Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Lecture 4 Glycolysis (Embden-Meyerhof Pathway) Cleavage of glucose and Substrate-level phosphorylation of ADP to ATP Background material Gibbs Free Energy •ΔG = ΔH - TΔS •ΔG = RTlnQ – RTlnKeq •ΔGo’ = – RTlnKeq •ΔG = ΔGo’ + RTlnQ Reduction potential •ΔE = Eoxidant – Ereductant •ΔE = – ΔG/nF Q = [Preal]/[Rreal] T = 298K (25oC) Table 4 Table 3 Enzymes •Amino acids and their reactions •Classification •Regulation The “Powertrain” of Human Metabolism (Overview) CARBOHYDRATES Glucose PROTEINS LIPIDS Amino acids Fatty acids Oxaloacetate O2 Glycogen Glucose-6-P Pyruvate Acetyl-CoA CO2 Glycolysis Lactate Ribose-5-P NADPH NADH ATP H2O Ketone bodies Cholesterol NADH p. 21 Aerobic Glycolysis (Overview) Fischer projection-open chain CHO H CHO OH H 1 HO CH2OH 2 H HO H OH H OH ATP ADP 3 HO H H OH H OH H OH H OH ATP ADP 5 H 6 CH2OPO32- CH2OPO32- 4 OH + OH 4 HC CH2OPO32- H Haworth projection GLC Ring form GLC-6-P CH2OPO32- CH2OH OH H OH OH H 2 H OH ATP H H OH ADP ATP HPO42NAD+ 6 OH OH G-3-P OH OH H 3 OH O CH2OPO32- O H OH H OH O3POH2C 5 5 6 CH OPO 22 3 F-1,6-bisP CH2OH O OH H OH 1 OH O3POH2C O H O H F-6-P DHAP 3 CH2OH H 4 H O O 3 HO H CH2OH 2 2 O OH 1 CH2OPO32- 1 CH2OPO32- H ADP NADH + H+ 2 Molecules -O - C O -O O C O 10 CH3 PYR C OPO32- ATP O ADP CH2 PEP H H2O C O 8 9 O OPO32- -O OPO32- CH2OH 2-PGA 7 H H OH CH2OPO32- 3-PGA ATP ADP 3,4 2,5 1,6 C O OH CH2OPO32- 1,3 bisPGA p. 25 Cellular Logic Why add a phosphate? CHO CHO H HO H H OH H H HO OH H OH H CH2OH Cell glucose level ~ 4 - 5 mM Blood glucose level ~ 5 mM OH H OH OH CH2OH Cellular Logic Why add a phosphate? 1. Prevents reverse diffusion through GluT. 2. Prevents diffusion through plasma membrane. 3. Maintains the Glucose concentration gradient. 4. Binds to enzymes better (recognition tag). The 1. Reaction of Glycolysis Enzyme Class: Transferase Specifically, phosphotransferase or “kinase” CHO H HO OH Glucose (Glc) NH2 ATP H H OH H OH N N O -O P O - O Enzyme N O O P O P O - O O O - H CH2O H N OH H OH Electrophile (P) Nucleophile (-OH) H+ p. 24,26 CHO NH2 H OH HO N N H O H OH H -O P O O P O P O - - N N O O- O O OH O H CH2O- OH H OH CHO NH2 H HO Glc-6-P OH ADP H O- H H OH OH CH2O O P O- OP O- N O O P O N O OH O N N OH H OH Energy coupling… p. 26 ΔG Calculations on 1. Reaction in Glycolysis (Phosphorylation of Glucose) Summary of Chalk Board Calculations ΔGo’ or ΔG (kJmol-1) Glc + Pi Î Glc-6-P + 5 mM 1 mM 0.083 mM H2O +13.9 +21.1 Keq 3.7x10-3 