ๐‘›๐ท = 3๐œ‡๐‘š
COEN 451
Use the following SPICE parameters for this assignment.
SPICE Transistor Parameters
Parameter
NMOS
PMOS
Units
Source
Description
VTO
KP
GAMMA
PHI
LAMBDA
RD
RS
CBD
CBS
IS
PB
CGSO
CGDO
CGBO
RSH
CJ
MJ
CJSW
MJSW
JS
TOX
NSUB
NSS
NFS
TPG
XJ
LD
UO
VMAX
0.7
40E-6
1.1
0.6
0.01
(40)
(40)
-0.8
12E-6
0.6
0.6
0.03
(100)
(100)
0.7
3.0E-10
3.0E-10
5.0E-10
25
4.4E-10
0.5
4.0E-10
0.3
1.0E-5
5.0E-8
1.7E16
0
0
1
6.0E-7
3.5E-7
775
1.0E5
0.6
2.5E-10
2.5E-10
5.0E-10
80
1.5E-4
0.6
4.0E-10
0.6
1.0E-5
5.0E-8
5.0E15
0
0
1
5.0E-7
2.5E-7
250
0.7E5
V
(A/V2)
(V0.5)
V
1/V
ohms
ohms
F
F
A
V
F/m
F/m
F/m
Ohms/sq.
(F/m2)
F/m
(A/m2)
m
(1/cm3)
(1/cm2)
(1/cm2)
m
m
(cm2/Vs)
(1)
(5)
(1)
(3)
(5)
(2)
(2)
(2)
(2)
(2)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(3)
(3)
(3)
(1)
(1)
(1)
(1)
-zero bias threshold voltage
-transconductance parameter
-bulk threshold parameter
-surface potential
-channel-length modulation
-drain ohmic resistance (w=6๏ญ)
-source ohmic resistance(๏‚ฒ)
-zero bias B-D juction cap.
-zero bias B-S juction cap.
-bulk junction sat.current
-bulk junction potential;
-G-S overlap capacitance
-G-D overlap capacitance
-G-bulk overlap capacitance
-diffusion sheet resistance
-zero bias bulk junction cap.
-bulk junction grading coef.
-bulk junction sidewall cap.
-sidewall cap. Grading coef.
-bulk jinction sat.current
-oxide thickness
-substrate doping
-surface state density
-fast surface state density
-type of gate material
-metallurgical junction depth
-lateral diffusion
-surface mobility
-maximum drift velocity m/s
SPICE Level 3 Parameters
Parameter
NMOS
PMOS
Units
Source
Description
THETA
KAPPA
ETA
0.11
1.0
0.05
0.13
1.0
0.3
1/V
-
(1)
(1)
(1)
-mobility modulation
-saturation field factor
-static feedback
COEN 451
Other Electrical Parameters
Gate (Cox)
Metal1 โ€“ Field
Metal1 โ€“ Poly
Metal1 โ€“ Diffusion
Poly โ€“ Field
Metal2 โ€“ Field
Metal2 โ€“ Diffusion
Metal2 โ€“ Poly
Metal2 โ€“ Metal1
Capacitor P + - Poly
(0.1%/V linearity)
Capacitance
(pF/๏ญm2)
Edge Component
(pF/๏ญm)
Source
6.9E-4
2.7E-5
5.0E-5
5.0E-5
6.0E-5
1.4E-5
1.6E-5
2.0E-5
2.5E-5
6.9E-4
0.5E-4
0.4E-4
(1)
(1)
(1)
(1)
(1)
(4)
(4)
(4)
(4)
(*)
(1)
0.2E-4
2.0E-5
0.5E-4
Resistance
(ohms/sq.)
Source
N+ Diffusion
P+ Diffusion
N+ Poly
Capacitor P+
P-well
Metal1
Metal2
3 ๏‚ด 3 metal1 โ€“ P + Diffusion Contact
3 ๏‚ด 3 metal1 โ€“ N + Diffusion Contact
3 ๏‚ด 3 metal1 โ€“ N + Poly Contact
25
80
18
300
4K
0.035
0.030
121
44
25
(1)
(1)
(5)
(1)
(1)
(4)
(4)
(5)
(5)
(5)
Maximum operating voltage: 5 volts.
Sources: (1) D. Smith of NTE, presented at CMC Workshop June 6-7, 1985.
COEN 451
Maxime SCHNEIDER (ID: 6718809)
Due date: November 19th 2014
COEN 451 - Assignment 6
1. The CMOS inverter shown in Figure 1a consists of two PMOS transistors
connected in parallel and one NMOS transistor. All transistors (PMOS and
NMOS) have the same dimensions with a layout shown in Figure 1b.(Note:
the transistors are connected so that the output capacitance is minimized)
a. Determine the inverterโ€™s switching voltage (Vx) and the supply
current at Vo=Vx
b. Calculate the output capacitance.
c. If the inverter is driving a load equivalent to10 similar inverters, what
will be the rise delay (tPLH)of the driving inverter?
d. During the implementation of the circuit, one of the PMOS transistors
was accidentally disconnected, what will be the impact on the dc
behavior of the circuit. In your analysis you need to address all critical
parameters (VOH, VOL, VIH, VIL, Vx) and noise margin of the circuit.
