Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
COEN 451 Maxime SCHNEIDER (ID: 6718809) Due date: September 24th 2014 COEN 451 - Assignment 1 It is required to design a circuit which controls a bar display consisting of three LEDs as shown in Fig.1a. The operation of these LEDs is based on the level of the input signal: LED1 is ON when the input voltage reaches 0.5V LED1 and LED2 are both ON when the input signal reaches1.0 V. All LEDs are ON when the input signal reaches 1.5V. The circuit, which controls the display that consists of three transistors, each of a distinct threshold voltage as shown in Fig.1 b M1 is an NMOS transistor with a VTO=0.5V. M2 is the same type of transistor with a threshold voltage adjusted by an external voltage Ve. M3 is the same type transistor of M1 with a threshold voltage adjusted by an ion implantation process. a. Specify the threshold voltage of each of the transistors to achieve the required operation. b. Determine the value of the external voltage Ve. c. Determine the type and dose of the dopant so that the threshold voltage of M3 is adjusted from 0.5V to the required value. The transistors have the following parameters: tox =200Ao, n3 LED 2 n1 LED 1 Fig. 1a VD D LED 3 LED 2 n3 M3 VDD LED 3 n2 LED 1 n2 n1 M2 M1 G D B S Ve Si n = 0.5 V1/2, s = -0.6V COEN 451 a/ According to the wording, we have : (๐ )๐1 = ๐๐ก0 = ๐. ๐ ๐ฝ ๐ก (๐๐ก )๐2 = ๐. ๐ ๐ฝ (๐๐ก )๐3 = ๐. ๐ ๐ฝ b/ For transistor M2, we have: ๐๐ = ๐๐ก 0 + ๐พ (โ|๐๐๐ต + ๐๐| โ โ|๐๐|) ๐๐ โ ๐๐ก0 = โ|๐๐๐ต + ๐๐| โ โ|๐๐| ๐พ ๐๐ โ ๐๐ก0 + โ|โ๐๐| = โ|๐๐๐ต + ๐๐| ๐พ 2 ๐๐ + ๐๐ก0 |๐๐๐ต | = ( + โ๐๐ ) โ |๐๐| ๐พ N.A. VSB = ± ( 1โ0.5 0.5 2 + โ0.6) โ (โ0.6) = ±2.55 V Since PN junctions have to be reversed biased, ๐๐๐ต has to be positive to allow drain and source to work correctly. Therefore, ๐๐๐ต = 2.55V. Finally, we get ๐ฝ๐ = โ๐. ๐๐๐ฝ COEN 451 c/ For transistor M3 we have: ๐ ๐ท๐ผ ๐๐ = ๐๐0 + ๐ถ๐๐ฅ Dopant is of p-type. Since ๐ถ๐๐ฅ = ๐๐๐ฅ ๐ก๐๐ฅ , other formula: ๐ถ๐๐ฅ = 0.345 ๐ก๐๐ฅ (๐ด๐๐๐ ๐ก๐๐๐) ๐ท1 = ๐๐ โ ๐๐ก0 ๐ถ๐๐ฅ ๐ ๐ท1 = 0.345(๐๐ โ ๐๐ก0 ) ๐๐ก๐๐ฅ N.A. ๐ท๐ผ = (1.5 โ 0.5) โ 0.345 0.345 19 = 10 = ๐. ๐๐๐ ๐๐๐๐ ๐๐๐๐/๐๐๐ 1.6 โ 10โ19 โ 200 320 COEN 451 Maxime SCHNEIDER (ID: 6718809) Due date: October 1st 2014 COEN 451 - Assignment 2 Question 1 An nMOS transistor has a physical layout shown in Figure 1a. The transistor has the following device parameters: 2 Cox ฮผn= 500cm2/V-sec ฮฆs = -0.6V ฮณ = 0.3V1/2 2 ฮป = 0.015V-1 VTO = 1.0V Note: 1division=1um Figure 1a a. Determine the following parasitic resistances and capacitances: 1. The transistor gate capacitance 2. The source (drain) capacitance Note: Neglect the effect of the silicon outside the transistor area and metal line effect. COEN 451 b. The above transistor is connected in a circuit with node voltages shown in Figure 1b. Determine the channel resistance. Figure 1b Question 2 Determine the regime of operation for the transistors shown in Fig.2 Assume VT0,N = - VT0,P = 0.8V 1/2 - -0.6V i. ii. 4V 3V 4V 0V 1.5V 2V 5V 2V Fig.2 iii. iv. 2V 1V 1V 4V 4V 2.5V 0.5V 5V COEN 451 Question 1 a/ Transistor gate capacitance is given by: ๐ถ๐๐๐ก๐ = ๐ด๐๐๐ก๐ ๐ถ๐๐ฅ Area of the gate is ๐ด๐๐๐ก๐ = ๐ โ ๐ฟ. So, ๐ถ๐๐๐ก๐ = ๐ ๐ฟ ๐ถ๐๐ฅ N. A. ๐ถ๐ = 5 โ 1 โ 1.5 ๏จ ๐ช๐ = ๐. ๐ ๐๐ญ Gate to drain capacitance is: ๐ถ๐๐ = ๐ถ๐ฝ๐ โ ๐ด๐๐๐๐๐ + ๐ถ๐ฝ๐๐ โ ๐๐๐๐๐๐ Area of the drain is ๐ด๐๐๐๐๐ = ๐ฟ๐ท ๐๐ท Perimeter of drain is ๐๐๐๐๐๐ = 2๐ฟ๐ท + ๐๐ท Thus, ๐ถ๐๐ = ๐ถ๐ฝ๐ โ ๐ฟ๐ท ๐๐ท + ๐ถ๐ฝ๐๐ (2๐ฟ๐ท + ๐๐ท ) N. A. ๐ถ๐ท = 0.5 โ 5 โ 5 + 0.7 โ (2 โ 5 + 5) ๏จ ๐ช๐ซ = ๐๐ ๐๐ญ b/ SOURCE BULK GATE DRAIN COEN 451 This is a N-MOS transistor. To determine the channel resistance, we first have to determine the operation region. ๐๐ก = ๐๐ก0 + ๐พ (โ|๐๐๐ต โ ๐๐ | โ โ|โ๐๐ |) N. A. ๐๐ก = 1 + 0.3 (โ2 โ (โ0.6) โ โ|โ0.6|) = ๐. ๐๐ ๐ฝ ๐๐๐ = ๐๐บ๐ด๐๐ธ โ ๐๐๐๐๐ ๐ถ๐ธ N. A. ๐๐๐ = 4 โ 2 = 2๐ ๐๐๐ > ๐๐ก ๏จ transistor is ON. ๐๐๐ = ๐๐ท๐ ๐ด๐ผ๐ โ ๐๐๐๐๐ ๐ถ๐ธ N. A. ๐๐๐ = 5 โ 2 = ๐๐ฝ ๐๐๐ > ๐๐๐ โ ๐๐ก ๏จ Transistor is working in Saturation region. In saturation region, Resistance is calculated as following: 2 ๐ = 2 ๐ ๐ฝ (๐๐๐ โ๐๐ก ) ๐ with ๐ฝ๐ = ๐๐ ๐ถ๐๐ฅ๐ ( ) ๐ฟ ๐ R= 2 2 ๐ ๐ ๐๐ ๐ถ๐๐ฅ๐ ( ) (๐๐๐ โ ๐๐ก ) ๐ฟ ๐ N.A. R= = 2 5 0.015 โ 500 โ 1.5 โ 10โ2 โ 10โ2 โ โ (2 โ 1.25)2 1 2 11.25โ10โ4 โ0.5625 2 = 56.25โ10โ4 = ๐๐๐ ๐ฒ๐ As ๐ถ๐๐ฅ๐ is per ๐๐2 and ๐๐ is expressed in ๐๐2 COEN 451 Question 2 Transistor (i) ๐๐๐ต = ๐๐๐๐๐ ๐ถ๐ธ โ ๐๐ต๐๐ฟ๐พ ๐๐๐ต = 2 โ 0 = ๐๐ฝ ๐๐ก = ๐๐ก0 + ๐พ (โ|๐๐๐ต โ ๐๐ | โ โ|โ๐๐ |) ๐๐ก = 0.8 + 0.5 (โ2 โ (โ0.6) โ โ|โ0.6|) = ๐. ๐๐๐ ๐ฝ ๐๐บ๐ = ๐๐บ๐ด๐๐ธ โ ๐๐๐๐๐ ๐ถ๐ธ ๐๐บ๐ = 3 โ 2 = ๐๐ฝ ๐๐๐ < ๐๐ก so Transistor is OFF, in the cut-off region. Transistor (ii) ๐๐๐ต = ๐๐๐๐๐ ๐ถ๐ธ โ ๐๐ต๐๐ฟ๐พ ๐๐๐ต = 4 โ 5 = โ๐ ๐ฝ ๐๐ก = ๐๐ก0 + ๐พ (โ|๐๐๐ต โ ๐๐ | โ โ|โ๐๐ |) ๐๐ก = โ0.8 + 0.5 (โ0.6 + 1 โ โ|โ0.6|) = โ๐. ๐๐๐ ๐ฝ ๐๐บ๐ = ๐๐บ๐ด๐๐ธ โ ๐๐๐๐๐ ๐ถ๐ธ ๐๐บ๐ = 1.5 โ 4 = โ๐. ๐๐ฝ ๐๐๐ < ๐๐ก ๏จ Transistor is ON. ๐๐ท๐ = ๐๐ท๐ ๐ด๐ผ๐ โ ๐๐๐๐๐ ๐ถ๐ธ ๐๐ท๐ = 2 โ 4 = โ๐ ๐ฝ ๐๐บ๐ โ ๐๐ก = โ2.5 + 1.045 = โ๐. ๐๐๐ ๐ฝ ๐๐ท๐ < ๐๐บ๐ โ ๐๐ก ๏จ Transistor is in saturation mode. COEN 451 Transistor (iii) ๐๐๐ต = ๐๐๐๐๐ ๐ถ๐ธ โ ๐๐ต๐๐ฟ๐พ ๐๐๐ต = 4 โ 4 = ๐ ๐ฝ ๐๐ก = ๐๐ก0 + ๐พ (โ|๐๐๐ต โ ๐๐ | โ โ|โ๐๐ |) ๐๐ก = ๐๐ก0 = โ๐. ๐ ๐ฝ ๐๐บ๐ = ๐๐บ๐ด๐๐ธ โ ๐๐๐๐๐ ๐ถ๐ธ ๐๐บ๐ = 1 โ 4 = โ๐๐ฝ ๐๐๐ < ๐๐ก ๏จ Transistor is ON. ๐๐ท๐ = ๐๐ท๐ ๐ด๐ผ๐ โ ๐๐๐๐๐ ๐ถ๐ธ ๐๐ท๐ = 2 โ 4 = โ๐ ๐ฝ ๐๐บ๐ โ ๐๐ก = โ3 + 0.8 = โ๐. ๐ ๐ฝ ๐๐ท๐ > ๐๐บ๐ โ ๐๐ก ๏จ Transistor is in linear region. Transistor (iv) ๐๐๐ต = ๐๐๐๐๐ ๐ถ๐ธ โ ๐๐ต๐๐ฟ๐พ ๐๐๐ต = 1 โ 0.5 = ๐. ๐ ๐ฝ ๐๐ก = ๐๐ก0 + ๐พ (โ|๐๐๐ต โ ๐๐ | โ โ|โ๐๐ |) ๐๐ก = 0.8 + 0.5 (โ0.5 โ (โ0.6) โ โ|โ0.6|) = ๐. ๐๐๐ ๐ฝ ๐๐บ๐ = ๐๐บ๐ด๐๐ธ โ ๐๐๐๐๐ ๐ถ๐ธ ๐๐บ๐ = 2.5 โ 1 = ๐. ๐๐ฝ ๐๐๐ > ๐๐ก ๏จ Transistor is ON. ๐๐ท๐ = ๐๐ท๐ ๐ด๐ผ๐ โ ๐๐๐๐๐ ๐ถ๐ธ ๐๐ท๐ = 5 โ 1 = ๐๐ฝ ๐๐บ๐ โ ๐๐ก = 1.5 โ 0.937 = ๐. ๐๐ ๐ฝ ๐๐ท๐ > ๐๐บ๐ โ ๐๐ก ๏จ Transistor is in saturation mode. COEN 451 Conclusion Transistor 1 (NMOS) 2 (PMOS) 3 (PMOS) 4 (NMOS) ๐ฝ๐ 1.218 -1.045 -0.8 0.937 ๐ฝ๐๐ 1 -2.5 -3 1.5 ๐ฝ๐ ๐ ๐ฝ๐ฎ๐บ โ ๐ฝ๐ -2 -2 4 -1.455 -2.2 0.63 state OFF ON ON ON region Cut-off Saturation Linear Saturation COEN 451 APPENDIX A Technology parameters of CMOSIS 5B 1. Specification of CMOSIS5, 0.5ฮผm technology The model parameters of PMOS and NMOS transistor which should be used in your calculation are listed below. Model cmos NMOS level3: Vto=0.6566V, kn=196.47ฮผA/V2, ฮผn=546.2cm2/V·s, Cox=3.6e-03F/m2, Cj=5.62e-04F/m2, Cjsw=5.0e-12F/m2, Cjgate=5.0e-12F/m2, Cgbo=4.0239e-10F/m2, Cgdo=3.0515e-10F/m2 Cgso=3.0515e-10F/m2 Model cmosp PMOS level3: Vto=-0.9213V, kp=48.74ฮผA/V2, ฮผp=135.52cm2/V·s, Cox=3.6e-03F/m2, Cj=9.35e-04F/m2, Cjsw=289.00e-12F/m2, Cjgate=289.00e-12F/m2 Cgbo=3.7579e-10F/m2, Cgdo=2.3922e-10F/m2 Cgso=2.3922e-10F/m2 VDD = 3.3 voltage COEN 451 APPENDIX B Cgaten=(W x L)n x Cox Cgatep=(W x L)p x Cox Cgd= Cgbo * 2L + Cgdo * W + Cgso * W Cdbn, Cdbp are junction capacitance of present level Cdb= Cj * Area + Cjsw * (W +2L) + Cjgate * W COEN 451 Maxime SCHNEIDER (ID: 6718809) Due date: October 15th 2014 COEN 451 - Assignment 3 A CMOS inverter shown above was designed using CMOSIS 5B technology. Process parameters are given in the appendix. The following design parameters were used in the design: Ln = Lp = Lmin Wn = 4 Lmin Wp= 2Wn VDD = 3.8 V Determine, VIL,max, Vth, VOH,min and the Noise Margins high and Low of this inverter. You may assume, LD, ฮW and ๏ฌ are all zero. Also you may assume that VOL,min= 0 and VOH,max=VDD. COEN 451 Determination of ๐๐ผ๐ฟ ๐๐ด๐ P-MOS is in linear region and N-MOS is saturated. Thus, ๐ผ๐ท๐ = โ๐ผ๐ท๐ leads to ๐๐ โฒ (๐๐๐ ๐ 2 2 โ ๐๐ก๐ ) = ๐๐ โฒ [(๐๐๐ ๐ โ ๐๐ก๐ )๐๐๐ ๐ โ ๐๐๐ ๐ 2 2 ] (1) For P-MOS: ๐๐๐ ๐ = ๐๐๐ โ ๐๐ท๐ท and ๐๐๐ ๐ = ๐0 โ ๐๐ท๐ท For N-MOS: ๐๐๐ ๐ = ๐๐๐ and ๐๐๐ ๐ = ๐0 Substituting in (1), ๐๐ ๐๐ โฒ (๐๐๐ ๐ฟ๐ 2 ๐๐ ๐๐ โฒ (๐๐๐ ๐ฟ๐ 2 โ ๐๐ก๐ )2 = โ ๐๐ก๐ ) = ๐๐ ๐ฟ๐ ๐๐ ๐ฟ๐ ๐๐ โฒ [(๐๐๐ โ ๐๐ท๐ท โ ๐๐ก๐ )(๐0 โ ๐๐ท๐ท ) โ ๐๐ โฒ [(๐๐๐ โ ๐๐ท๐ท โ ๐๐ก๐ ) ๐๐0 (๐0 ๐๐๐๐ (๐0 โ๐๐ท๐ท )2 ] 2 (2) โ ๐๐ท๐ท ) โ (๐0 โ ๐๐ท๐ท ) ๐๐0 ] ๐๐๐๐ (3) ๐๐ In this region II of inverter VTC: ๐๐๐ = ๐๐ผ๐ฟ ๐๐ด๐ and ๐๐ 0 = โ1 And from design parameters: ๐ฟ๐ = ๐ฟ๐ = ๐ฟ ๐๐ Substituting in (3), ๐ ๐๐ ๐ โฒ(๐๐ผ๐ฟ ๐๐ด๐ โ ๐๐ก๐ ) = ๐ฟ๐ ๐๐ โฒ(2๐0 โ ๐๐ผ๐ฟ ๐๐ด๐ + ๐๐ก๐ โ ๐๐ท๐ท ) (4) ๐ฟ ๐ From design parameters: ๐๐ = 2 โ ๐๐ and ๐๐ท๐ท = 3.8 ๐ And from CMOS 5B Datasheet, N-MOS: ๐๐ โฒ = 1.964 โ 10โ4 and ๐๐ก๐ = 0.656 6 V P-MOS: ๐๐ โฒ = 4.874 โ 10โ5 and ๐๐ก๐ = โ0.921 3 V Substituting in (2), 1.964 โ 10โ4 (๐๐ผ๐ฟ ๐๐ด๐ โ 0.6566) = 4 โ 4.874 โ 10โ5 [(๐๐ผ๐ฟ ๐๐ด๐ โ 3.8 + 0.921 3)(๐0 โ 3.8) โ (๐0 โ 3.8)2 ] 2 โ0.5 โ ๐02 + (๐๐ผ๐ฟ ๐๐ด๐ โ 6.67)๐0 โ 4.8 ๐๐ผ๐ฟ ๐๐ด๐ + 4.33 = 0 (5) Substituting in (4), 1.964 โ 10โ4 (๐๐ผ๐ฟ ๐๐ด๐ โ 0.656 6) = 2 โ 4.874 โ 10โ5 (2๐0 โ ๐๐ผ๐ฟ ๐๐ด๐ โ 0.921 3 โ 3.8) ๐0 = 1.5 โ ๐๐ผ๐ฟ ๐๐ด๐ + 1.7 (6) Back-substituting (6) in (5), ๐ฝ๐ฐ๐ณ ๐ด๐จ๐ฟ = ๐. ๐๐ ๐ฝ COEN 451 Determination of ๐๐๐ป P-MOS and N-MOS are both saturated. Thus, ๐ผ๐ท๐ = โ๐ผ๐ท๐ leads to ๐๐ (๐๐๐ ๐ 2 2 โ ๐๐ก๐ ) = ๐๐ 2 2 (๐๐๐ ๐ โ ๐๐ก๐ ) (7) For P-MOS: ๐๐๐ ๐ = ๐๐๐ โ ๐๐ท๐ท and ๐๐๐ ๐ = ๐0 โ ๐๐ท๐ท For N-MOS: ๐๐๐ ๐ = ๐๐๐ and ๐๐๐ ๐ = ๐0 Substituting in (7), and solving for ๐๐๐ , 2 ๐๐ (๐๐๐ โ ๐๐ก๐ )2 = ๐๐ (๐๐๐ โ ๐๐ท๐ท โ ๐๐ก๐ ) (8) 2 ๐๐ [(๐๐๐ )2 โ 2 โ ๐๐๐ ๐๐ก๐ + (๐๐ก๐ )2 ] = ๐๐ (๐๐๐ โ ๐๐ท๐ท โ ๐๐ก๐ ) Since (๐ + ๐ + ๐)2 = ๐2 + ๐ 2 + ๐ 2 + 2(๐๐ + ๐๐ + ๐๐) ๐ ๐ ๐๐๐ (1 + โ๐๐ ) = ๐๐ก๐ + โ๐๐ (๐๐ท๐ท โ ๐๐ก๐ ) ๐ ๐ ๐๐ ๐ โฒ ๐ฟ๐ ๐ ๐๐ ๐ โฒ ๐ฟ๐ ๐ ๐๐๐ (1 + โ ๐๐ ๐ โฒ ๐ฟ๐ ๐ ๐๐ ๐ โฒ ๐ฟ๐ ๐ ) = ๐๐ก๐ + โ (๐๐ท๐ท โ ๐๐ก๐ ) From design parameters: ๐๐ = 2 โ ๐๐ 2โ๐๐ โ๐๐ โฒ ๐๐๐ (1 + โ ๐๐ โ๐๐ โฒ 2โ๐๐ โฒ ๐๐๐ (1 + โ ๐๐ โฒ 2โ๐๐ โ๐๐ โฒ ) = ๐๐ก๐ + โ ๐๐ โ๐๐ โฒ 2โ๐๐ โฒ ) = ๐๐ก๐ + โ ๐๐ โฒ (๐๐ท๐ท โ ๐๐ก๐ ) (๐๐ท๐ท โ ๐๐ก๐ ) In our case (region III of VTC), ๐๐๐ป is ๐๐๐ as it is where ๐๐๐ข๐ก = ๐๐๐ Thus, ๐๐๐ป = N.A. 2โ๐๐ โฒ (๐๐ท๐ท โ๐๐ก๐ ) ๐๐ โฒ ๐๐ก๐ +โ 2โ๐๐ โฒ ๐๐ โฒ (9) 1+โ โ5 ๐๐๐ป = 2โ4.874โ10 0.656 6+โ โ4 (3.8โ0.921) 1.964โ10 2โ4.874โ10โ5 1.964โ10โ4 1+โ Finally, ๐ฝ๐ป๐ฏ = ๐. ๐๐ ๐ฝ COEN 451 Determination of ๐๐ผ๐ป ๐๐ผ๐ P-MOS is saturated and N-MOS is in linear region. Thus, ๐ผ๐ท๐ = โ๐ผ๐ท๐ leads to ๐๐ [2(๐๐๐ ๐ 2 โ ๐๐ก๐ )๐๐๐ ๐ โ ๐๐๐ ๐ 2 ] = ๐๐ 2 2 (๐๐๐ ๐ โ ๐๐ก๐ ) (10) For P-MOS: ๐๐๐ ๐ = ๐๐๐ โ ๐๐ท๐ท and ๐๐๐ ๐ = ๐0 โ ๐๐ท๐ท For N-MOS: ๐๐๐ ๐ = ๐๐๐ and ๐๐๐ ๐ = ๐0 Substituting in (10), ๐๐ 2 ๐๐ [2(๐๐๐ โ ๐๐ก๐ )๐0 โ ๐0 2 ] = 2 (๐๐๐ โ ๐๐ท๐ท โ ๐๐ก๐ ) (11) 2 ๐๐ [(๐๐๐ 2 ๐๐ ๐๐ โ ๐๐ก๐ ) ๐๐ 0 + ๐0 โ ๐0 ๐๐ 0 ] = ๐๐ (๐๐๐ โ ๐๐ท๐ท โ ๐๐ก๐ ) (12) ๐๐ ๐๐ In this region IV of inverter VTC: ๐๐๐ = ๐๐ผ๐ป ๐๐ผ๐ and ๐๐0 ๐๐๐๐ = โ1 Substituting in (12), ๐๐ (โ๐๐ผ๐ป ๐๐ผ๐ + ๐๐ก๐ + 2๐0 ) = ๐๐ (๐๐๐ โ ๐๐ท๐ท โ ๐๐ก๐ ) (13) From design parameters: ๐๐ = 2 โ ๐๐ and ๐๐ท๐ท = 3.8 ๐ And from CMOS 5B Datasheet, N-MOS: ๐๐ โฒ = 1.964 โ 10โ4 and ๐๐ก๐ = 0.656 6 V P-MOS: ๐๐ โฒ = 4.874 โ 10โ5 and ๐๐ก๐ = โ0.921 3 V Substituting in (13), 2(โ๐๐ผ๐ป ๐๐ผ๐ + 0.656 + 2๐0 ) = ๐๐ผ๐ป ๐๐ผ๐ โ 2.9 โ2๐๐ผ๐ป ๐๐ผ๐ + 1.312 + 4๐0 = ๐๐ผ๐ป ๐๐ผ๐ โ 2.9 3โ๐๐ผ๐ป ๐๐ผ๐ โ4.212 ๐0 = (14) 4 Substituting in (11), 4(๐๐ผ๐ป ๐๐ผ๐ โ 0.656 6)๐0 โ 2๐0 2 = (๐๐ผ๐ป ๐๐ผ๐ โ 3.8 + 0.921 3)2 4 โ ๐๐ผ๐ป ๐๐ผ๐ ๐0 โ 2.626 4 โ ๐0 โ 2 โ ๐0 2 = (๐๐ผ๐ป ๐๐ผ๐ โ 2.878 7)2 4 โ ๐๐ผ๐ป ๐๐ผ๐ ๐0 โ 2.626 4 โ ๐0 โ 2 โ ๐0 2 = ๐๐ผ๐ป ๐๐ผ๐ 2 โ 5.757 4 + 8.286 9 4 โ ๐๐ผ๐ป ๐๐ผ๐ ๐0 โ 2.626 4 โ ๐0 โ 2 โ ๐0 2 = ๐๐ผ๐ป ๐๐ผ๐ 2 โ 2.529 5 โ2 โ ๐0 2 + (4 โ ๐๐ผ๐ป ๐๐ผ๐ โ 2.626 4)๐0 โ ๐๐ผ๐ป ๐๐ผ๐ 2 + 2.529 5 = 0 (15) Back-substituting (14) in (15), ๐ฝ๐ฐ๐ฏ ๐ด๐จ๐ฟ = ๐. ๐๐ ๐ฝ COEN 451 Noise Margins High and Low Noise Margin Low ๐๐๐ฟ = ๐๐ผ๐ฟ ๐๐ด๐ โ ๐๐๐ฟ ๐๐ด๐ =1.84 V Noise Margin High ๐๐๐ป = ๐๐ผ๐ป ๐๐ด๐ โ ๐๐๐ป ๐๐ผ๐ = ๐๐ท๐ท โ ๐๐๐ป ๐๐ผ๐ = 3.8 โ 2.16 = ๐. ๐๐ ๐ฝ COEN 451 APPENDIX : CMOSIS 5 SPICE Parameters *CMOSIS5 Design Kit V2.1 for Cadence Analog Artist *MOS3 models for use in spectre #ifdef n5bo .MODEL CMOSN mos3 type=n +PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=1 +VTO=0.6566 DELTA=6.9100E-01 LD=4.7290E-08 KP=1.9647E โ04 +UO=546.2 THETA=2.6840E-01 RSH=3.5120E+01 GAMMA=0.5976 +NSUB=1.3920E+17 NFS=5.9090E+11 VMAX=2.0080E+05 ETA=3.7180E-02 +KAPPA=2.8980E-02 CGDO=3.0515E-10 CGSO=3.0515E-10 +CGBO=4.0239E-10 CJ=5.62E-04 MJ=0.559 CJSW=5.00E-11 +MJSW=0.521 PB=0.99 +XW=4.108E-07 +CAPMOD=bsim XQC=0.5 XPART=0.5 *Weff = Wdrawn - Delta_W *The suggested Delta_W is 4.1080E-07 .MODEL CMOSP mos3 type=p +PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=-1 +VTO=-0.9213 DELTA=2.8750E-01 LD=3.5070E-08 KP=4.8740E-5 +UO=135.5 THETA=1.8070E-01 RSH=1.1000E-01 GAMMA=0.4673 +NSUB=8.5120E+16 NFS=6.5000E+11 VMAX=2.5420E+05 ETA=2.4500E-02 +KAPPA=7.9580E+00 CGDO=2.3933E-10 CGSO=2.3922E-10 +CGBO=3.7579E-10 CJ=9.35E-04 MJ=0.468 CJSW=2.89E-10 MJSW=0.505 PB=0.99 +XW=3.622E-07 +CAPMOD=bsim XQC=0.5 XPART=0.5 *Weff = Wdrawn โDelta_W *The suggested Delta_W is 3.220E-07 #endif COEN 451 Maxime SCHNEIDER (ID: 6718809) Due date: October 22nd 2014 COEN 451 - Assignment 4 A CMOS inverter (INV1), with a physical layout shown in Fig.1, drives a similar inverter, and operates at a supply voltage of 3.3V. a. Determine the delay of the inverter INV1. b. What will be the maximum speed of operation of INV1 if it drives ten similar inverters? c. One of the methods to speed up the operation is to increase the size of the driver. Determine the W/Ls of the PMOS and the NMOS transistors of INV1 so that the speed in part (b) is doubled, assuming that the supply voltage has been reduced by 10%. (Hint: Use twice the diffusion capacitance of Fig.1). d. Determine the dynamic power dissipation of the inverter (INV1) for part c. Use CMC technology parameters CMOSIS5B Fig. 1 Inverter for design COEN 451 a/ Delay of inverter ๐ผ๐๐1 We have: ๐ก๐ = ๐ก๐โ๐ โ ๐ก๐๐โ 2 ๐ก๐โ๐ = ๐ก๐๐โ = ๐ด๐ ๐ถ๐ฟ ๐ฝ๐ ๐๐ท๐ท ๐ด๐ ๐ถ๐ฟ ๐ฝ๐ ๐๐ท๐ท As a first step, we have to determine the Total Load Capacitance (๐ถ๐ฟ ), that is computed summing the Gate Capacitances, the Diffusion Capacitances and the Wire Capacitance: ๐ถ๐ฟ = ๐ถ๐๐ + ๐ถ๐๐ + ๐ถ๐๐ + ๐ถ๐๐ + ๐ถ๐ค