Download Supplementary material Structure, Reactivity and Fragmentation of

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Supplementary material
Structure, Reactivity and Fragmentation of Small Multi-Charged Methane
Clusters
A. Sanaa Zaag, O. Yazidi and N.-E. Jaidane
Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA Université de Tunis
Al Manar, Tunis, Tunisia.
M. W. Ross a) and A.W. Castleman Jr.
Departments of Chemistry and Physics, The Pennsylvania State University, University Park, PA
16802, USA.
M. M. Al Mogren
Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451,
Kingdom of Saudi Arabia
R. Linguerri and M. Hochlaf a),*
Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, MSME UMR 8208
CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France.
___________________________________________________________________________
a) To whom correspondence should be addressed.
M.W.R: [email protected]
M.H. Tel. +33160957319. Fax: +33160957320. Electronic mail: [email protected]
S1
Full list of authors for reference 27
[27] Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.;
Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada,
M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;
Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;
Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell,
A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J.
E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V.
G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J.
B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
S2
Figure S1: Evolution of the MP2/aug-cc-pVTZ vertical ionization energies vs. the number of methane
molecules within the cluster.
S3
Figure S2: Ion signal vs. laser intensity plot of the high charge states of methane. All species shown have similar ionization patterns indicated
that they are generated from Coulomb explosion and are correlated.
S4
Table S1: Final equilibrium structures of methane clusters (CH4)nq+ (n=1-4; q=0-4) and fragments. The starting points for these optimizations were the
equilibrium geometry of the corresponding neutral species in their electronic ground states. We give also the structures of CH5q+ (q=0-4) and fragments. These
calculations are performed at the (R)MP2/aug-cc-pVXZ (X=D,T) level of theory. The upper subscripts at the left side of the molecular formula correspond to
the spin multiplicities. * Single point RMP2 energies evaluated at the CASSCF/aug-cc-pVDZ optimized molecular geometry, because of the
multiconfigurational nature of the corresponding wavefunctions. EAVDZ and EAVTZ (in Hartree) correspond to the total energies at the (R)MP2/aug-cc-pVDZ
and (R)MP2/aug-cc-pVTZ levels, respectively.
CH4q+
Species
*
1
CH4
2
CH4+
1
CH42+
Final
state
Species
Final
state
EAVDZ = -40.36772651
EAVTZ = -40.41445915
4
CH43+
EAVDZ = -38.39295739
EAVTZ = -38.41735906
EAVDZ = -39.90624290
EAVTZ = -39.94665662
6
CH43+
EAVDZ = -39.18490283
EAVTZ = -39.21873145
1
CH44+
EAVDZ = -37.99055881
EAVTZ = -38.00518101
EAVDZ = -37.33910881
EAVTZ = -37.35895574
S5
2
CH43+
EAVDZ = -38.53750041
EAVTZ = -38.56624425
3
CH44+
EAVDZ = -36.73289547
EAVTZ = -36.75220651
Species
1
CH5+
2
CH5q+
CH52+
1
CH53+ a)
DELL:Chemistry/ABINITIO/CH4_n/final/CH53+/ch5_3p_sing_
avtz.eps
Final
state
EAVDZ = -39.77934109
EAVTZ =-39.81665909
EAVDZ = -40.57830351
EAVTZ = -40.62549928
1
Species
EAVDZ = -38.74548030
EAVTZ = -38.77641451
2
CH54+ b)
DELL:Chemistry/ABINITIO/CH4_n/final/CH5
4+/
ch5_4p_doub_avtz.eps
EAVDZ = -37.83480973
EAVTZ = -37.86086186
CH55+ b)
Final
state
EAVDZ = -37.50989644
EAVTZ = -37.53228804
Species
Final
state
1
(CH4)2
EAVDZ = -80.73697192
EAVTZ = -80.82987769
2
(CH4)2+
(CH4)2q+
EAVDZ = -80.30506775
EAVTZ = -80.39175244
1
(CH4)22+
EAVDZ = -79.78178545
EAVTZ = -79.86549834
S6
3
(CH4)22+
EAVDZ = -79.62051992
EAVTZ = -79.69883657
1
Species
(CH4)22+
Final
state
EAVDZ = -79.89442917
EAVTZ = -79.97675012
1
Species
(CH4)3
3
(CH4)22+
2
EAVDZ = -79.77228794
EAVTZ = -79.85251419
2
(CH4)3+
(CH4)23+
EAVDZ = -79.02419822
EAVTZ = -79.09793604
(CH4)3q+
1
(CH4)32+
1
(CH4)24+
EAVDZ = -78.10962422
EAVTZ = -78.18043277
2
(CH4)33+ *
Final
state
EAVDZ = -121.10709540
EAVTZ = -121.24583755
Species
1
EAVDZ = -120.31515268
EAVTZ = -120.44606209
EAVDZ = -120.6797614
EAVTZ = -120.8120696
(CH4)34+ *
Final
state
EAVDZ = -118.51492980
EAVTZ = -118.57448969
S7
EAVDZ = - 119.29894859
EAVTZ = -119.42560708
1
Species
(CH4)4
1
(CH4)4q+
(CH4)4
2
(CH4)4+
1
(CH4)42+
Final
state
EAVDZ = -161.47758139
EAVTZ = -161.66196621
Species
2
(CH4)43+
EAVDZ = -161.05257874
EAVTZ = -161.23227690
EAVDZ =-161.47802815
EAVTZ =-161.66243328
4
(CH4)43+
1
EAVDZ = -160.68971428
EAVTZ = -160.86706161
(CH4)44+
Final
state
EAVDZ = -160.06318320
EAVTZ = -160.22988320
EAVDZ = -158.92662333
EAVTZ = -159.03741878
EAVDZ = -160.08302101
EAVTZ = -160.24976396
a) Olah and co-workers [18-22] found a stable CH53+ trication at the MP2/6-31G** and QCISD (T)/6-311G** levels. Our calculations confirm the
existence of a stable CH53+.
b) Several initial configurations were tested as starting points on the 2CH54+ and 1CH55+ potential energy surfaces.
S8
Related documents