(Note: no calculations are required)
The transistors have the following parameters:
NMOS:
VTO=0.75V, Cox = 1.5fF/ m2, Cjsw = 0.7fF/ m, Cj=0.5fF/ m2, n=500cm2/Vsec,
=0. 0
PMOS:
VTO=-0.75V, Cox = 1.5fF/ m2, Cjsw = 0.7fF/ m, Cj=0.5fF/ m2,
=0. 0
p=250cm2/V-sec,
๏€ณ๏€ฎ๏€ฐ๏ญ
5V
Vin
Diffusion (n+ or p+)
2.5๏ญ
Vin
0.5๏ญ
Vo
๏€ต๏€ฎ๏€ฐ๏ญ
0.5๏ญ
๏€ณ๏€ฎ๏€ฐ๏ญ
Vin
Diffusion
(n+ or p+)
0.5๏ญ
Diffusion
Fig. 1
0.5๏ญ
Polysilicon
COEN 451
2. An engineer wishes to submit the layout shown in Fig. 2 for fabrication
using N-well three- layer metal process:
a. Draw the vertical cross section B-Bโ€™ showing all layers and material
involved.
b. List the sequence of steps up the formation of metal contacts required
to fabricate the PMOS transistor in the targeted technology.
c. How many layers of metal appear in the layout of Fig. 2?
d. The engineer made four layout errors. Identify these errors
Bโ€™
P+ Layer
N-well
VDD
Active
Contact
Active+
Via
Metal 2
Poly
Active
N+ Layer
Active
VSS
P+ Layer
B
Fig. 2
Metal 1
COEN 451
Question 1
a/
Inverterโ€™s switching voltage is given by:
๐‘‰๐‘ฅ =
โˆš๐›ฝ๐‘Ÿ ๐‘‰๐‘ก๐‘› + ๐‘‰๐‘ก๐‘ + ๐‘‰๐ท๐ท
1 + โˆš๐›ฝ๐‘Ÿ
From the layout,
โˆ’ ๐ฟ๐‘› = ๐ฟ๐‘ = 0.5๐œ‡๐‘š
โˆ’ Two PMOS are in parallel so ๐‘Š๐‘ = 2๐‘Š๐‘›
๐‘Š๐‘ =
๐‘Š1 +๐‘Š2
2
=
[(2.5โˆ’0.5)+(3โˆ’0.5)]+[(2.5โˆ’0.5โˆ’0.5)+(3โˆ’0.5โˆ’0.5)]
then ๐‘Š๐‘ = 8๐œ‡๐‘š and ๐‘Š๐‘› = 4๐œ‡๐‘š
-
๐›ฝ๐‘Ÿ =
๐‘Š๐‘›
๐ฟ๐‘›
๐‘Š๐‘
๐ฟ๐‘
๐œ‡๐‘›
๐œ‡๐‘
=
4
0.5
4โˆ—2
0.5
500
250
2
=
4.5+3.5
2
=4
1
=2โˆ—2=1
N.A.
๐‘‰๐‘ฅ =
โˆš1โˆ—0.75โˆ’0.75+5
2
= ๐Ÿ. ๐Ÿ“๐‘ฝ
Supply current at ๐‘‰0 = ๐‘‰๐‘ฅ
At ๐‘‰๐‘ฅ both NMOS and PMOS currents are opposite and in their saturation
region. We have:
๐‘Š
๐พ๐‘โ€ฒ ๐ฟ ๐‘›
๐›ฝ๐‘›
2
2
๐‘›
๐ผ๐‘‘๐‘ ๐‘› = (๐‘‰๐‘”๐‘ ๐‘› โˆ’ ๐‘‰๐‘ก๐‘› ) =
(๐‘‰๐‘”๐‘ ๐‘› โˆ’ ๐‘‰๐‘ก๐‘› )
2
2
i.e. we have:
๐œ‡๐‘› ๐ถ๐‘œ๐‘ฅ๐‘›
๐ผ๐‘‘๐‘ ๐‘› =
N.A.