Assumption: We ignore ๐ถ๐ค , the capacitance of the wire. Diffusion Capacitances ๐ถ๐ = ๐ถ๐ฝ โ ๐ด๐๐๐๐๐ + ๐ถ๐ฝ๐๐ โ ๐๐๐๐๐๐ Area of the drain is ๐ด๐๐๐๐๐ = ๐ฟ๐ท ๐๐ท Perimeter of drain is ๐๐๐๐๐๐ = 2๐ฟ๐ท + 2๐๐ท = 2 โ (๐ฟ๐ท + ๐๐ท ) Thus, ๐ถ๐ = ๐ถ๐ฝ โ ๐ฟ๐ท โ ๐๐ท + 2 โ ๐ถ๐ฝ๐๐ โ (๐ฟ๐ท + ๐๐ท ) N.A. For P-MOS, ๐๐๐ = 2.0 ๐๐ and ๐ฟ๐๐ = 3.0 ๐๐ ๐ถ๐๐ = 9.35 โ 10โ4 ๐น๐โ2 โ 3.0 โ 10โ6 โ 2.0 โ 10โ6 ๐2 + 2 โ 2.89 โ 10โ10 ๐น๐โ1 (3.0 + 2.0) โ 10โ6 ๐ โ16 โ16 = 5.61 โ 10 ๐น + 28.9 โ 10 = 5.61 ๐๐น + 2.89๐๐น = ๐. ๐๐๐๐ญ ๐น For N-MOS, ๐๐๐ = 3.0 ๐๐ and ๐ฟ๐๐ = 2.5 ๐๐ ๐ถ๐๐ = 5.62 โ 10โ4 ๐น๐โ2 โ 2.5 โ 10โ6 โ 3.0 โ 10โ6 ๐2 + 2 โ 5 โ 10โ11 ๐น๐โ1 (2.5 + 3.0) โ 10โ6 ๐ โ16 โ17 = 42.15 โ 10 ๐น + 55 โ 10 = 4.215 ๐๐น + 0.55๐๐น = ๐. ๐๐๐๐ญ F COEN 451 Gate Capacitances ๐ถ๐ = ๐ถ๐๐ฅ (๐ + ฮ๐)(๐ฟ + ๐ฟ๐ฟ) Assumption: We ignore ฮ๐๐ and ๐ฟ๐ฟ๐ 0.345 As ๐ถ๐๐ฅ = (๐๐น๐โ2 ), we get: ๐ก(๐ด๐๐๐ ๐ก๐๐๐) ๐ถ๐ = N.A. For P-MOS, ๐๐ = 0.5 ๐๐ and ๐ฟ๐ = 5.5 ๐๐ 0.345 โ ๐ โ ๐ฟ ๐ก 0.345โ0.5โ5.5 ๐ถ๐๐ = 96 = ๐. ๐๐๐๐ญ For N-MOS, ๐๐ = 2.5 ๐๐ and ๐ฟ๐ = 0.5 ๐๐ 0.345โ2.5โ0.5 ๐ถ๐๐ = 96 = ๐. ๐๐๐๐ญ Total Load Capacitance ๐ถ๐ฟ = ๐ถ๐๐ + ๐ถ๐๐ + ๐ถ๐๐ + ๐ถ๐๐ N.A. ๐ถ๐ฟ = (8.50 + 4.77 + 9.87 + 4.49) ๐๐น = ๐๐. ๐๐ ๐๐ญ As a second step, we have to determine ๐ด๐ and ๐ด๐ coefficients. In most cases, it is done doing SPICE simulations. Another way to calculate ๐ก๐โ๐ and ๐ก๐๐โ can be done using the following formula for ๐ก๐โ๐ : ๐ก๐โ๐ = ๐ถ๐ฟ ๐ฝ๐ (๐๐ท๐ท โ |๐๐ก๐ |) ๐๐ท๐ท โ |๐๐ก๐ | Knowing that ๐ฝ๐ = ๐ก๐โ๐ = 2|๐๐ก๐ | [ ๐พ๐โฒ ๐๐ ๐ฟ๐ ๐ฟ๐ ๐ถ๐ฟ + ln( 4(๐๐ท๐ท โ |๐๐ก๐ | โ 1)] ๐๐ท๐ท , we get: [ 2|๐๐ก๐ | ๐พ๐โฒ ๐๐ (๐๐ท๐ท โ |๐๐ก๐ |) ๐๐ท๐ท โ |๐๐ก๐ | + ln( 4(๐๐ท๐ท โ |๐๐ก๐ | โ 1)] ๐๐ท๐ท COEN 451 N.A. ๐ก๐โ๐ 5.5 โ 10โ6 โ 27.63 โ 10โ15 2 โ 0.9213 4(3.3 โ 0.9213) = + ln ( โ 1)] [ 4.8740 โ 10โ5 โ 0.5 โ 10โ6 (3.3 โ 0.9213) 3.3 โ 0.9213 3.3 151.965 โ 10โ21 [0.77462 + ln(1.88327)] = 5.79689 โ 10โ11 = 26.2149 โ 10โ10 โ [0.77462 + 0.633009] = ๐๐๐๐ And this formula for ๐ก๐๐โ : ๐ถ๐ฟ 2|๐๐ก๐ | 4(๐๐ท๐ท โ |๐๐ก๐ | ๐ก๐๐โ = + ln( โ 1)] [ ๐ฝ๐ (๐๐ท๐ท โ |๐๐ก๐ |) ๐๐ท๐ท โ |๐๐ก๐ | ๐๐ท๐ท Knowing that ๐ฝ๐ = ๐ก๐๐โ = ๐พ๐โฒ ๐๐ ๐ฟ๐ , we get: ๐ฟ๐ ๐ถ๐ฟ 2|๐๐ก๐ | 4(๐๐ท๐ท โ |๐๐ก๐ | + ln( โ 1)] [ ๐พ๐โฒ ๐๐ (๐๐ท๐ท โ |๐๐ก๐ |) ๐๐ท๐ท โ |๐๐ก๐ | ๐๐ท๐ท N.A. ๐ก๐๐โ = 0.5 โ 10โ6 โ 23.63 โ 10โ15 2 โ 0.6566 4 โ (3.3 โ 0.6566) [ + ln ( โ 1)] โ4 โ6 1.9647 โ 10 โ 2.5 โ 10 โ (3.3 โ 0.6566) 3.3 โ 0.6566 3.3 โ21 11.815 โ 10 [0.4968 + ln(2.2041)] 12.98372 โ 10โ10 = 0.90999 โ 10โ11 โ (0.4968 + 0.79032) = ๐. ๐๐๐ = Finally, we can calculate ๐ก๐ that is given by: ๐ก๐โ๐ โ ๐ก๐๐โ ๐ก๐ = 2 N.A. 37 + 1.8 ๐ก๐ = 2 38.8 = 2 = ๐๐. ๐๐๐ COEN 451 b/ The maximum speed of operation is given by: 1 ๐๐๐๐ฅ = ๐ก๐ + ๐ก๐ ๐พ๐ ๐ถ๐ฟ ๐ก๐ = ๐ฝ๐ ๐๐ท๐ท ๐พ๐ ๐ถ๐ฟ ๐ก๐ = ๐ฝ๐ ๐๐ท๐ท Since the circuits changes while using 10 inverters, ๐ถ๐ฟ changes: we now have to pass through 10 inverters and therefore Diffusion capacitances have to be taken into account ten times. This leads to: ๐ถ๐ฟโฒ = ๐ถ๐๐ + ๐ถ๐๐ + 10 โ ๐ถโฒ๐๐ + 10 โ ๐ถโฒ๐๐ So, ๐ถ๐ฟโฒ = ๐ถ๐๐ + ๐ถ๐๐ + 10 โ (๐ถโฒ๐๐ + ๐ถโฒ๐๐ ) N.A. ๐ถ๐ฟโฒ = [8.50 + 4.77 + 10 โ (9.87 + 4.49)] ๐๐น = ๐๐๐. ๐๐๐๐ญ ๐พ๐ and ๐พ๐ are computed using the following formulas: ๐พ๐ = ๐พ๐ = 1 ( 1โ๐ 1 2(๐โ0.1) 1โ๐ + ln(19 โ 20๐)) where ๐ = 2(โ๐โ0.1) ( 1+๐ 1+๐ ๐๐ท๐ท + ln(19 + 20๐)) where ๐ = N.A. For rising time, 0.6566 ๐= 3.3 = ๐. ๐๐๐๐ 1 2(0.1986 โ 0.1) + ln(19 โ 20 โ 0.1986 )) ( 1 โ 0.1986 1 โ 0.1986 = 1.2478 โ (0.2461 + ln(15.028)) = ๐. ๐๐๐๐ ๐พ๐ = ๐๐ก๐ ๐๐ก๐ ๐๐ท๐ท COEN 451 156.87 โ 1๐โ15 โ 3.6886 ๐ก๐ = 980 โ 10โ6 โ 3.3 = ๐๐๐. ๐๐ ๐๐ for falling time, โ0.9213 ๐= 3.3 = โ๐. ๐๐๐๐ 1 2(0.2792 โ 0.1) + ln(19 โ 20 โ 0.2792)) ( 1 โ 0.2792 1 โ 0.2792 = 1.3873(0.4972 + ln(13.416)) = ๐. ๐๐๐๐ ๐พ๐ = 156.87 โ 1๐โ15 โ 4.2918 ๐ก๐ = 535.7 โ 10โ6 โ 3.3 = ๐๐๐. ๐๐ ๐๐ And finally, 1 ๐๐๐๐ฅ = ๐ก๐ + ๐ก๐ 1 (178.92 + 380.84) โ 10โ12 = ๐. ๐๐๐๐ ๐ฎ๐ฏ๐ = c/ The maximum speed of operation is given by: 1 ๐๐๐๐ฅ = ๐ก๐ + ๐ก๐ Hence, ๐ โฒ ๐๐๐ฅ = 2 โ 1.785๐บ๐ป๐ง = ๐. ๐๐๐ฎ๐ฏ๐ ๐๐๐๐ = ๐ก๐ + ๐ก๐ = = ๐ถ๐ฟ ๐ฝ๐ ๐๐ ๐ผ( )๐พ๐ ๐๐ท๐ท ๐ฟ๐ ๐ถ๐ฟ ๐ผ๐๐ท๐ท + ๐ฝ๐ ๐๐ ( )๐พ๐ ๐ฟ๐ ( ๐ถ๐ฟ ๐ฝ๐ ๐๐ ๐ผ( )๐พ๐ ๐๐ท๐ท ๐ฟ๐ + ( ๐ฝ๐ ๐๐ ๐ฟ๐ )๐พ๐ ) COEN 451 ๏จ๐ผ= ๐ถ๐ฟ ๐๐๐๐ ๐๐ท๐ท ( ๐ฝ๐ ๐๐ ( )๐พ๐ ๐ฟ๐ + ๐ฝ๐ ๐๐ ( ๐ฟ๐ )๐พ๐ ) The new Load Capacitance is ๐ถ๐ฟ = 2 โ (8.5 + 4.76) + 143.6 = ๐๐๐. ๐๐๐๐ญ Letโs calculate ๐ผ. ๐ผ= = 170โ10โ15 280โ10โ12 โ2.97 170 3.7 3.7 4.3 (5โ196โ10โ6 + 11โ48.7โ10โ6) 4.3 + ( ) 280โ2.97 0.98 0.535 170โ11.8 = 280โ2.97 = ๐. ๐ Finally, ๐ ( ) = 2.4 โ 5 ๐ฟ ๐ = ๐๐ ๐ ( ) = 2.3 โ 11 ๐ฟ ๐ = ๐๐ d/ Dynamic Power Dissipation is given by: ๐ = ๐๐ถ๐ฟ ๐๐ท๐ท 2 N.A. ๐ = 170 โ 10โ15 โ 2.972 โ 3.57 โ 109 = ๐. ๐๐ ๐๐พ COEN 451 Appendix B: SPICE Parameters .MODEL CMOSN