2.8x10-4 (intracellular concentrations) ΔGo’ = –RTlnKeq Keq = e^(-ΔGo’/RT) = e^(-13,900 Jmol-1/8.315 Jmol-1K-1 x 298 K) = 0.0037 ΔG = ΔGo’ + RTln[P]/[S] ΔG = +13.9 kJmol-1 + (8.315 Jmol-1K-1 x 310 K) x ln[83 x10-6]/[5 x 10-3][1 x 10-3] ΔG = +13.9 kJmol-1 + (2.578 kJmol-1) x 2.81 ΔG = +13.9 + 7.2 = +21.1 kJmol-1 (intracellular conditions are even more unfavorable than standard conditions for the reaction to proceed as desired) Q: How to drive glucose phosphorylation forward despite large positive ΔG? A: Couple to much more favorable reaction (larger negative ΔG) such as to the hydrolysis of ATP!! ΔGo’ or ΔG (kJmol-1) ATP + H2O Î ADP + Pi -30.5 -46.5 Keq 2.2x105 6.8x107 Intracellular [ATP]/[ADP][Pi] = 500 or higher (“phosphorylation potential” ) ΔG = ΔGo’ + RTln[P]/[S] ΔG = - 30.5 + RTln 1/500 ΔG = - 30.5 + (- 15.4) = - 46.5 kJmol-1 Combination (coupling) of both reactions via an enzyme (hexokinase): ΔGo’ or ΔG (kJmol-1) Keq Glc + Pi Î Glc-6-P Intracellular conditions + H2O +13.9 +21.1 3.7x10-3 2.8x10-4 ATP + H2O Î ADP Intracellular conditions + Pi -30.5 -46.5 2.2x105 6.8x107 -16.6 -25.4 8.1x102 1.9x104 Glc + ATP Î Glc-6-P Intracellular conditions + ADP Note: Coupling of a reaction to ATP hydrolysis can shift its Keq up to 108 –fold !! (2.8x10-4 Î 1.9x104) Hexokinase (induced fit) Isoenzymes: catalyze the same reaction but differ in properties (Liver) Aerobic Glycolysis (Overview) Fischer projection-open chain CHO H CHO OH H 1 HO CH2OH 2 H HO H OH H OH ATP ADP 3 HO H H OH H OH H OH H OH ATP ADP 5 H 6 CH2OPO32- CH2OPO32- 4 OH + OH 4 HC CH2OPO32- H Haworth projection GLC Ring form GLC-6-P CH2OPO32- CH2OH OH H OH OH H 2 H OH ATP H H OH ADP ATP HPO42NAD+ 6 OH OH G-3-P OH OH H 3 OH O CH2OPO32- O H OH H OH O3POH2C 5 5 6 CH OPO 22 3 F-1,6-bisP CH2OH O OH H OH 1 OH O3POH2C O H O H F-6-P DHAP 3 CH2OH H 4 H O O 3 HO H CH2OH 2 2 O OH 1 CH2OPO32- 1 CH2OPO32- H ADP NADH + H+ 2 Molecules -O - C O -O O C O 10 CH3 PYR C OPO32- ATP O ADP CH2 PEP H H2O C O 8 9 O OPO32- -O OPO32- CH2OH 2-PGA 7 H H OH CH2OPO32- 3-PGA ATP ADP 3,4 2,5 1,6 C O OH CH2OPO32- 1,3 bisPGA p. 25 Fischer projection-open chain CHO H OH H 1 HO CH2OH CHO 2 H H OH H OH HO ATP O OH ADP CH2OH HO H H H OH H OH H OH H OH CH2OPO32- CH2OPO32- Haworth projection Ring form GLC GLC-6-P Isomerization F-6-P Reaction 2: Phosphogluco isomerase or Glucose-6-P ketolisomerase (see p 24) ΔGo’ = 1.67 kJ/mol ΔG = - 2.92 kJ/mol p. 25 CH2OH 1 CH2OPO322 O 3 HO 1 CH2OPO32- H H OH H OH HO ATP ADP H H CH2OPO32- 