500 โˆ—
๐ผ๐‘‘๐‘ ๐‘› =
2
๐‘Š๐‘›
๐ฟ๐‘›
(๐‘‰๐‘”๐‘ ๐‘› โˆ’ ๐‘‰๐‘ก๐‘› )
2
1.5 โˆ— 10โˆ’15 4
0.5 (2.5
10โˆ’8
โˆ’ 0.75)2 = ๐Ÿ“๐Ÿ๐Ÿ“๐๐‘จ
2
b/
Output capacitance is calculated as following:
๐ถ๐‘œ๐‘ข๐‘ก = 2 โˆ— ๐ถ๐‘‘๐‘ + ๐ถ๐‘‘๐‘›
Assuming that ๐ถ๐‘‘๐‘ = ๐ถ๐‘‘๐‘›
And knowing that ๐ถ๐‘‘ = ๐ด๐‘‘ โˆ— ๐ถ๐‘— + ๐‘ƒ๐‘‘ โˆ— ๐ถ๐‘—๐‘ ๐‘ค
We finally get:
๐ถ๐‘œ๐‘ข๐‘ก = 3 โˆ— (๐ด๐‘‘ โˆ— ๐ถ๐‘— + ๐‘ƒ๐‘‘ โˆ— ๐ถ๐‘—๐‘ ๐‘ค )
N.A.
๐ถ๐‘œ๐‘ข๐‘ก = 3 โˆ— (2.0 โˆ— 1.5 โˆ— 0.5 + (2 + 1.5) โˆ— 2 โˆ— 0.7) = 3 โˆ— 6.4 = ๐Ÿ๐Ÿ—. ๐Ÿ ๐’‡๐‘ญ
c/
COEN 451
If the inverter is driving a load equivalent to10 similar inverters, load
capacitance would be:
๐ถ๐ฟ = ๐ถ๐‘œ๐‘ข๐‘ก + 10 โˆ— ๐ถ๐‘–๐‘›
Since
- ๐ถ๐‘–๐‘› = ๐ถ๐‘”๐‘› + ๐ถ๐‘”๐‘ and as ๐ถ๐‘”๐‘ = 2 โˆ— ๐ถ๐‘”๐‘› we get ๐ถ๐‘–๐‘› = 3 โˆ— ๐ถ๐‘”๐‘›
- ๐ถ๐‘œ๐‘ข๐‘ก = 19.2๐‘“๐น from previous question
We have:
๐ถ๐ฟ = ๐ถ๐‘œ๐‘ข๐‘ก + 30 โˆ— ๐ถ๐‘”๐‘›
N.A.
๐ถ๐ฟ = 19.2 + 30 โˆ— (0.5 โˆ— 2 + 0.5 โˆ— 2) โˆ— 1.5 = 19.2 + 30 โˆ— 3 = 109.2 ๐‘“๐น
Rise delay is calculated as follows:
๐‘ก๐‘๐‘™โ„Ž =
N.A
๐‘ก๐‘ƒ๐ฟ๐ป =
๐ถ๐ฟ
2|๐‘‰๐‘ก๐‘› |
4(๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘› |
+ ln(
โˆ’ 1)]
[
๐›ฝ๐‘› (๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘› |) ๐‘‰๐ท๐ท โˆ’ |๐‘‰๐‘ก๐‘› |
๐‘‰๐ท๐ท
109.2โˆ—10โˆ’15
1.5โˆ—10โˆ’15 4
(2.5โˆ’0.75)
500โˆ—
10โˆ’8 0.5
โˆ’15
109.2โˆ—10
1.5
7
2โˆ—0.75
4โˆ—(2.5โˆ’0.75)
[2.5โˆ’0.75 + ln (
= 10500โˆ—10โˆ’7 [1.75 + ln(2.5 + 1)]
= 0.0104 โˆ— 10โˆ’8 [0.8571 + ln(3.8)]
= 0.0104 โˆ— 10โˆ’8 โˆ— 2.1921
= 0.0228 โˆ— 10โˆ’8
= ๐Ÿ. ๐Ÿ๐Ÿ– ๐’๐’”
2.5
โˆ’ 1)]
COEN 451
Question 2
a/
The vertical cross section B-Bโ€™ is the following:
As a reminder, classical inverted is as follows:
b/
Steps involved in the fabrication of a pMOS are:
123456-
Photolithography step to create N-well
Photolithography step to create thin oxide
Photolithography step to deposit Poly
Photolithography step to diffuse P+ Silicon creating active area
Photolithography step to deposit SiO2
Photolithography step to remove SiO2 where contacts are made
โ€œopen contact areaโ€
c/
There are two metal layers appearing in the layout of Fig. 2.
COEN 451
d/
Errors the engineer has made are:
1- Via should be entirely on Metal 2
2- contact for nMOS bulk is missing
3- Gate extension for P transistor is missing
4- substrate connection to VDD should be n+
COEN 451
Maxime SCHNEIDER (ID: 6718809)
Due date: November 26th 2014
COEN 451 - Assignment 7
For the following exercises use CMOSIS5 parameters given in the class.
