Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Supplementary material Structure, Reactivity and Fragmentation of Small Multi-Charged Methane Clusters A. Sanaa Zaag, O. Yazidi and N.-E. Jaidane Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA Université de Tunis Al Manar, Tunis, Tunisia. M. W. Ross a) and A.W. Castleman Jr. Departments of Chemistry and Physics, The Pennsylvania State University, University Park, PA 16802, USA. M. M. Al Mogren Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451, Kingdom of Saudi Arabia R. Linguerri and M. Hochlaf a),* Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France. ___________________________________________________________________________ a) To whom correspondence should be addressed. M.W.R: [email protected] M.H. Tel. +33160957319. Fax: +33160957320. Electronic mail: [email protected] S1 Full list of authors for reference 27 [27] Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. S2 Figure S1: Evolution of the MP2/aug-cc-pVTZ vertical ionization energies vs. the number of methane molecules within the cluster. S3 Figure S2: Ion signal vs. laser intensity plot of the high charge states of methane. All species shown have similar ionization patterns indicated that they are generated from Coulomb explosion and are correlated. S4 Table S1: Final equilibrium structures of methane clusters (CH4)nq+ (n=1-4; q=0-4) and fragments. The starting points for these optimizations were the equilibrium geometry of the corresponding neutral species in their electronic ground states. We give also the structures of CH5q+ (q=0-4) and fragments. These calculations are performed at the (R)MP2/aug-cc-pVXZ (X=D,T) level of theory. The upper subscripts at the left side of the molecular formula correspond to the spin multiplicities. * Single point RMP2 energies evaluated at the CASSCF/aug-cc-pVDZ optimized molecular geometry, because of the multiconfigurational nature of the corresponding wavefunctions. EAVDZ and EAVTZ (in Hartree) correspond to the total energies at the (R)MP2/aug-cc-pVDZ and (R)MP2/aug-cc-pVTZ levels, respectively. CH4q+ Species * 1 CH4 2 CH4+ 1 CH42+ Final state Species Final state EAVDZ = -40.36772651 EAVTZ = -40.41445915 4 CH43+ EAVDZ = -38.39295739 EAVTZ = -38.41735906 EAVDZ = -39.90624290 EAVTZ = -39.94665662 6 CH43+ EAVDZ = -39.18490283 EAVTZ = -39.21873145 1 CH44+ EAVDZ = -37.99055881 EAVTZ = -38.00518101 EAVDZ = -37.33910881 EAVTZ = -37.35895574 S5 2 CH43+ EAVDZ = -38.53750041 EAVTZ = -38.56624425 3 CH44+ EAVDZ = -36.73289547 EAVTZ = -36.75220651 Species 1 CH5+ 2 CH5q+ CH52+ 1 CH53+ a) DELL:Chemistry/ABINITIO/CH4_n/final/CH53+/ch5_3p_sing_ avtz.eps Final state EAVDZ = -39.77934109 EAVTZ =-39.81665909 EAVDZ = -40.57830351 EAVTZ = -40.62549928 1 Species EAVDZ = -38.74548030 EAVTZ = -38.77641451 2 CH54+ b) DELL:Chemistry/ABINITIO/CH4_n/final/CH5 4+/ ch5_4p_doub_avtz.eps EAVDZ = -37.83480973 EAVTZ = -37.86086186 CH55+ b) Final state EAVDZ = -37.50989644 EAVTZ = -37.53228804 Species Final state 1 (CH4)2 EAVDZ = -80.73697192 EAVTZ = -80.82987769 2 (CH4)2+ (CH4)2q+ EAVDZ = -80.30506775 EAVTZ = -80.39175244 1 (CH4)22+ EAVDZ = -79.78178545 EAVTZ = -79.86549834 S6 3 (CH4)22+ EAVDZ = -79.62051992 EAVTZ = -79.69883657 1 Species (CH4)22+ Final state EAVDZ = -79.89442917 EAVTZ = -79.97675012 1 Species (CH4)3 3 (CH4)22+ 2 EAVDZ = -79.77228794 EAVTZ = -79.85251419 2 (CH4)3+ (CH4)23+ EAVDZ = -79.02419822 EAVTZ = -79.09793604 (CH4)3q+ 1 (CH4)32+ 1 (CH4)24+ EAVDZ = -78.10962422 EAVTZ = -78.18043277 2 (CH4)33+ * Final state EAVDZ = -121.10709540 EAVTZ = -121.24583755 Species 1 EAVDZ = -120.31515268 EAVTZ = -120.44606209 EAVDZ = -120.6797614 EAVTZ = -120.8120696 (CH4)34+ * Final state EAVDZ = -118.51492980 EAVTZ = -118.57448969 S7 EAVDZ = - 119.29894859 EAVTZ = -119.42560708 1 Species (CH4)4 1 (CH4)4q+ (CH4)4 2 (CH4)4+ 1 (CH4)42+ Final state EAVDZ = -161.47758139 EAVTZ = -161.66196621 Species 2 (CH4)43+ EAVDZ = -161.05257874 EAVTZ = -161.23227690 EAVDZ =-161.47802815 EAVTZ =-161.66243328 4 (CH4)43+ 1 EAVDZ = -160.68971428 EAVTZ = -160.86706161 (CH4)44+ Final state EAVDZ = -160.06318320 EAVTZ = -160.22988320 EAVDZ = -158.92662333 EAVTZ = -159.03741878 EAVDZ = -160.08302101 EAVTZ = -160.24976396 a) Olah and co-workers [18-22] found a stable CH53+ trication at the MP2/6-31G** and QCISD (T)/6-311G** levels. Our calculations confirm the existence of a stable CH53+. b) Several initial configurations were tested as starting points on the 2CH54+ and 1CH55+ potential energy surfaces. S8