mos3 type=n +PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=1 +VTO=0.6566 DELTA=6.9100E-01 LD=4.7290E-08 KP=1.9647E โ04 +UO=546.2 THETA=2.6840E-01 RSH=3.5120E+01 GAMMA=0.5976 +NSUB=1.3920E+17 NFS=5.9090E+11 VMAX=2.0080E+05 ETA=3.7180E-02 +KAPPA=2.8980E-02 CGDO=3.0515E-10 CGSO=3.0515E-10 +CGBO=4.0239E-10 CJ=5.62E-04 MJ=0.559 CJSW=5.00E-11 +MJSW=0.521 PB=0.99 +XW=4.108E-07 +CAPMOD=bsim XQC=0.5 XPART=0.5 *Weff = Wdrawn - Delta_W *The suggested Delta_W is 4.1080E-07 .MODEL CMOSP mos3 type=p +PHI=0.700000 TOX=9.6000E-09 XJ=0.200000U TPG=-1 +VTO=-0.9213 DELTA=2.8750E-01 LD=3.5070E-08 KP=4.8740E-5 +UO=135.5 THETA=1.8070E-01 RSH=1.1000E-01 GAMMA=0.4673 +NSUB=8.5120E+16 NFS=6.5000E+11 VMAX=2.5420E+05 ETA=2.4500E-02 +KAPPA=7.9580E+00 CGDO=2.3933E-10 CGSO=2.3922E-10 +CGBO=3.7579E-10 CJ=9.35E-04 MJ=0.468 CJSW=2.89E-10 MJSW=0.505 PB=0.99 +XW=3.622E-07 +CAPMOD=bsim XQC=0.5 XPART=0.5 *Weff = Wdrawn โDelta_W COEN 451 COEN 451 Maxime SCHNEIDER (ID: 6718809) Due date: November 5th 2014 COEN 451 - Assignment 5 1. Design a 3 input CMOS static NAND gate for: a) Minimum area; b) Minimum propagation delay; c) Equal rise and fall time; d) Determine the worst-case rise and fall time if the NAND gate is driving a 0.1 pF load. 2. Design a gate to implement the function F (A, B, C, D) = (AB + CD)โ in Pseudo NMOS. Analyze the circuit for valid operation at logic high and logic Problem 1 a/ 3 input CMOS NAND for minimum area. Parameters of Minimum Area CMOS are: ๐๐ = ๐๐ = 3๐๐ ๐ฟ๐ = ๐ฟ๐ = 3๐๐ Thus, for a 3 input CMOS NAND with minimum area, we have: ๐๐๐ด = ๐๐๐ด = ๐๐๐ต = ๐๐๐ต = ๐๐๐ถ = ๐๐๐ถ = 3๐๐ ๐ฟ๐๐ด = ๐ฟ๐๐ด = ๐ฟ๐๐ต = ๐ฟ๐๐ต = ๐ฟ๐๐ถ = ๐ฟ๐๐ถ = 3๐๐ COEN 451 b/ 3 input CMOS NAND for minimum propagation delay. We have: ๐๐ 775 ๐พ๐ = โ๐๐ โ ๐พ๐ = โ ๐๐ = โ ๐ = โ3.1๐๐ = 1.7๐๐ ๐๐ 250 ๐ Equivalent inverter 3 input NAND Thus, for a 3 input CMOS NAND with minimum area, we have: ๐๐๐ด = ๐๐๐ต = ๐๐๐ถ = ๐๐ = 1.7๐๐๐๐ = 1.7 โ 3 โ 10โ6 = 5.1๐๐ ๐๐๐ด = ๐๐๐ต = ๐๐๐ถ = 3๐๐๐๐ = 9๐๐ Length is kept unchanged: ๐ฟ๐๐ด = ๐ฟ๐๐ด = ๐ฟ๐๐ต = ๐ฟ๐๐ต = ๐ฟ๐๐ถ = ๐ฟ๐๐ถ = 3๐๐ c/ 3 input CMOS NAND for equal rise and fall times. To get equal ๐ก๐ and ๐ก๐ we need to have equal ๐ฝ๐ and ๐ฝ๐ . We have: ๐พ๐ = ๐๐พ๐ COEN 451 Equivalent inverter 3 input NAND Thus, for a 3 input CMOS NAND with equal rise and fall times, we have: ๐๐๐ด = ๐๐๐ต = ๐๐๐ถ = 3๐๐๐๐ = 9๐๐ ๐๐๐ด = ๐๐๐ต = ๐๐๐ถ = 3๐๐๐๐ = 9๐๐ Length is kept unchanged: ๐ฟ๐๐ด = ๐ฟ๐๐ด = ๐ฟ๐๐ต = ๐ฟ๐๐ต = ๐ฟ๐๐ถ = ๐ฟ๐๐ถ = 3๐๐ d/ Worst-case rise time and fall time with a 0.1 pF Load Capacitance. Rise time Worst-case rise time occurs when one input is LOW and the two others are HIGH, with top two NMOS at HIGH state. Thus, to study worst-case rise time, we have: A 1 B 1 C 0 OUT 1 COEN 451 We have: ๐ก๐ = 2.2 ๐๐โ๐๐๐๐ Assuming that - ๐ถ๐ = ๐ถ๐ = ๐ถ - ๐๐ = ๐ฟ๐ = 3๐๐ ๐๐โ๐๐๐๐ = ๐ ๐ [3๐ถ๐๐ + 3๐ถ๐๐ + 2๐ถ๐ ๐ + ๐ถ๐ฟ ] = ๐ ๐ [8๐ถ + ๐ถ๐ฟ ] ๐ ๐ = = ๐พ๐โฒ 1 (|๐ ๐ฝ๐ ๐บ๐ โ๐๐ก |) 1 ๐๐ (|๐๐บ๐ โ๐๐ก |) ๐ฟ๐ 1 = 12โ10โ6 โ4.2 = 19.8๐ฮฉ ๐ถ๐ = ๐ถ๐ โ ๐ด๐ + ๐ถ๐๐ ๐ค โ ๐๐ + ๐ถ๐บ๐๐ โ ๐ COEN 451 Assuming that ๐ถ๐ = 40๐๐น, ๐ถ = 40๐๐น Then, we have: ๐ก๐ = 2.2 ๐ ๐ [8๐ถ + ๐ถ๐ฟ ] = 2.2 โ 19.8 โ 103 โ [8 โ 40 โ 10โ15 + 0.1 โ 10โ12 ] ๐๐ = ๐๐. ๐๐๐ Fall time Worst-case fall time occurs when the three inputs are HIGH, leading to LOW output state. Thus, to study worst-case fall time, we have: A 1 B 1 C 1 We have: ๐ก๐ = 2.2 ๐๐๐๐ ๐โ๐๐๐๐ Assuming that - ๐ถ๐ = ๐ถ๐ = ๐ถ OUT 0 COEN 451 - ๐๐ = ๐ฟ๐ = 3๐๐ ๐๐โ๐๐๐๐ = 3๐ ๐ [3๐ถ๐๐ + 3๐ถ๐๐ + 2๐ถ๐ ๐ + ๐ถ๐ฟ ] = 3๐ ๐ [8๐ถ + ๐ถ๐ฟ ] ๐ ๐ = = ๐พ๐โฒ 1 ๐ฝ๐ (|๐๐บ๐ โ๐๐ก |) 1 ๐๐ (|๐๐บ๐ โ๐๐ก |) ๐ฟ๐ 1 = 40โ10โ6 โ4.3 = 5.8๐ฮฉ ๐ถ๐ = ๐ถ๐ โ ๐ด๐ + ๐ถ๐๐ ๐ค โ ๐๐ + ๐ถ๐บ๐๐ โ ๐ Assuming that ๐ถ๐ = 40๐๐น, ๐ถ = 40๐๐น Then, we have: ๐ก๐ = 2.2 ๐ ๐๐๐ [8๐ถ + ๐ถ๐ฟ ] = 2.2 โ 3 โ 5.8 โ 103 โ [8 โ 40 โ 10โ15 + 0.1 โ 10โ12 ] ๐๐ = ๐๐. ๐๐๐ COEN 451 Problem 2 ๐นฬ (A, B, C, D) = (AB + CD)โ Pseudo NMOS circuit Equivalent inverter Assuming: - ๐๐บ๐ = 5๐ - |๐๐ก๐ | = ๐๐ก๐ = 1๐ - we neglect ๐๐ท๐๐ 2 - ๐ฟ๐ = ๐ฟ๐ = 3๐๐ PMOS is saturated: ๐ผ๐ = ๐ฝ๐ 2 (๐๐บ๐๐ โ ๐๐ก๐ ) 2 NMOS is linear: ๐ผ๐ = ๐ฝ๐ (๐๐บ๐๐ โ ๐๐ก๐ )๐๐ท๐๐ โ ๐๐ท๐๐ 2 2 ๐ผ๐ = ๐ผ๐ ๏ณ ๐ฝ๐ 2 2 (๐๐บ๐๐ โ ๐๐ก๐ ) = ๐ฝ๐ (๐๐บ๐๐ โ ๐๐ก๐ )๐๐ท๐๐ โ ๐๐ท๐๐ 2 2 COEN 451 As ๐๐ท๐๐ = ๐๐๐ฟ , we have, 2 ๐ฝ๐ (๐๐บ๐๐ โ ๐๐ก๐ ) = ๐ฝ๐ (๐๐บ๐๐ โ ๐๐ก๐ )๐๐๐ฟ 2 ๏ณ ๐ฝ๐ 2 (5 โ 1)2 = ๐ฝ๐ (5 โ 1)๐๐๐ฟ ๏ณ 16 โ ๐ฝ๐ 2 = 4 โ ๐ฝ๐ ๐๐๐ฟ ๐ฝ๐ ๏ณ๐๐๐ฟ = 2 โ ๐ฝ =2โ =2โ ๐๐ ๐ฟ๐ ๐๐ ๐พ๐ โฒ ๐ฟ๐ ๐พ๐โฒ ๐๐ ๐พ๐โฒ ๐๐ ๐ ๐พ๐ โฒ We have: ๐พ๐โฒ = 12 โ 10โ6 ๐พ๐โฒ = 40 โ 10โ6 12 ๐๐ Then, ๐๐๐ฟ = 2 40 ๐ ๐๐ ๐ ๏จ๐๐๐ฟ = 0.6 ๐ ๐ Assuming ๐๐๐ฟ = 0.5๐, ๐๐ 0.6 = ๐๐ 0.5 ๏ณ ๐พ๐ = ๐. ๐๐ ๐พ๐ Smallest Width is 