Exercise 1
Determine the ratio of the fringing capacitance to the parallel plate
capacitance. Using the same process parameters determine the same
Excersie 2
Determine the capacitance between
e, width
Exercise 3
a) Use distributed rc method.
b) Use lumped RC method
c) Determine a relation between a &
Exercise 4
Estimate the minimum width of metal_1 wire that can supply 30 mA of
current. How many vias are required to connect this metal wire to metal_2
wire? What is the resistance presented by the via? You may assume J m =
05mA/µm2 , M_1 thickness is 0.5µm and metal_2 thickness is o.6µm. Assume
each contact of 1um * 1um can carry 0.5mA safely or 0.1mA/um of
periphery.
Exercise 5
wide. The metal_2 wire is feeding 8 Flip fl
long poly wire, 1µ wide. Each flip flop gate has 10 fFcapacitance. Use
CMOSIS5B parameters if needed.
a) Determine Cinterconnect,
b) Determine the rise and fall times if the input pulse has tr=tf= 0.05ns
COEN 451
Assume k=3.4 and area of drain =3W and perimeter of drain is 2W+6
COEN 451
Exercise 1
From the manual,
๏‚ท ๐ถ๐ต0 = 0.0411๐‘“๐น๐œ‡๐‘šโˆ’2 ± 0.0102๐‘“๐น
๏‚ท ๐ถ๐‘ƒ0 = 0.0177๐‘“๐น๐œ‡๐‘šโˆ’2 ± 0.0044๐‘“๐น
Since this is a single line, there is no line-to-line capacitance.
Wireโ€™s capacitance is the sum of Fringing capacitance and Parallel plate
capacitance:
Since
๏‚ท ๐ถ๐ต = ๐ถ๐ต0 โˆ— ๐ด
๏‚ท ๐ถ๐‘ƒ = ๐ถ๐‘ƒ0 โˆ— ๐‘ƒ
We have:
๐ถ๐‘Š = ๐ถ๐ต + ๐ถ๐‘ƒ
๐ถ๐‘Š = ๐ถ๐ต0 โˆ— ๐ด + ๐ถ๐‘ƒ0 โˆ— ๐‘ƒ
N.A.
๐ถ๐‘Š = 0.0411 โˆ— 0.6 โˆ— 1000 + 0.0177 โˆ— 2 โˆ— (1000 + 0.6) = 24.66 + 8.8 = ๐Ÿ‘๐Ÿ‘. ๐Ÿ’๐Ÿ”๐’‡๐‘ญ
Ratio is calculated as follows:
๐‘…๐‘Ž๐‘ก๐‘–๐‘œ =
N.A.
๐‘…๐‘Ž๐‘ก๐‘–๐‘œ =
8.8
24.66
๐ถ๐‘ƒ
๐ถ๐ต
= ๐Ÿ‘๐Ÿ“. ๐Ÿ•%
If width is reduced to 0.3m, new ratio is
๐‘…๐‘Ž๐‘ก๐‘–๐‘œโ€ฒ =
N.A.
0.0411โˆ—0.3โˆ—1000
12.33
๐‘…๐‘Ž๐‘ก๐‘–๐‘œโ€ฒ = 0.0177โˆ—2โˆ—(1000+0.3) = 35.5062 = ๐Ÿ‘๐Ÿ’, ๐Ÿ•%
