Download 3 Molecular Biology of Parasitic Protozoa

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
3
Molecular Biology of
Parasitic Protozoa
EDITED BY
Deborah F. Smith
Department of Biochemistry
Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
and
Marilyn Parsons
Seattle Biomedical Research Institute,
4 Nickerson Street, Seattle, WA 98109-1651 USA
and
Department ofPathobiology, School of Public Health and
Community Medicine, University of Washington, Seattle WA 98195 USA
Technfscfie Universitat Darmstadt
FACHBEREICH 10 — BIOLOGIE
— Bibliothek —
SchnittspahnstraGe 10
D-6 4 2 8 7 D a r m s t a d t
lnv,Nr.
OIRLatPRESS
OXFORD UNIVERSITY PRESS
Oxford New York Tokyo
Contents
List of contributors
xii
Abbreviations
xv
1 Introduction
1
DEBORAH F. SMITH and MARILYN PARSONS
f
2 Trypanosomatid genetics
6
JOHN SWINDLE and ANDREW TAIT
1 Introduction
2 Ploidy and genome size
3 Genetic analysis
3.1 Genetic exchange
3.2 Genetic exchange in natural populations
4 Molecular karyotype
4.1 Trypanosoma cruzi karyotype
4.2 Leishmania spp. karyotype
4.3 Trypanosoma brucei karyotype
5 Gene organization
6 Requirements for gene expression
7 DNA-mediated transformation systems
8 Transient transfection systems
8.1 Transient expression vectors
8.2 Reporter genes
8.3 Promoters and mRNA processing
8.4 Methods of transformation
8.5 Applications of transient transfection
9 Stable transformation
9.1 Selectable markers
9.2 Integrative transformation
9.3 Episomal transformation
9.4 Inducible gene expression
.
6
7
8
8
10
11
12
12
14
14
16
18
19
19
19
20
21
21
22
22
22
24
24
vi CONTENTS
10 Conclusion
References
3 The three genomes of Plasmodium
25
26
35
JEAN E. FEAGIN and MICHAEL LANZER
1 Introduction
2 Nuclear genomic organization
2.1 Polymorphisms at chromosome ends
2.2 Repetitive elements in subtelomeric domains
2.3 Chromatin structure and breakage sites
3 Biological ramifications of chromosomal polymorphism
3.1 Chromosomal rearrangements and antigenic variation
3.2 Sexual recombination and genetic diversity
4 Subtelomeric organization and chromosome pairing
5 The extrachromosomal DNAs
5.1 The mitochondrial genome
5.2 Mitochondrial expression and function
5.3 The putative plastid genome
5.4 Expression and function of the 35kb DNA
5.5 Extrachromosomal DNA inheritance
6 Conclusions
References
4 Toxoplasma as a model genetic system
35
36
37
38
39
41
41
42
42
43
43
44
45
47
48
48
48
55
L. DAVID SIBLEY, DAN K. HOWE, KIEW-LIAN WAN, SHAHID KHAN,
MARTIN A. ASLETT and JAMES W. AJIOKA
1 Introduction
1.1 Advantages of Toxoplasma as a model genetic system
1.2 Life cycle of Toxoplasma
1.3 Human infection and pathogenesis
2 Genomic organization
2.1 The genomes
"
2.2 The genes
2.3 Repetitive DNAs
2.4 Gene expression
2.5 Stage-specific gene expression
3 Population genetic structure
55
55
55
56
57
57
57
58
58
59
59
CONTENTS | vii
3.1 Strain-specific antigenic markers
3.2 Polymorphic isoenzyme and DNA markers
3.3 The clonal population structure of Toxoplasma
4 Classical genetic analyses
4.1 Tools for in vitro analysis
4.2 Use of drug resistance markers in genetic crosses
4.3 RFLP linkage studies
5 Genome mapping
5.1 Physical mapping, construction of contigs and mapping of cDNAs
5.2 Physical mapping of parasite genomes
5.3 Database development
6 Molecular genetics
6.1 DNA transfection
'
6.2 Stable transformation
/
6.3 Targeted gene disruption
'
7 Future developments
References
5 Kinetoplast DNA: structure and replication
'
59
59
60
60
60
61
61
62
63
64
64
65
66
66
67
68
68
75
PAUL T. ENGLUND, D. LYS GUILBRIDE, KUO-YUAN HWA, CATHARINE E. JOHNSON,
CONGJUN LI, LAURA J. ROCCO and AL F. TORRI
1 Introduction
2 Structure of a kDNA network
2.1 The isolated network
2.2 Organization of the network in vivo
2.3 Conditions required for network formation
3 Replication of the kDNA network
3.1 Free minicircles
3.2 Structure of a replicating network
3.3 Distribution of newly synthesized minicircles around the network
periphery
3.4 The spinning kinetoplast model
3.5 Changes in minicircle valence during replication
3.6 Final stages of network replication
4 A closer look at the replication of minicircles and maxicircles
4.1 Minicircle replication
4.2 Maxicircle replication
References
75
76
76
77
78
78
78
79
81
81
83
83
85
85
85
86
viii
CONTENTS
6 Developmental regulation of gene expression in
African trypanosomes
88
ETIENNE PAYS and LUC VANHAMME
1 Introduction
88
1.1 A model: Trypanosoma brucei
88
1.2 Transcription units of the genes for the major stage-specific
antigens of T. brucei
90
1.3 Possible levels of control for gene expression
*
92
2 Promoters and the control of transcription initiation
93
2.1 The few promoters known
94
2.2 Regulation of promoter activity
95
2.3 Influence of the chromosomal context
, 97
3 Transcription elongation and processing of the primary transcripts
98
3.1 RNA elongation
98
e
3.2 Trans-splicing and polyadenylation
98
3.3 The untranslated regions and RNA amounts
100
4 RNA translation and protein stability
100
4.1 Translational controls
100
4.2 Protein stability
.