3๐๐. So we choose ๐๐ = 3๐๐ 3 And then ๐๐ = 0.83 = 3.6๐๐ 3.6 3 = 1.2 ๏จ ๐๐ = 1.2๐๐๐๐ COEN 451 Finally, we get ๐๐ = ๐๐๐๐ = 3๐๐ ๐๐๐ด = ๐๐๐ต = ๐๐๐ถ = ๐๐๐ท = 2 โ 1.2๐๐๐๐ = 2 โ 3.6 = 7.2๐๐ Length is kept unchanged: ๐ฟ๐๐ด = ๐ฟ๐๐ด = ๐ฟ๐๐ต = ๐ฟ๐๐ต = ๐ฟ๐๐ถ = ๐ฟ๐๐ถ = ๐ฟ๐๐ท = ๐ฟ๐๐ท = 3๐๐ COEN 451 Use the following SPICE parameters for this assignment. SPICE Transistor Parameters Parameter NMOS PMOS Units Source Description VTO KP GAMMA PHI LAMBDA RD RS CBD CBS IS PB CGSO CGDO CGBO RSH CJ MJ CJSW MJSW JS TOX NSUB NSS NFS TPG XJ LD UO VMAX 0.7 40E-6 1.1 0.6 0.01 (40) (40) -0.8 12E-6 0.6 0.6 0.03 (100) (100) 0.7 3.0E-10 3.0E-10 5.0E-10 25 4.4E-10 0.5 4.0E-10 0.3 1.0E-5 5.0E-8 1.7E16 0 0 1 6.0E-7 3.5E-7 775 1.0E5 0.6 2.5E-10 2.5E-10 5.0E-10 80 1.5E-4 0.6 4.0E-10 0.6 1.0E-5 5.0E-8 5.0E15 0 0 1 5.0E-7 2.5E-7 250 0.7E5 V (A/V2) (V0.5) V 1/V ohms ohms F F A V F/m F/m F/m Ohms/sq. (F/m2) F/m (A/m2) m (1/cm3) (1/cm2) (1/cm2) m m (cm2/Vs) (1) (5) (1) (3) (5) (2) (2) (2) (2) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (3) (3) (3) (1) (1) (1) (1) -zero bias threshold voltage -transconductance parameter -bulk threshold parameter -surface potential -channel-length modulation -drain ohmic resistance (w=6๏ญ) -source ohmic resistance(๏ฒ) -zero bias B-D juction cap. -zero bias B-S juction cap. -bulk junction sat.current -bulk junction potential; -G-S overlap capacitance -G-D overlap capacitance -G-bulk overlap capacitance -diffusion sheet resistance -zero bias bulk junction cap. -bulk junction grading coef. -bulk junction sidewall cap. -sidewall cap. Grading coef. -bulk jinction sat.current -oxide thickness -substrate doping -surface state density -fast surface state density -type of gate material -metallurgical junction depth -lateral diffusion -surface mobility -maximum drift velocity m/s SPICE Level 3 Parameters Parameter NMOS PMOS Units Source Description THETA KAPPA ETA 0.11 1.0 0.05 0.13 1.0 0.3 1/V - (1) (1) (1) -mobility modulation -saturation field factor -static feedback COEN 451 Other Electrical Parameters Gate (Cox) Metal1 โ Field Metal1 โ Poly Metal1 โ Diffusion Poly โ Field Metal2 โ Field Metal2 โ Diffusion Metal2 โ Poly Metal2 โ Metal1 Capacitor P + - Poly (0.1%/V linearity) Capacitance (pF/๏ญm2) Edge Component (pF/๏ญm) Source 6.9E-4 2.7E-5 5.0E-5 5.0E-5 6.0E-5 1.4E-5 1.6E-5 2.0E-5 2.5E-5 6.9E-4 0.5E-4 0.4E-4 (1) (1) (1) (1) (1) (4) (4) (4) (4) (*) (1) 0.2E-4 2.0E-5 0.5E-4 Resistance (ohms/sq.) Source N+ Diffusion P+ Diffusion N+ Poly Capacitor P+ P-well Metal1 Metal2 3 ๏ด 3 metal1 โ P + Diffusion Contact 3 ๏ด 3 metal1 โ N + Diffusion Contact 3 ๏ด 3 metal1 โ N + Poly Contact 25 80 18 300 4K 0.035 0.030 121 44 25 (1) (1) (5) (1) (1) (4) (4) (5) (5) (5) Maximum operating voltage: 5 volts. Sources: (1) D. Smith of NTE, presented at CMC Workshop June 6-7, 1985. COEN 451 Maxime SCHNEIDER (ID: 6718809) Due date: November 19th 2014 COEN 451 - Assignment 6 1. The CMOS inverter shown in Figure 1a consists of two PMOS transistors connected in parallel and one NMOS transistor. All transistors (PMOS and NMOS) have the same dimensions with a layout shown in Figure 1b.(Note: the transistors are connected so that the output capacitance is minimized) a. Determine the inverterโs switching voltage (Vx) and the supply current at Vo=Vx b. Calculate the output capacitance. c. If the inverter is driving a load equivalent to10 similar inverters, what will be the rise delay (tPLH)of the driving inverter? d. During the implementation of the circuit, one of the PMOS transistors was accidentally disconnected, what will be the impact on the dc behavior of the circuit. In your analysis you need to address all critical parameters (VOH, VOL, VIH, VIL, Vx) and noise margin of the circuit. (Note: no calculations are required) The transistors have the following parameters: NMOS: VTO=0.75V, Cox = 1.5fF/ m2, Cjsw = 0.7fF/ m, Cj=0.5fF/ m2, n=500cm2/Vsec, =0. 0 PMOS: VTO=-0.75V, Cox = 1.5fF/ m2, Cjsw = 0.7fF/ m, Cj=0.5fF/ m2, =0. 