๐ถ๐‘ƒ โ€ฒ
๐ถ๐ต โ€ฒ
Conclusion: the thiner the wire, the lower the ratio.
COEN 451
Exercise 2
From the manual,
๏‚ท ๐ถ๐ด๐‘Ÿ๐‘’๐‘Žโˆ’๐ต๐‘œ๐‘ก๐‘ก๐‘œ๐‘š = 0.0444๐‘“๐น๐œ‡๐‘šโˆ’2 ± 0.0115๐‘“๐น
๏‚ท ๐ถ๐น๐‘Ÿ๐‘–๐‘›๐‘”๐‘’โˆ’๐ต๐‘œ๐‘ก๐‘ก๐‘œ๐‘š = 0.0189๐‘“๐น๐œ‡๐‘šโˆ’2 ± 0.0049๐‘“๐น
๏‚ท ๐ถ๐ด๐‘Ÿ๐‘’๐‘Žโˆ’๐‘‡๐‘œ๐‘ = 0.0392๐‘“๐น๐œ‡๐‘šโˆ’2 ± 0.0092๐‘“๐น
๏‚ท ๐ถ๐น๐‘Ÿ๐‘–๐‘›๐‘”๐‘’โˆ’๐‘‡๐‘œ๐‘ = 0.0169๐‘“๐น๐œ‡๐‘šโˆ’2 ± 0.0042๐‘“๐น
๏‚ท ๐ถ๐ฟ๐‘–๐‘›๐‘’ = 0.0527๐‘“๐น๐œ‡๐‘šโˆ’2 ± 0.0069๐‘“๐น
Capacitance between the two metals is:
๐ถ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ = ๐ถ๐‘๐‘œ๐‘ก_๐‘‘ + ๐ถ๐‘ก๐‘œ๐‘_๐‘‘ + 2 โˆ— (๐ถ๐‘๐‘œ๐‘ก_๐‘ + ๐ถ๐‘ก๐‘œ๐‘_๐‘ + ๐ถ๐‘™๐‘–๐‘›๐‘’ )
Since:
๏‚ท ๐ถ๐‘๐‘œ๐‘ก_๐‘‘ = ๐ด โˆ— ๐ถ๐ด๐‘Ÿ๐‘’๐‘Žโˆ’๐ต๐‘œ๐‘ก๐‘ก๐‘œ๐‘š
๏‚ท ๐ถ๐‘ก๐‘œ๐‘_๐‘‘ = ๐ด โˆ— ๐ถ๐ด๐‘Ÿ๐‘’๐‘Žโˆ’๐‘‡๐‘œ๐‘
๏‚ท ๐ถ๐‘๐‘œ๐‘ก_๐‘ = ๐‘ƒ โˆ— ๐ถ๐น๐‘Ÿ๐‘–๐‘›๐‘”๐‘’โˆ’๐ต๐‘œ๐‘ก๐‘ก๐‘œ๐‘š
๏‚ท ๐ถ๐‘ก๐‘œ๐‘_๐‘ = ๐‘ƒ โˆ— ๐ถ๐น๐‘Ÿ๐‘–๐‘›๐‘”๐‘’โˆ’๐‘‡๐‘œ๐‘
๏‚ท ๐ถ๐‘™๐‘–๐‘›๐‘’ = 0
We have:
๐ถ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ = ๐ด โˆ— (๐ถ๐ด๐‘Ÿ๐‘’๐‘Žโˆ’๐ต๐‘œ๐‘ก๐‘ก๐‘œ๐‘š + ๐ถ๐ด๐‘Ÿ๐‘’๐‘Žโˆ’๐‘‡๐‘œ๐‘ ) + 2 โˆ— ๐‘ƒ โˆ— (๐ถ๐น๐‘Ÿ๐‘–๐‘›๐‘”๐‘’โˆ’๐ต๐‘œ๐‘ก๐‘ก๐‘œ๐‘š + ๐ถ๐น๐‘Ÿ๐‘–๐‘›๐‘”๐‘’โˆ’๐‘‡๐‘œ๐‘ )
N.A.
๐ถ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ = 4 โˆ— 100 โˆ— (0.0444 + 0.0392) + 2 โˆ— 208 โˆ— (0.0189 + 0.0169) = ๐Ÿ“๐Ÿ‘. ๐Ÿ”๐ŸŽ๐’‡๐‘ญ
COEN 451
Exercise 3
From CMOSIS5 parameters,
๏‚ท ๐ถ๐ด๐‘Ÿ๐‘’๐‘Ž = 0.0411 ๐‘“๐น๐œ‡๐‘šโˆ’2
๏‚ท ๐ถ๐น๐‘Ÿ๐‘–๐‘›๐‘”๐‘–๐‘›๐‘” = 0.0177 ๐‘“๐น๐œ‡๐‘šโˆ’1
๏‚ท ๐‘…๐‘š๐‘’๐‘ก๐‘Ž๐‘™_1 = 0.06ฮฉ/โ–ก
Since the wire is 1000 ๏ญm long and 2๏ญm large, one square is 2๏ญ x 2๏ญm
1000
๏‚ท ๐‘ = 2 = 500 โ–ก
๏‚ท
๏‚ท
๐‘Ÿ = 0.06ฮฉ/โ–ก
๐‘ = ๐ถ๐ด๐‘Ÿ๐‘’๐‘Ž โˆ— ๐ด๐‘ ๐‘ž๐‘ข๐‘Ž๐‘Ÿ๐‘’ =0.0411 โˆ— 22 = 0.2๐‘“๐น/โ–ก
a/
Distributed RC method Formula is
๐‘ก๐‘‘_๐‘‘๐‘–๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ข๐‘ก๐‘’๐‘‘ =
N.A.