100
5 Antigenic variation and novel mechanisms of gene regulation
101
5.1 In situ (in)activation of VSG expression sites
103
5.2 VSG gene rearrangements
103
5.3 Programming of VSG expression
104
5.4 Point mutations
105
5.5 Evolution of VSGs
106
6 Conclusions
107
Acknowledgements
107
References
"
107
7 Trans-splicing in trypanosomatid protozoa
115
ELISABETTATJLLU, CHRISTIAN TSCHUDI and ARTHUR GUNZL
1 Introduction
2 Mechanism of trans-splicing
2.1 Trans-spliceosomal U-snRNPs
2.2 U-snRNA interactions in trans-splicing.:
3 The substrates of trans-splicing
115
115
116
118
119
r
CONTENTS | ix
3.1 The spliced leader RNA: structure and function
3.2 Structure of the pre-mRNA
4 Functional role and consequences of frans-splicing
5 The physiology and regulation of trans-splicing
6 Evolutionary considerations
References
8 RNA editing: post-transcriptional restructuring of
genetic information
119
121
124
125
128
129
134
STEPHEN L. HAJDUK and ROBERT S. SABATINI
1 Introduction
1.1 RNA editing defined
/
1.2 Mechanisms of RNA processing
1.3 Kinetoplastid RNA editing
2 General aspects of kinetoplastid RNA editing
2.1 The mitochondrial genome of trypanosomes ^
2.2 Guiding of RNA editing
3 Biochemical mechanisms of RNA editing
3.1 Cleavage-ligation mechanism
3.2 Transesterification mechanism
3.3 TUTase addition mechanism
4 Involvement of mitochondrial RNPs in RNA editing
5 Function and origin of RNA editing
5.1 Role of RNA editing in regulation of gene expression
5.2 RNA editing is developmentally regulated
5.3 Evolutionary origin of kinetoplastid-RNA editing
References
134
135
135
136
140
140
143
144
144
145
147
148
150
150
152
152
153
9 Biogenesis of specialized organelles: glycosomes and
hydrogenosomes
159
JURG M. SOMMER, PETER J. BRADLEY, C. C. WANG and PATRICIA J. JOHNSON
1 Introduction
2 The glycosome
2.1 Morphology
159
160
160
x
CONTENTS
2.2 Function
2.3 Biogenesis
2.4 Glycosomal targeting signals
2.5 Glycosomal versus peroxisomal import
2.6 Mutational analysis of glycosome assembly
2.7 Glycosomal protein import as a potential target for chemotherapy
3 The hydrogenosome
3.1 Trichomonad hydrogenosomes
3.2 Morphology
*
3.3 Function
3.4 Biogenesis
3.5 Hydrogenosome-like organelles in other organisms
4 Conclusions
Acknowledgements
References
10 Mechanisms of drug resistance in protozoan
parasites
160
161
161
167
167
168
168
168
169
170
171
174
174
175
175
i8i
DYANN F. WIRTH and ALAN COWMAN
1 Emergence of drug resistance and its impact
2 Role of intrinsic genetic and biological components
3 Impact of drug resistance o n public health and disease
4 C o m m o n themes of resistance in protozoan parasites
5 Amplification and drug resistance
6 Mutations in target enzymes
7 Folate antagonists
8 Drug transport
9 Quinine-like antimalarials
10 Genetic characterization of chloroquine resistance
11 Drug resistance in Toxoplasma gondii
12 Metronidazole resistance
13 Conclusions and perspectives
•
References
181
182
182
183
183
185
185
187
191
192
194
195
196
196
CONTENTS
11 Glycosyl-phosphatidylinositols and the surface
architecture of parasitic protozoa
xi
205
MALCOLM J. McCONVILLE
1 Introduction
2 Structure of protozoan GPI protein anchors
3 Function of GPI protein anchors in the protozoa
3.1 Subcellular trafficking
3.2 Protein turnover
3.3 Lipase-mediated release
3.4 Maintenance of surface coats
3.5 Modulation of host signal transduction pathways
4 Protein-free GPI glycolipids in the trypanosomatids
4.1 Structure of the GIPLs and LPG in Leishmania parasites
4.2 Function of Leishmania LPG and GIPLs
4.3 Distribution of free GPIs in other protozoan parasites
5 Metabolism and biosynthesis of protozoan GPIs
5.1 Protein anchor biosynthesis
5.2 Biosynthesis of protein-free GPIs in Leishmania
6 Conclusion
References
Index
205
205
207
208
209
210
210
211
212
212
213
217
218
218
220
222
222
229
Related documents