Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Lecture 4 Glycolysis (Embden-Meyerhof Pathway) Cleavage of glucose and Substrate-level phosphorylation of ADP to ATP The “Powertrain” of Human Metabolism (Overview) CARBOHYDRATES Glucose PROTEINS LIPIDS Amino acids Fatty acids Oxaloacetate O2 Glycogen Glucose-6-P Pyruvate Acetyl-CoA CO2 Glycolysis Lactate Ribose-5-P NADPH NADH ATP H2O Ketone bodies Cholesterol NADH p. 21 There are two fundamentally different ways to generate ATP: 1. Substrate-level phosphorylation of ADP to ATP 2. Proton gradient-dependent ATP synthesis Substrate-level Phosphorylation (ATP) Sred Sox + Pi –∆G P~Sox +∆G P~Sox + ADP Sox + ADP~P (ATP) Example i) P~Sox + H2O Sox + Pi ∆Go’= –49.6 ii) ADP + Pi ATP + H2O ∆Go’= +30.5 Pi = HPO42- Σ ∆Go’= –19.1 First Reaction in Glycolysis Glucose (Glc) Glucose-6-phosphate ? (Glucose-6-P) (Glc-6-P) (G6P) ∆G Calculations on 1. Reaction in Glycolysis (Phosphorylation of Glucose) Summary of Chalk Board Calculations ∆Go’ or ∆G (kJmol-1) Glc + Pi Î Glc-6-P + 5 mM 1 mM 0.083 mM H2O +13.9 +21.1 Keq 3.7x10-3 2.8x10-4 (intracellular concentrations) ∆Go’ = –RTlnKeq Keq = e^(-∆Go’/RT) = e^(-13,900 Jmol-1/8.315 Jmol-1K-1 x 298 K) = 0.0037 ∆G = ∆Go’ + RTln[P]/[S] ∆G = +13.9 kJmol-1 + (8.315 Jmol-1K-1 x 310 K) x ln[83 x10-6]/[5 x 10-3][1 x 10-3] ∆G = +13.9 kJmol-1 + (2.578 kJmol-1) x 2.81 ∆G = +13.9 + 7.2 = +21.1 kJmol-1 (intracellular conditions are even more unfavorable than standard conditions for the reaction to proceed as desired) Q: How to drive glucose phosphorylation forward despite large positive ∆G? A: Couple to much more favorable reaction (larger negative ∆G) such as to the hydrolysis of ATP!! ∆Go’ or ∆G (kJmol-1) ATP + H2O Î ADP + Pi -30.5 -45.9 Keq 2.2x105 5.4x107 Intracellular [ATP]/[ADP][Pi] = 500 or higher (“phosphorylation potential” ) ∆G = ∆Go’ + RTln[P]/[S] ∆G = - 30.5 + RTln 1/500 ∆G = - 30.5 + (- 15.4) = - 45.9 kJmol-1 Combination (coupling) of both reactions via an enzyme (hexokinase): ∆Go’ or ∆G (kJmol-1) Keq Glc + Pi Î Glc-6-P Intracellular conditions + H2O +13.9 +21.1 3.7x10-3 2.8x10-4 ATP + H2O Î ADP Intracellular conditions + Pi -30.5 -45.9 2.2x105 5.4x107 -16.6 -24.8 8.1x102 1.5x104 Glc + ATP Î Glc-6-P Intracellular conditions + ADP Note: Coupling of a reaction to ATP hydrolysis can shift its Keq up to 108 –fold !! (2.8x10-4 Î 1.5x104) Hexokinase (induced fit) Binding of glucose (red) The 1. Reaction of Glycolysis Example of a phosphoryl transfer or kinase reaction CHO H HO OH Glucose (Glc) NH2 ATP H H OH H OH N N O -O P O - O Enzyme N O O P O P O - O O O - H CH2O H N OH H OH Electrophile (P) Nucleophile (-OH) H+ p. 26 CHO NH2 H OH HO