๐‘ก๐‘‘_๐‘‘๐‘–๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ข๐‘ก๐‘’๐‘‘ =
0.06โˆ—0.2โˆ—10โˆ’15 โˆ—50โˆ—49
2
๐‘Ÿ โˆ— ๐‘ โˆ— ๐‘ โˆ— (๐‘ โˆ’ 1)
2
= 14.7 โˆ— 10โˆ’15 = ๐Ÿ. ๐Ÿ’๐Ÿ•๐’‘๐’”
b/
Lumped RC method Formula is:
๐‘ก๐‘‘_๐‘™๐‘ข๐‘š๐‘๐‘’๐‘‘ = ๐‘…๐ถ
Since
๏‚ท ๐‘… = ๐‘โˆ—๐‘Ÿ
๏‚ท ๐ถ = ๐ด โˆ— ๐ถ๐ด๐‘Ÿ๐‘’๐‘Ž + ๐‘ƒ โˆ— ๐ถ๐น๐‘Ÿ๐‘–๐‘›๐‘”๐‘–๐‘›๐‘”
We have:
๐‘ก๐‘‘_๐‘™๐‘ข๐‘š๐‘๐‘’๐‘‘ = ๐‘ โˆ— ๐‘Ÿ(๐ด โˆ— ๐ถ๐ด๐‘Ÿ๐‘’๐‘Ž + ๐‘ƒ โˆ— ๐ถ๐น๐‘Ÿ๐‘–๐‘›๐‘”๐‘–๐‘›๐‘” )
N.A.
๐‘ก๐‘‘_๐‘™๐‘ข๐‘š๐‘๐‘’๐‘‘ = 500 โˆ— 0.06 โˆ— (1000 โˆ— 2 โˆ— 0.0411 + 2008 โˆ— 0.0177 ) = ๐Ÿ‘. ๐Ÿ“๐Ÿ‘๐’‘๐’”
c/
We have:
๐‘ก๐‘‘_๐‘‘๐‘–๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ข๐‘ก๐‘’๐‘‘ = 1.47๐‘๐‘ 
๐‘ก๐‘‘_๐‘™๐‘ข๐‘š๐‘๐‘’๐‘‘ = 3.53๐‘๐‘ 
So, the ratio between these two values is:
๐‘ก๐‘‘_๐‘‘๐‘–๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ข๐‘ก๐‘’๐‘‘
1.47
= 3.53
๐‘ก
๐‘‘_๐‘™๐‘ข๐‘š๐‘๐‘’๐‘‘
Then, ๐‘ก๐‘‘_๐‘™๐‘ข๐‘š๐‘๐‘’๐‘‘ = 2.40 โˆ— ๐‘ก๐‘‘_๐‘‘๐‘–๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ข๐‘ก๐‘’๐‘‘
COEN 451
Exercise 4
We have ๐ด = 0.5 โˆ— ๐‘Š
๐ผ
However ๐ผ๐‘š๐‘Ž๐‘ฅ = ๐ฝ๐‘š โˆ— ๐ด ๏ƒณ ๐ด = ๐‘š๐‘Ž๐‘ฅ
๐ฝ
Then,
๐‘š
๐‘Š = 2โˆ—
N.A.
30
๐‘Š = 2 โˆ— 0.5 = ๐Ÿ๐Ÿ๐ŸŽ๐๐’Ž
๐ผ๐‘š๐‘Ž๐‘ฅ
๐ฝ๐‘š
30
Furthermore, since each contact can carry 0.5mA, we need at least 0.5 =60
contacts of 1๐œ‡๐‘š x1๐œ‡๐‘š.
With 60 contact with a sheet resistance of 1.5ฮฉ for contact, we have
๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ“๐œด
1.5
60
=
COEN 451
Exercise 5
a/
Interconnect Capacitances are the following:
Metal 1
L=100๏ญm
W= 4๏ญm
๐ถ๐ต๐‘œ๐‘ก๐‘ก๐‘œ๐‘š = 0.0152 ๐‘“๐น๐œ‡๐‘šโˆ’2
๐ถ๐น๐‘Ÿ๐‘–๐‘›๐‘”๐‘–๐‘›๐‘” = 0.0072 ๐‘“๐น๐œ‡๐‘šโˆ’2
๐ถ๐‘ = 100 โˆ— 4 โˆ— 0.0152 = 6.08๐‘“๐น
๐ถ๐‘“ = 2 โˆ— (100 + 4) โˆ— 0.0152 = 3.16๐‘“๐น
๏ƒจ ๐ถ๐‘š๐‘’๐‘ก๐‘Ž๐‘™_1 = 6.08 + 3.16 =9.24 ๐‘“๐น