0 p=250cm2/V-sec, ๏ณ๏ฎ๏ฐ๏ญ 5V Vin Diffusion (n+ or p+) 2.5๏ญ Vin 0.5๏ญ Vo ๏ต๏ฎ๏ฐ๏ญ 0.5๏ญ ๏ณ๏ฎ๏ฐ๏ญ Vin Diffusion (n+ or p+) 0.5๏ญ Diffusion Fig. 1 0.5๏ญ Polysilicon COEN 451 2. An engineer wishes to submit the layout shown in Fig. 2 for fabrication using N-well three- layer metal process: a. Draw the vertical cross section B-Bโ showing all layers and material involved. b. List the sequence of steps up the formation of metal contacts required to fabricate the PMOS transistor in the targeted technology. c. How many layers of metal appear in the layout of Fig. 2? d. The engineer made four layout errors. Identify these errors Bโ P+ Layer N-well VDD Active Contact Active+ Via Metal 2 Poly Active N+ Layer Active VSS P+ Layer B Fig. 2 Metal 1 COEN 451 Question 1 a/ Inverterโs switching voltage is given by: ๐๐ฅ = โ๐ฝ๐ ๐๐ก๐ + ๐๐ก๐ + ๐๐ท๐ท 1 + โ๐ฝ๐ From the layout, โ ๐ฟ๐ = ๐ฟ๐ = 0.5๐๐ โ Two PMOS are in parallel so ๐๐ = 2๐๐ ๐๐ = ๐1 +๐2 2 = [(2.5โ0.5)+(3โ0.5)]+[(2.5โ0.5โ0.5)+(3โ0.5โ0.5)] then ๐๐ = 8๐๐ and ๐๐ = 4๐๐ - ๐ฝ๐ = ๐๐ ๐ฟ๐ ๐๐ ๐ฟ๐ ๐๐ ๐๐ = 4 0.5 4โ2 0.5 500 250 2 = 4.5+3.5 2 =4 1 =2โ2=1 N.A. ๐๐ฅ = โ1โ0.75โ0.75+5 2 = ๐. ๐๐ฝ Supply current at ๐0 = ๐๐ฅ At ๐๐ฅ both NMOS and PMOS currents are opposite and in their saturation region. We have: ๐ ๐พ๐โฒ ๐ฟ ๐ ๐ฝ๐ 2 2 ๐ ๐ผ๐๐ ๐ = (๐๐๐ ๐ โ ๐๐ก๐ ) = (๐๐๐ ๐ โ ๐๐ก๐ ) 2 2 i.e. we have: ๐๐ ๐ถ๐๐ฅ๐ ๐ผ๐๐ ๐ = N.A. 500 โ ๐ผ๐๐ ๐ = 2 ๐๐ ๐ฟ๐ (๐๐๐ ๐ โ ๐๐ก๐ ) 2 1.5 โ 10โ15 4 0.5 (2.5 10โ8 โ 0.75)2 = ๐๐๐๐๐จ 2 b/ Output capacitance is calculated as following: ๐ถ๐๐ข๐ก = 2 โ ๐ถ๐๐ + ๐ถ๐๐ Assuming that ๐ถ๐๐ = ๐ถ๐๐ And knowing that ๐ถ๐ = ๐ด๐ โ ๐ถ๐ + ๐๐ โ ๐ถ๐๐ ๐ค We finally get: ๐ถ๐๐ข๐ก = 3 โ (๐ด๐ โ ๐ถ๐ + ๐๐ โ ๐ถ๐๐ ๐ค ) N.A. ๐ถ๐๐ข๐ก = 3 โ (2.0 โ 1.5 โ 0.5 + (2 + 1.5) โ 2 โ 0.7) = 3 โ 6.4 = ๐๐. ๐ ๐๐ญ c/ COEN 451 If the inverter is driving a load equivalent to10 similar inverters, load capacitance would be: ๐ถ๐ฟ = ๐ถ๐๐ข๐ก + 10 โ ๐ถ๐๐ Since - ๐ถ๐๐ = ๐ถ๐๐ + ๐ถ๐๐ and as ๐ถ๐๐ = 2 โ ๐ถ๐๐ we get ๐ถ๐๐ = 3 โ ๐ถ๐๐ - ๐ถ๐๐ข๐ก = 19.2๐๐น from previous question We have: ๐ถ๐ฟ = ๐ถ๐๐ข๐ก + 30 โ ๐ถ๐๐ N.A. ๐ถ๐ฟ = 19.2 + 30 โ (0.5 โ 2 + 0.5 โ 2) โ 1.5 = 19.2 + 30 โ 3 = 109.2 ๐๐น Rise delay is calculated as follows: ๐ก๐๐โ = N.A ๐ก๐๐ฟ๐ป = ๐ถ๐ฟ 2|๐๐ก๐ | 4(๐๐ท๐ท โ |๐๐ก๐ | + ln( โ 1)] [ ๐ฝ๐ (๐๐ท๐ท โ |๐๐ก๐ |) ๐๐ท๐ท โ |๐๐ก๐ | ๐๐ท๐ท 109.2โ10โ15 1.5โ10โ15 4 (2.5โ0.75) 500โ 10โ8 0.5 โ15 109.2โ10 1.5 7 2โ0.75 4โ(2.5โ0.75) [2.5โ0.75 + ln ( = 10500โ10โ7 [1.75 + ln(2.5 + 1)] = 0.0104 โ 10โ8 [0.8571 + ln(3.8)] = 0.0104 โ 10โ8 โ 2.1921 = 0.0228 โ 10โ8 = ๐. ๐๐ ๐๐ 2.5 โ 1)] COEN 451 Question 2 a/ The vertical cross section B-Bโ is the following: As a reminder, classical inverted is as follows: b/ Steps involved in the fabrication of a pMOS are: 123456- Photolithography step to create N-well Photolithography step to create thin oxide Photolithography step to deposit Poly Photolithography step to diffuse P+ Silicon creating active area Photolithography step to deposit SiO2 Photolithography step to remove SiO2 where contacts are made โopen contact areaโ c/ There are two metal layers appearing in the layout of Fig. 2. COEN 451 d/ Errors the engineer has made are: 1- Via should be entirely on Metal 2 2- contact for nMOS bulk is missing 3- Gate extension for P transistor is missing 4- substrate connection to VDD should be n+ COEN 451 Maxime SCHNEIDER (ID: 6718809) Due date: November 26th 2014 COEN 451 - Assignment 7 For the following exercises use CMOSIS5 parameters given in the class. Exercise 1 Determine the ratio of the fringing capacitance to the parallel plate capacitance. Using the same process parameters determine the same Excersie 2 Determine the capacitance between e, width Exercise 3 a) Use distributed rc method. b) Use lumped RC method c) Determine a relation between a & Exercise 4 Estimate the minimum width of metal_1 wire that can supply 30 mA of current. How many vias are required to connect this metal wire to metal_2 wire? What is the resistance presented by the via? You may assume J m = 05mA/µm2 , M_1 thickness is 0.5µm and metal_2 thickness is o.6µm. Assume each contact of 1um * 1um can carry 0.5mA safely or 0.1mA/um of periphery. Exercise 5 wide. The metal_2 wire is feeding 8 Flip fl long poly wire, 1µ wide. Each flip flop gate has 10 fFcapacitance. Use CMOSIS5B parameters if needed. a) Determine Cinterconnect, b) Determine the rise and fall times if the input pulse has tr=tf= 0.05ns COEN 451 Assume k=3.4 and area of drain =3W and perimeter of drain is 2W+6 COEN 451 Exercise 1 From the manual, ๏ท ๐ถ๐ต0 = 0.0411๐๐น๐๐โ2 ± 0.0102๐๐น ๏ท ๐ถ๐0 = 0.0177๐๐น๐๐โ2 ± 0.0044๐๐น Since this is a single line, there is no line-to-line capacitance. Wireโs capacitance is the sum of Fringing capacitance and Parallel plate capacitance: Since ๏ท ๐ถ๐ต = ๐ถ๐ต0 โ ๐ด ๏ท ๐ถ๐ = ๐ถ๐0 โ ๐ We have: ๐ถ๐ = ๐ถ๐ต + ๐ถ๐ ๐ถ๐ = ๐ถ๐ต0 โ ๐ด + ๐ถ๐0 โ ๐ N.A. ๐ถ๐ = 0.0411 โ 0.6 โ 1000 + 0.0177 โ 2 โ (1000 + 0.6) = 24.66 + 8.8 = ๐๐. ๐๐๐๐ญ Ratio is calculated as follows: ๐ ๐๐ก๐๐ = N.A. ๐ ๐๐ก๐๐ = 8.8 24.66 ๐ถ๐ ๐ถ๐ต = ๐๐. ๐% If width is reduced to 0.3m, new ratio is ๐ ๐๐ก๐๐โฒ = N.A. 