N N H O H OH H -O P O O P O P O - - N N O O- O O OH O H CH2O- OH H OH CHO NH2 H HO Glc-6-P OH ADP H O- H H OH OH CH2O O P O- OP N O O P O N O OH O N N OH H OH O- p. 26 (Liver) Aerobic Glycolysis (Overview) Fischer projection-open chain CHO H CHO OH H 1 HO CH2OH 2 H HO H OH H OH ATP ADP 3 HO H H OH H OH H OH H OH ATP ADP 5 H 6 CH2OPO32- CH2OPO32- 4 OH + OH 4 HC CH2OPO32- H Haworth projection GLC Ring form GLC-6-P CH2OPO32- CH2OH OH H OH OH H 2 H OH ATP H H OH ADP ATP HPO42NAD+ 6 OH OH G-3-P OH OH H 3 OH O CH2OPO32- O H OH H OH O3POH2C 5 5 6 CH OPO 22 3 F-1,6-bisP CH2OH O OH H OH 1 OH O3POH2C O H O H F-6-P DHAP 3 CH2OH H 4 H O O 3 HO H CH2OH 2 2 O OH 1 CH2OPO32- 1 CH2OPO32- H ADP NADH + H+ 2 Molecules -O - C O -O O C O 10 CH3 PYR C OPO32- ATP O ADP CH2 PEP H H2O C O 8 9 O OPO32- -O OPO32- CH2OH 2-PGA 7 H H OH CH2OPO32- 3-PGA ATP ADP 3,4 2,5 1,6 C O OH CH2OPO32- 1,3 bisPGA p. 25 Fischer projection-open chain CHO H OH H 1 HO CH2OH CHO 2 H H OH H OH CH2OH HO ATP O OH ADP HO H H H OH H OH H OH H OH CH2OPO32- CH2OPO32- Haworth projection Ring form GLC GLC-6-P Isomerization F-6-P Reaction 2: Phosphogluco isomerase or Glucose-6-P ketolisomerase (see p 24) p. 25 CH2OH 1 CH2OPO322 O 3 HO 1 CH2OPO32- H H OH H OH HO ATP ADP H H 3 4 5 6 CH2OPO32- 2 O O 4 3 CH2OH H OH + OH 4 HC CH2OPO32- DHAP H 5 5 O OH G-3-P Phosphorylation F-6-P F-1,6-bisP 6 CH OPO 22 3 Reaction 3: Phosphofructokinase-1 (PFK-1) or ATP:Fructose-6-P 1-phosphotransferase p. 25 CH2OH 1 CH2OPO322 O 3 HO H H OH H OH CH2OPO32- F-6-P p. 25 1 CH2OPO32- HO ATP ADP H H 3 4 5 6 2 O O 4 3 CH2OH H OH Cleavage F-1,6-bisP H 5 + 4 HC OH CH2OPO32- DHAP 5 O OH G-3-P 6 CH OPO 22 3 Reaction 4: Aldolase or Fructose-1,6-BisP glyceraldehyde-3-P lyase Aldol Cleavage in Glycolysis Requirements for cleavage: C-OH must be β to carbonyl carbon R1 R1 H C O C R5 O + R2 C R5 C R3 O R2 C R3 C O R4 H H R4 R1 R2 C O C R3 H p. 27 Aldol Cleavage in Glycolysis (Reaction No. 4) CH2OP βC HO H α O C H C O Rest HO CH2OP C O C H H H H C Rest O Reverse Reaction (Aldol Condensation) Condensation Requirements for condensation: H on C that is α to carbonyl carbon on substrate 1 (C-H acidic) and need for carbonyl group on substrate 2 Resonance stabilized Substrate 1 R1 R2 H C O C R3 R1 R1 R2 C O C R3 R2 C O C R3 H R1 H R5 C C O R2 C R3 R5 C OH O R4 Substrate 2 R4 p. 27 CH2OH 1 CH2OPO322 O 3 HO H H OH H OH CH2OPO32- F-6-P 1 CH2OPO32- HO ATP ADP H H 3 4 5 6 2 O O 4 3 CH2OH H OH + OH 4 HC CH2OPO32- F-1,6-bisP DHAP H 5 5 O OH G-3-P 6 CH OPO 22 3 Aldolase Reaction p. 25 R P Aldolase ∆Go’= + 23.9 kJ/mol ∆G = - 0.23 kJ/mol ∆Go’= - 14.2 kJ/mol ∆G = - 18.8 kJ/mol PFK-1 R Common In termediate P Aldolase ∆Go’= + 