Metal 2
L= 8 โˆ— 20 = 160๏ญm
W=2๏ญm
๐ถ๐ต๐‘œ๐‘ก๐‘ก๐‘œ๐‘š = 0.0411 ๐‘“๐น๐œ‡๐‘šโˆ’2
๐ถ๐น๐‘Ÿ๐‘–๐‘›๐‘”๐‘–๐‘›๐‘” = 0.0177 ๐‘“๐น๐œ‡๐‘šโˆ’2
๐ถ๐‘ = 160 โˆ— 2 โˆ— 0.0411 = 13.15๐‘“๐น
๐ถ๐‘“ = 2 โˆ— (160 + 2) โˆ— 0.0177 = 5.73๐‘“๐น
๏ƒจ ๐ถ๐‘š๐‘’๐‘ก๐‘Ž๐‘™_2 = 13.15 + 5.73 =18.88 ๐‘“๐น
Poly
L= 8 โˆ— 10 = 80๏ญm
W= 1๏ญm
๐ถ๐ต๐‘œ๐‘ก๐‘ก๐‘œ๐‘š = 0.104 ๐‘“๐น๐œ‡๐‘šโˆ’2
๐ถ๐น๐‘Ÿ๐‘–๐‘›๐‘”๐‘–๐‘›๐‘” = 0.03 ๐‘“๐น๐œ‡๐‘šโˆ’2
๐ถ๐‘ = 80 โˆ— 1 โˆ— 0.104 = 8.32๐‘“๐น
๐ถ๐‘“ = 2 โˆ— (80 + 1) โˆ— 0.03 = 4.86๐‘“๐น
๏ƒจ ๐ถ๐‘ƒ๐‘œ๐‘™๐‘ฆ = 8.32 + 4.86 = ๐Ÿ๐Ÿ‘. ๐Ÿ๐Ÿ– ๐’‡๐‘ญ
Gates
๐ถ๐‘”๐‘Ž๐‘ก๐‘’๐‘  = 8 โˆ— 10 = ๐Ÿ–๐ŸŽ๐’‡๐‘ญ
b/
Load Capacitance is:
๐ถ๐ฟ = ๐ถ๐‘‘๐‘› + ๐ถ๐‘‘๐‘ + ๐ถ๐‘ค
Since:
๏‚ท ๐ถ๐‘‘๐‘› = ๐ถ๐‘—๐‘› โˆ— ๐ด๐‘› + ๐ถ๐‘—๐‘ ๐‘ค๐‘› โˆ— ๐‘ƒ๐‘›
๏‚ท ๐ถ๐‘‘๐‘ = ๐ถ๐‘—๐‘ โˆ— ๐ด๐‘ + ๐ถ๐‘—๐‘ ๐‘ค๐‘ โˆ— ๐‘ƒ๐‘
๏‚ท ๐ถ๐‘ค = ๐ถ๐‘š๐‘’๐‘ก๐‘Ž๐‘™_1 + ๐ถ๐‘š๐‘’๐‘ก๐‘Ž๐‘™_2 + ๐ถ๐‘ƒ๐‘œ๐‘™๐‘ฆ + ๐ถ๐บ๐‘Ž๐‘ก๐‘’๐‘ 
COEN 451
We have:
๐ถ๐ฟ = ๐ถ๐‘—๐‘› โˆ— ๐ด๐‘› + ๐ถ๐‘—๐‘ ๐‘ค๐‘› โˆ— ๐‘ƒ๐‘› + ๐ถ๐‘—๐‘ โˆ— ๐ด๐‘ + ๐ถ๐‘—๐‘ ๐‘ค๐‘ โˆ— ๐‘ƒ๐‘ + ๐ถ๐‘š๐‘’๐‘ก๐‘Ž๐‘™_1 + ๐ถ๐‘š๐‘’๐‘ก๐‘Ž๐‘™_2 + ๐ถ๐‘ƒ๐‘œ๐‘™๐‘ฆ + ๐ถ๐บ๐‘Ž๐‘ก๐‘’๐‘ 
From the manual,
๏‚ท ๐ถ๐‘—๐‘› = 5.62 โˆ— 10โˆ’4 ๐น๐œ‡๐‘šโˆ’2
๏‚ท ๐ถ๐‘—๐‘ = 9.35 โˆ— 10โˆ’4 ๐น๐œ‡๐‘šโˆ’2
๏‚ท ๐ถ๐‘—๐‘ ๐‘ค๐‘› = 5 โˆ— 10โˆ’11 ๐น๐œ‡๐‘šโˆ’1
๏‚ท ๐ถ๐‘—๐‘ ๐‘ค๐‘ = 2.89 โˆ— 10โˆ’11 ๐น๐œ‡๐‘šโˆ’1
N.A.
๐ถ๐ฟ = 5.62 โˆ— 10โˆ’4 โˆ— 3 โˆ— 2 + 5 โˆ— 10โˆ’11 โˆ— 2 โˆ— (3 + 2) + 9.35 โˆ— 10โˆ’4 โˆ— 3 โˆ— 6 + 2.89 โˆ—
10โˆ’11 โˆ— 2 โˆ— (3 + 6) + 9.24 + 18.88 + 13.18 + 80
= 3.37 + 6 + 16.83 + 5.2 + 9.24 + 18.88 + 13.18 + 80 = ๐Ÿ๐Ÿ“๐Ÿ. ๐Ÿ•๐’‡๐‘ญ
Rise time Formula is:
๐‘ก๐‘Ÿ =
๐พ๐ถ๐ฟ
๐›ฝ๐‘ ๐‘‰๐ท๐ท
๐‘Š๐‘
Since ๐›ฝ๐‘ = ๐‘˜๐‘ƒ โ€ฒ ๐ฟ
๐‘
We have:
๐‘ก๐‘Ÿ =
๐พ๐ถ๐ฟ
๐‘Š๐‘
๐‘˜๐‘ƒ โ€ฒ
๐‘‰
๐ฟ๐‘ ๐ท๐ท
From the manual,
๏‚ท ๐‘˜๐‘ƒโ€ฒ = 48.7๐œ‡๐ด๐‘‰ โˆ’2
๏‚ท ๐พ = 3.4
N.A.