3 4 5 6 2 O O 4 3 CH2OH H OH + OH 4 HC CH2OPO32- DHAP H 5 5 O OH G-3-P Phosphorylation F-6-P F-1,6-bisP 6 CH OPO 22 3 Reaction 3: Phosphofructokinase-1 (PFK-1) or ATP:Fructose-6-P 1-phosphotransferase ΔGo’ = -14.2 kJ/mol ΔG erythrocyte = -18.8 kJ/mol p. 25 CH2OH 1 CH2OPO322 O 3 HO H H OH H OH CH2OPO32- F-6-P 1 CH2OPO32- HO ATP ADP H H 3 4 5 6 2 O O 4 3 CH2OH H OH Cleavage F-1,6-bisP H 5 + 4 HC OH CH2OPO32- DHAP 5 O OH G-3-P 6 CH OPO 22 3 Reaction 4: Aldolase or Fructose-1,6-BisP glyceraldehyde-3-P lyase p. 25 ΔGo’ = +23.9 kJ/mol ΔG = -0.23 kJ/mol Aldol Cleavage in Glycolysis (Reaction No. 4) CH2OP βC HO H α O C H C O Rest HO CH2OP C O C H H H H C Rest O Aldol Cleavage in Glycolysis Requirements for cleavage: C-OH must be β to carbonyl carbon R1 R1 H C R2 R5 αC β C O C R5 O + R3 O R2 C R3 C O R4 H H R4 R1 R2 C O C R3 H p. 27 Reverse Reaction (Aldol Condensation) Condensation Requirements for condensation: H on C that is α to carbonyl carbon on substrate 1 (C-H acidic) and need for carbonyl group on substrate 2 Resonance stabilized Substrate 1 R1 R2 H C O C R3 R1 R1 R2 C O C R3 R2 C O C R3 H R1 H R5 C C O R2 C R3 R5 C OH O R4 Substrate 2 R4 p. 27 F-1,6-BP DHAP G3P How can we force this reaction to go forward?? Aldolase ΔGo’= + 23.9 kJ/mol Le Chatelier's Principle ΔGo’= - 14.2 kJ/mol ΔG = - 18.8 kJ/mol PFK-1 F6P Common Intermediate F-1,6-BP DHAP G3P Aldolase ΔGo’= + 23.9 kJ/mol ΔGo’= - 14.2 kJ/mol ΔG = - 18.8 kJ/mol Phosphogluco isomerase ΔGo’= + 1.7 kJ/mol ΔG = - 2.9 kJ/mol Hexokinase PFK-1 F6P F-1,6-BP ΔGo’= - 16.6 kJ/mol ΔG = - 24.8 kJ/mol DHAP G3P Aldolase ΔGo’= + 23.9 kJ/mol ΔGo’= - 16.6 kJ/mol ΔG = - 24.8 kJ/mol ΔGo’= - 14.2 kJ/mol ΔG = - 18.8 kJ/mol Hexokinase PFK-1 F6P F-1,6-BP DHAP G3P Aldolase ΔGo’= + 23.9 kJ/mol ΔG = - 0.23 kJ/mol “ripple effect” Pyruvate Kinase ΔGo’= - 31.7 kJ/mol ΔG = - 23.0 kJ/mol CH2OH 1 CH2OPO322 O 3 HO H H OH H OH CH2OPO32- F-6-P 1 CH2OPO32- HO ATP ADP H H 3 4 5 6 2 O O 4 3 CH2OH H OH + OH 4 HC CH2OPO32- F-1,6-bisP DHAP H 5 5 O OH G-3-P 6 CH OPO 22 3 Reaction 5: Triose phosphate isomerase (ketolisomerase) For first 5 rxns, the total ΔGo’ = +2.2 kJ/mol ΔG = -53.4 kJ/mol p. 25 4 HC H 5 O OH G-3-P Reaction 6: The Big Deal! 6 CH OPO 22 3 23 HPO42+ NAD 6 Glyceraldehyde-3-P dehydrogenase or NADH + H+ Glyceraldehyde-3-P NAD+ oxidoreductase (phosphorylating) OPO32- H 3,4 2,5 1,6 C O OH CH2OPO32- 1,3 bisPGA p. 25 The Mechanism of Reaction 6 Role of Thioesters in Energy Transduction Disclaimer: Do NOT memorize