0.0411โ0.3โ1000 12.33 ๐ ๐๐ก๐๐โฒ = 0.0177โ2โ(1000+0.3) = 35.5062 = ๐๐, ๐% ๐ถ๐ โฒ ๐ถ๐ต โฒ Conclusion: the thiner the wire, the lower the ratio. COEN 451 Exercise 2 From the manual, ๏ท ๐ถ๐ด๐๐๐โ๐ต๐๐ก๐ก๐๐ = 0.0444๐๐น๐๐โ2 ± 0.0115๐๐น ๏ท ๐ถ๐น๐๐๐๐๐โ๐ต๐๐ก๐ก๐๐ = 0.0189๐๐น๐๐โ2 ± 0.0049๐๐น ๏ท ๐ถ๐ด๐๐๐โ๐๐๐ = 0.0392๐๐น๐๐โ2 ± 0.0092๐๐น ๏ท ๐ถ๐น๐๐๐๐๐โ๐๐๐ = 0.0169๐๐น๐๐โ2 ± 0.0042๐๐น ๏ท ๐ถ๐ฟ๐๐๐ = 0.0527๐๐น๐๐โ2 ± 0.0069๐๐น Capacitance between the two metals is: ๐ถ๐๐๐ก๐๐ = ๐ถ๐๐๐ก_๐ + ๐ถ๐ก๐๐_๐ + 2 โ (๐ถ๐๐๐ก_๐ + ๐ถ๐ก๐๐_๐ + ๐ถ๐๐๐๐ ) Since: ๏ท ๐ถ๐๐๐ก_๐ = ๐ด โ ๐ถ๐ด๐๐๐โ๐ต๐๐ก๐ก๐๐ ๏ท ๐ถ๐ก๐๐_๐ = ๐ด โ ๐ถ๐ด๐๐๐โ๐๐๐ ๏ท ๐ถ๐๐๐ก_๐ = ๐ โ ๐ถ๐น๐๐๐๐๐โ๐ต๐๐ก๐ก๐๐ ๏ท ๐ถ๐ก๐๐_๐ = ๐ โ ๐ถ๐น๐๐๐๐๐โ๐๐๐ ๏ท ๐ถ๐๐๐๐ = 0 We have: ๐ถ๐๐๐ก๐๐ = ๐ด โ (๐ถ๐ด๐๐๐โ๐ต๐๐ก๐ก๐๐ + ๐ถ๐ด๐๐๐โ๐๐๐ ) + 2 โ ๐ โ (๐ถ๐น๐๐๐๐๐โ๐ต๐๐ก๐ก๐๐ + ๐ถ๐น๐๐๐๐๐โ๐๐๐ ) N.A. ๐ถ๐๐๐ก๐๐ = 4 โ 100 โ (0.0444 + 0.0392) + 2 โ 208 โ (0.0189 + 0.0169) = ๐๐. ๐๐๐๐ญ COEN 451 Exercise 3 From CMOSIS5 parameters, ๏ท ๐ถ๐ด๐๐๐ = 0.0411 ๐๐น๐๐โ2 ๏ท ๐ถ๐น๐๐๐๐๐๐๐ = 0.0177 ๐๐น๐๐โ1 ๏ท ๐ ๐๐๐ก๐๐_1 = 0.06ฮฉ/โก Since the wire is 1000 ๏ญm long and 2๏ญm large, one square is 2๏ญ x 2๏ญm 1000 ๏ท ๐ = 2 = 500 โก ๏ท ๏ท ๐ = 0.06ฮฉ/โก ๐ = ๐ถ๐ด๐๐๐ โ ๐ด๐ ๐๐ข๐๐๐ =0.0411 โ 22 = 0.2๐๐น/โก a/ Distributed RC method Formula is ๐ก๐_๐๐๐ ๐ก๐๐๐๐ข๐ก๐๐ = N.A. ๐ก๐_๐๐๐ ๐ก๐๐๐๐ข๐ก๐๐ = 0.06โ0.2โ10โ15 โ50โ49 2 ๐ โ ๐ โ ๐ โ (๐ โ 1) 2 = 14.7 โ 10โ15 = ๐. ๐๐๐๐ b/ Lumped RC method Formula is: ๐ก๐_๐๐ข๐๐๐๐ = ๐ ๐ถ Since ๏ท ๐ = ๐โ๐ ๏ท ๐ถ = ๐ด โ ๐ถ๐ด๐๐๐ + ๐ โ ๐ถ๐น๐๐๐๐๐๐๐ We have: ๐ก๐_๐๐ข๐๐๐๐ = ๐ โ ๐(๐ด โ ๐ถ๐ด๐๐๐ + ๐ โ ๐ถ๐น๐๐๐๐๐๐๐ ) N.A. ๐ก๐_๐๐ข๐๐๐๐ = 500 โ 0.06 โ (1000 โ 2 โ 0.0411 + 2008 โ 0.0177 ) = ๐. ๐๐๐๐ c/ We have: ๐ก๐_๐๐๐ ๐ก๐๐๐๐ข๐ก๐๐ = 1.47๐๐ ๐ก๐_๐๐ข๐๐๐๐ = 3.53๐๐ So, the ratio between these two values is: ๐ก๐_๐๐๐ ๐ก๐๐๐๐ข๐ก๐๐ 1.47 = 3.53 ๐ก ๐_๐๐ข๐๐๐๐ Then, ๐ก๐_๐๐ข๐๐๐๐ = 2.40 โ ๐ก๐_๐๐๐ ๐ก๐๐๐๐ข๐ก๐๐ COEN 451 Exercise 4 We have ๐ด = 0.5 โ ๐ ๐ผ However ๐ผ๐๐๐ฅ = ๐ฝ๐ โ ๐ด ๏ณ ๐ด = ๐๐๐ฅ ๐ฝ Then, ๐ ๐ = 2โ N.A. 30 ๐ = 2 โ 0.5 = ๐๐๐๐๐ ๐ผ๐๐๐ฅ ๐ฝ๐ 30 Furthermore, since each contact can carry 0.5mA, we need at least 0.5 =60 contacts of 1๐๐ x1๐๐. With 60 contact with a sheet resistance of 1.5ฮฉ for contact, we have ๐. ๐๐๐๐ด 1.5 60 = COEN 451 Exercise 5 a/ Interconnect Capacitances are the following: Metal 1 L=100๏ญm W= 4๏ญm ๐ถ๐ต๐๐ก๐ก๐๐ = 0.0152 ๐๐น๐๐โ2 ๐ถ๐น๐๐๐๐๐๐๐ = 0.0072 ๐๐น๐๐โ2 ๐ถ๐ = 100 โ 4 โ 0.0152 = 6.08๐๐น ๐ถ๐ = 2 โ (100 + 4) โ 0.0152 = 3.16๐๐น ๏จ ๐ถ๐๐๐ก๐๐_1 = 6.08 + 3.16 =9.24 ๐๐น Metal 2 L= 8 โ 20 = 160๏ญm W=2๏ญm ๐ถ๐ต๐๐ก๐ก๐๐ = 0.0411 ๐๐น๐๐โ2 ๐ถ๐น๐๐๐๐๐๐๐ = 0.0177 ๐๐น๐๐โ2 ๐ถ๐ = 160 โ 2 โ 0.0411 = 13.15๐๐น ๐ถ๐ = 2 โ (160 + 2) โ 0.0177 = 5.73๐๐น ๏จ ๐ถ๐๐๐ก๐๐_2 = 13.15 + 5.73 =18.88 ๐๐น Poly L= 8 โ 10 = 80๏ญm W= 1๏ญm ๐ถ๐ต๐๐ก๐ก๐๐ = 0.104 ๐๐น๐๐โ2 ๐ถ๐น๐๐๐๐๐๐๐ = 0.03 ๐๐น๐๐โ2 ๐ถ๐ = 80 โ 1 โ 0.104 = 8.32๐๐น ๐ถ๐ = 2 โ (80 + 1) โ 0.03 = 4.86๐๐น ๏จ ๐ถ๐๐๐๐ฆ = 8.32 + 4.86 = ๐๐. ๐๐ ๐๐ญ Gates ๐ถ๐๐๐ก๐๐ = 8 โ 10 = ๐๐๐๐ญ b/ Load Capacitance is: ๐ถ๐ฟ = ๐ถ๐๐ + ๐ถ๐๐ + ๐ถ๐ค Since: ๏ท ๐ถ๐๐ = ๐ถ๐๐ โ ๐ด๐ + ๐ถ๐๐ ๐ค๐ โ ๐๐ ๏ท ๐ถ๐๐ = ๐ถ๐๐ โ ๐ด๐ + ๐ถ๐๐ ๐ค๐ โ ๐๐ ๏ท ๐ถ๐ค = ๐ถ๐๐๐ก๐๐_1 + ๐ถ๐๐๐ก๐๐_2 + ๐ถ๐๐๐๐ฆ + ๐ถ๐บ๐๐ก๐๐ COEN 451 We have: ๐ถ๐ฟ = ๐ถ๐๐ โ ๐ด๐ + ๐ถ๐๐ ๐ค๐ โ ๐๐ + ๐ถ๐๐ โ ๐ด๐ + ๐ถ๐๐ ๐ค๐ โ ๐๐ + ๐ถ๐๐๐ก๐๐_1 + ๐ถ๐๐๐ก๐๐_2 + ๐ถ๐๐๐๐ฆ + ๐ถ๐บ๐๐ก๐๐ From the manual, ๏ท ๐ถ๐๐ = 5.62 โ 10โ4 ๐น๐๐โ2 ๏ท ๐ถ๐๐ = 9.35 โ 10โ4 ๐น๐๐โ2 ๏ท ๐ถ๐๐ ๐ค๐ = 5 โ 10โ11 ๐น๐๐โ1 ๏ท ๐ถ๐๐ ๐ค๐ = 2.89 โ 10โ11 ๐น๐๐โ1 N.A. ๐ถ๐ฟ = 5.62 โ 10โ4 โ 3 โ 2 + 5 โ 10โ11 โ 2 โ (3 + 2) + 9.35 โ 10โ4 โ 3 โ 6 + 2.89 โ 10โ11 โ 2 โ (3 + 6) + 9.24 + 18.88 + 13.18 + 80 = 3.37 + 6 + 16.83 + 5.2 + 9.24 + 18.88 + 13.18 + 80 = ๐๐๐. ๐๐๐ญ Rise time Formula is: ๐ก๐ = ๐พ๐ถ๐ฟ ๐ฝ๐ ๐๐ท๐ท ๐๐ Since ๐ฝ๐ = ๐๐ โฒ ๐ฟ ๐ We have: ๐ก๐ = ๐พ๐ถ๐ฟ ๐๐ ๐๐ โฒ ๐ ๐ฟ๐ ๐ท๐ท From the manual, ๏ท ๐๐โฒ = 48.7๐๐ด๐ โ2 ๏ท ๐พ = 3.4 N.A. ๐ก๐ = 3.4โ152.7โ10โ15 6 48.7โ10โ6 โ โ3.3 0.5 519.18 = 1928.52 10โ9 = ๐. ๐๐๐๐๐ Fall time Formula is: ๐ก๐ = ๐ ๐พ๐ถ๐ฟ ๐ฝ๐ ๐๐ท๐ท Since ๐ฝ๐ = ๐๐ โฒ ๐ฟ ๐ We have: ๐ ๐ก๐ = From the manual, ๏ท ๐๐โฒ = 196๐๐ด๐ โ2 ๏ท ๐พ = 3.4 ๐พ๐ถ๐ฟ ๐ ๐๐ โฒ ๐ ๐๐ท๐ท ๐ฟ๐ COEN 451 N.A. ๐ก๐ = 3.4โ152.7โ10โ15 519.18 2 196โ10โ6 โ โ3.3 0.5 = 2587.2 โ 10โ9 = ๐. ๐๐๐๐๐ For rise time and fall time: ๐ก๐/๐_๐๐๐๐ ( 1 โ 2๐) 6 ๐ก๐/๐_๐๐๐ ๐ = ๐ก๐๐_๐ ๐ก๐๐ + ( 1 โ 2๐) 6 ๐ก๐๐ = ๐ก๐๐_๐ ๐ก๐๐ + ๐ก๐๐ Since: ๐๐ก๐ ๏ท ๐=๐ ๐ท๐ท ๐ ๏ท ๐ = ๐ ๐ก๐ ๏ท ๐ก๐๐ = ๏ท ๐ก๐๐ = ๏ท ๐ก๐ = ๐ท๐ท ๐ก๐ 2 ๐ก๐ 2 ๐ก๐๐ +๐ก๐๐ 2 = ๐ก๐ ๐ก๐ + 2 2 2 We have: ๐ก๐๐ ๐ก๐๐ ๐ก๐ ๐ก๐ + ๐ก๐ ๐๐ก๐ = 2 2 + (1โ2 ) 2 6 ๐๐ท๐ท ๐ก๐ ๐ก๐ + ๐ก๐ ๐๐ก๐ = 2 2 + (1โ2 ) 2 6 ๐๐ท๐ท N.A. ๐ก๐๐ = ๐ก๐๐ = 0.269 0.201 + 2 2 2 0.269 0.201 + 2 2 2 + + 0.201 6 0.269 6 (1 โ 2 โ (1 โ 2 โ 0.656 3.3 ) = 0.1176 + 0.0335 โ 0.6024 = ๐. ๐๐๐๐๐๐ 0.921 3.3 ) = 0.1176 + 0.0448 โ 0.4418 = ๐. ๐๐๐๐๐๐