๐‘ก๐‘Ÿ =
3.4โˆ—152.7โˆ—10โˆ’15
6
48.7โˆ—10โˆ’6 โˆ— โˆ—3.3
0.5
519.18
= 1928.52 10โˆ’9 = ๐ŸŽ. ๐Ÿ๐Ÿ”๐Ÿ—๐’๐’”
Fall time Formula is:
๐‘ก๐‘“ =
๐‘Š
๐พ๐ถ๐ฟ
๐›ฝ๐‘› ๐‘‰๐ท๐ท
Since ๐›ฝ๐‘› = ๐‘˜๐‘› โ€ฒ ๐ฟ ๐‘›
We have:
๐‘›
๐‘ก๐‘“ =
From the manual,
๏‚ท ๐‘˜๐‘›โ€ฒ = 196๐œ‡๐ด๐‘‰ โˆ’2
๏‚ท ๐พ = 3.4
๐พ๐ถ๐ฟ
๐‘Š
๐‘˜๐‘› โ€ฒ ๐‘› ๐‘‰๐ท๐ท
๐ฟ๐‘›
COEN 451
N.A.
๐‘ก๐‘“ =
3.4โˆ—152.7โˆ—10โˆ’15
519.18
2
196โˆ—10โˆ’6 โˆ— โˆ—3.3
0.5
= 2587.2 โˆ— 10โˆ’9 = ๐ŸŽ. ๐Ÿ๐ŸŽ๐Ÿ๐’๐’”
For rise time and fall time:
๐‘ก๐‘–/๐‘_๐‘“๐‘Ž๐‘™๐‘™
( 1 โˆ’ 2๐‘)
6
๐‘ก๐‘–/๐‘_๐‘Ÿ๐‘–๐‘ ๐‘’
= ๐‘ก๐‘‘๐‘Ÿ_๐‘ ๐‘ก๐‘’๐‘ +
( 1 โˆ’ 2๐‘›)
6
๐‘ก๐‘‘๐‘Ÿ = ๐‘ก๐‘‘๐‘Ÿ_๐‘ ๐‘ก๐‘’๐‘ +
๐‘ก๐‘‘๐‘“
Since:
๐‘‰๐‘ก๐‘
๏‚ท ๐‘=๐‘‰
๐ท๐ท
๐‘‰
๏‚ท
๐‘› = ๐‘‰ ๐‘ก๐‘›
๏‚ท
๐‘ก๐‘‘๐‘Ÿ =
๏‚ท
๐‘ก๐‘‘๐‘“ =
๏‚ท
๐‘ก๐‘‘ =
๐ท๐ท
๐‘ก๐‘Ÿ
2
๐‘ก๐‘“
2
๐‘ก๐‘‘๐‘Ÿ +๐‘ก๐‘‘๐‘“
2
=
๐‘ก๐‘Ÿ ๐‘ก๐‘“
+
2 2
2
We have:
๐‘ก๐‘‘๐‘Ÿ
๐‘ก๐‘‘๐‘“
๐‘ก๐‘Ÿ ๐‘ก๐‘“
+
๐‘ก๐‘“
๐‘‰๐‘ก๐‘
= 2 2 + (1โˆ’2
)
2
6
๐‘‰๐ท๐ท
๐‘ก๐‘Ÿ ๐‘ก๐‘“
+
๐‘ก๐‘Ÿ
๐‘‰๐‘ก๐‘›
= 2 2 + (1โˆ’2
)
2
6
๐‘‰๐ท๐ท
N.A.
๐‘ก๐‘‘๐‘Ÿ =
๐‘ก๐‘‘๐‘“ =
0.269 0.201
+
2
2
2
0.269 0.201
+
2
2
2
+
+
0.201
6
0.269
6
(1 โˆ’ 2 โˆ—
(1 โˆ’ 2 โˆ—
0.656
3.3
) = 0.1176 + 0.0335 โˆ— 0.6024 = ๐ŸŽ. ๐Ÿ๐Ÿ‘๐Ÿ•๐Ÿ–๐’๐’”
0.921
3.3
) = 0.1176 + 0.0448 โˆ— 0.4418 = ๐ŸŽ. ๐Ÿ๐Ÿ‘๐Ÿ•๐Ÿ’๐’๐’”
Related documents