mechanism, understand what happens here! Esters versus Thioesters δ− δ− O R1 C O O R2 Ester Resonance stabilization R1 C O δ− R2 δ− O R1 C No resonance stabilization of thioesters (more “strained” molecules) S Thioester R2 Therefore, ΔGo’ of thioester hydrolysis is highly negative (about –30 kJ/mol). See Table 4. Mechanism of Glyceraldehyde-3-P Dehydrogenase CH2OPO3 2CHOH H C O- SH HC H O OH B + NAD+ + S NAD+ BH Enzyme CH2OPO32- Glyceraldehyde-3-P CH2OPO32CHOH Hydride removal to NAD+ H C O- S + NAD+ HB p. 29 CH2OPO3 2- CH2OPO32- CHOH CHOH C O C O O + S NAD+ + S HB HB -O P OH + O- NAD NADH Thioester-linked substrate SH 2O3PO C H NADH NAD+ O OH + B Enzyme + H+ CH2OPO32- 1,3-Bisphosphoglycerate Redox reaction p. 29 NAD(P)H: Safe and Soluble Carrier of “Hydrogen” From vitamin B (niacin) H 2H O C H+ C Hydride acceptor/donor N H O NH2 (Nicotinamide) + H NH2 .. N R O -O P O O Ribose H H OH H OH H NH2 N N O N O P O Adenine N O H O- PPi NADH or NADPH H H H OH OX NAD+ or NADP+ Ribose Dehydrogenases p. 28 ΔG/ΔE Calculations on 6. Reaction in Glycolysis Summary of Chalk Board Calculations Glyceraldehyde-3-P + Pi + NAD+ Î 1,3-Bisphoshoglycerate + NADH + H+ Can be formally written as two reactions (coupled by enzyme): I. Glyceraldehyde-3-P + H2O + NAD+ Î 3-Phoshoglycerate + NADH + H+ II. 3-Phoshoglycerate + Pi Î 1,3-Bisphoshoglycerate + H2O Compare ΔGo’ of both reactions I. Glyceraldehyde-3-P + H2O + NAD+ Î 3-Phoshoglycerate + NADH + H+ Similar to oxidation of acetaldehyde to acetate (see Table 3, reactions 3 and 12) Acetaldehyde + H2O + NAD+ Î Acetate + NADH + H+ ΔGo’ = -nFΔEo ΔEo = EoOxidant – EoReductant ΔEo = EoNAD+ – EoAcetaldehyde ΔEo = - 0.32V – (-0.58V) ΔEo = + 0.26V ΔGo’ = - 2 (electrons) x 96.5 kJmol-1V-1 x 0.26V ΔGo’ = - 50.2 kJmol-1 II. 3-Phoshoglycerate + Pi Î 1,3-Bisphoshoglycerate + H2O See Table 4 for ΔGo’ of Hydrolysis of 1,3-Bisphosphoglycerate (ΔGo’ = - 49.6 kJmol-1) or Formation of 1,3-Bisphosphoglycerate (ΔGo’ = + 49.6 kJmol-1) Conclusion: In a first approximation (because we are only looking at ΔGo’ values), the oxidation of glyceraldehyde-3-P to 3-phosphoglycerate yields about the same amount of energy (-50.2 kJmol-1) as is required to produce 1,3-bisphosphoglycerate from 3-phosphoglycerate and Pi (+49.6 kJmol-1). Again, these two reactions do not occur in isolation but are coupled or combined by the enzyme Glyceraldehyde-3-P Dehydrogenase. Therefore, the ΔGo’ (and in fact ΔG) of the overall reaction is close to zero.