23.9 kJ/mol ∆G = - 0.23 kJ/mol ∆Go’= - 14.2 kJ/mol ∆G = - 18.8 kJ/mol Phosphogluco isomerase ∆Go’= + 1.7 kJ/mol ∆G = - 2.9 kJ/mol Hexokinase PFK-1 R Common In termediate ∆Go’= - 16.6 kJ/mol ∆G = - 24.8 kJ/mol P Aldolase ∆Go’= + 23.9 kJ/mol ∆G = - 0.23 kJ/mol ∆Go’= - 16.6 kJ/mol ∆G = - 24.8 kJ/mol ∆Go’= - 14.2 kJ/mol ∆G = - 18.8 kJ/mol Hexokinase PFK-1 R Common In termediate P Aldolase ∆Go’= + 23.9 kJ/mol ∆G = - 0.23 kJ/mol “ripple effect” Pyruvate Kinase ∆Go’= - 31.7 kJ/mol ∆G = - 23.0 kJ/mol CH2OH 1 CH2OPO322 O 3 HO H H OH H OH CH2OPO32- F-6-P 1 CH2OPO32- HO ATP ADP H H 3 4 5 6 2 O O 4 3 CH2OH H OH + OH 4 HC CH2OPO32- F-1,6-bisP DHAP H 5 5 O OH G-3-P 6 CH OPO 22 3 Reaction 5: Triose phosphate isomerase (ketolisomerase) p. 25 4 HC H 5 O OH G-3-P Reaction 6: The Big Deal! 6 CH OPO 22 3 23 HPO42+ NAD 6 Glyceraldehyde-3-P dehydrogenase or NADH + H+ Glyceraldehyde-3-P NAD+ oxidoreductase (phosphorylating) OPO32- H 3,4 2,5 1,6 C O OH CH2OPO32- 1,3 bisPGA p. 25 NAD(P)H: Safe and Soluble Carrier of “Hydrogen” H 2H O C H+ Hydride acceptor/donor N H O C NH2 (Nicotinamide) + H NH2 .. N R O -O P O O NADH or NADPH H H OH H OH H NH2 N N O N O P O N O H O- H H H OH OX NAD+ or NADP+ p. 28 ∆G/∆E Calculations on 6. Reaction in Glycolysis Summary of Chalk Board Calculations Glyceraldehyde-3-P + Pi + NAD+ Î 1,3-Bisphoshoglycerate + NADH + H+ Can be formally written as two reactions (coupled by enzyme): I. Glyceraldehyde-3-P + H2O + NAD+ Î 3-Phoshoglycerate + NADH + H+ II. 3-Phoshoglycerate + Pi Î 1,3-Bisphoshoglycerate + H2O Compare ∆Go’ of both reactions I. Glyceraldehyde-3-P + H2O + NAD+ Î 3-Phoshoglycerate + NADH + H+ Similar to oxidation of acetaldehyde to acetate (see Table 3, reactions 3 and 12) Acetaldehyde + H2O + NAD+ Î Acetate + NADH + H+ ∆Go’ = -nF∆Eo ∆Eo = EoOxidant – EoReductant ∆Eo = EoNAD+ – EoAcetaldehyde ∆Eo = - 0.32V – (-0.58V) ∆Eo = + 0.26V ∆Go’ = - 2 (electrons) x 96.5 kJmol-1V-1 x 0.26V ∆Go’ = - 50.2 kJmol-1 II. 3-Phoshoglycerate + Pi Î 1,3-Bisphoshoglycerate + H2O See Table 4 for ∆Go’ of Hydrolysis of 1,3-Bisphosphoglycerate (∆Go’ = - 49.6 kJmol-1) or Formation of 1,3-Bisphosphoglycerate (∆Go’ = + 49.6 kJmol-1) Conclusion: In a first approximation (because we are only looking at ∆Go’ values), the oxidation of glyceraldehyde-3-P to 3-phosphoglycerate yields about the same amount of energy (-50.2 kJmol-1) as is required to produce 1,3-bisphosphoglycerate from 3-phosphoglycerate and Pi (+49.6 kJmol-1). Again, these two reactions do not occur in isolation but are coupled or combined by the enzyme Glyceraldehyde-3-P Dehydrogenase. Therefore, the ∆Go’ (and in fact ∆G) of the overall reaction is close to zero.