Download 07_Trigonometric_Ratios

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
www.sakshieducation.com
Trigonometry
1.TRIGONOMETRIC RATIOS
→
1. If a ray OP makes an angle θ with the positive direction of X-axis then
y
x
ii) cos θ =
i) Sin θ =
r
r
x
y
iii) tan θ = (x ≠ 0)
iv) cot θ =
(y ≠ 0)
y
x
y
r
r
(x ≠ 0)
vi) cosec θ =
(y ≠ 0)
v) sec θ =
x
y
2. Relations :
i) sin θ cosec θ = 1
ii) cos θ sec θ = 1
O
iii) tan θ cot θ = 1
iv) sin2 θ + cos2 θ = 1
→ (sec θ + tan θ) (sec θ – tan θ) = 1.
v) 1 + tan2 θ = sec2 θ
1
→ sec θ + tan θ =
=1
sec θ − tan θ
vi) 1 + cot2 θ = cosec2 θ → (cosec θ + cot θ) (cosec θ – cot θ) = 1
1
→ cosec θ + cot θ =
cosec θ − cot θ
2
2
vii) sec θ + cosec θ = sec2 θ . cosec2 θ
viii) tan2 θ – sin2 θ = tan2 θ . sin2 θ;
cot2 θ – cos2 θ = cot2 θ . cos2 θ
ix) sin2 θ + cos4 θ = 1 – sin2 θ cos2 θ
= sin4 θ + cos2 θ
x) sin4 θ + cos4 θ = 1 – 2sin2 θ cos2 θ
xi) sin6 θ + cos6 θ = 1 – 3sin2 θ cos2 θ
xii) sin2 x + cosec2 x ≥ 2
xiii) cos2 x + sec2 x ≥ 2
xiv) tan2 x + cot2 x ≥ 2.
3. Values of trigonometric ratios of certain angles
↓
ratio
angle
→
sin
cos
0o
0
1
π/6
π/4
1/2 1/ 2
3/2 1/ 2
tan
0
1/ 3
cot
undefined
3
cosec undefined
2
sec
1
2/ 3
1
1
2
2
π/3
3/2
1/2
π/2
1
0
3 undefined
1/ 3
0
2/ 3
1
2
undefined
www.sakshieducation.com
P
r
y
θ
x
x
www.sakshieducation.com
4. Signs of Trigonometric ratios : If θ lies in I, II, III, IV quadrants then the signs of
trigonometric ratios are as follows.
II
90o < θ < 180o
sin θ and cosec θ
are (+)ve
I
0o < θ < 90o
all the ratios
are (+)ve
III
180o < θ < 270o
tan θ and cot θ
are (+)ve
IV
270o < θ < 360o
cos θ and sec θ
are (+)ve
Note : i) 0o, 90o, 180o, 270o. 360o, 450o, ….. etc. are called quadrant angles.
ii) With “ALL SILVER TEA CUPS” symbol we can remember the signs of
trigonometric ratios.
5. Coterminal angles : If two angles differ by an integral multiples of 360o then two angles
are called coterminal angles.
Thus 30o, 390o, 750o, 330o etc., are coterminal angles.
Fn
sin θ
cos θ
90 ∓ θ
cos θ
± sin θ
± cot θ
tan θ
cosec θ
sec θ
± cosec θ
sec θ
cot θ
± tan θ
180 ∓ θ
± sin θ
− cos θ
270 ∓ θ
− cos θ
∓ sin θ
360 ∓ θ
∓ sin θ
cos θ
∓ tan θ
∓ tan θ
± cot θ
± cosec θ − sec θ ∓ cosec θ
− sec θ ∓ cosec θ
sec θ
∓ cot θ
± tan θ
∓ cot θ
6. Complementary Angles : Two Angles A, B are said to complementary ⇒ A + B = 90o
7. Supplementary angles : Two angles A, B are said to be supplementary
⇒ A + B = 180o.
www.sakshieducation.com
www.sakshieducation.com
PROBLEMS
VSAQ’S
Convert the following into simplest form :
1. tan(θ – 14π)
Sol. –tan(14π – θ)
= tan[7 ⋅ 2π – θ] = –[–tan θ] = tan θ
2.
cosec (5π + θ)
Sol. cosec (5π + θ) = –cosec θ
(∵ cos ec(nπ + θ) = (−1) n cos ecθ)
⎛ 7π ⎞
Find the value of cos ⎜ − ⎟
⎝ 2 ⎠
7π
⎛ 7π ⎞
Sol. cos ⎜ − ⎟ = cos
=0
2
⎝ 2 ⎠
3.
(∵ cos(2n + 1)
π
= 0)
2
4. Find the value of cot(315°)
Sol. cot(315°) = – cot 315°
= –[cot 360° – 45°]
= – [– cot 45°]
= cot 45° = 1
5.
Evaluate
cos245° + cos2135° + cos2 225° + cos2 315°
1
Sol. cos 45° =
, cos135° = cos(180° − 45°)
2
www.sakshieducation.com
www.sakshieducation.com
= cos 45°
=−
1
2
cos 225° = cos(180° + 45°)
= cos 45°
=−
1
2
cos135° = cos(360° − 45°)
1
= cos 45°
=
2
Given expression
2
2
2
⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞
⎜
⎟ +⎜−
⎟ +⎜−
⎟ +⎜
⎟
2⎠ ⎝
2⎠ ⎝ 2⎠
⎝ 2⎠ ⎝
1 1 1 1
= + + + =2
2 2 2 2
2
6. cos 225° – sin 225° + tan 495° – cot 495°
Sol. cos 225° = cos(180° + 45°)
1
= cos 45° = −
2
sin 225° = sin(180° + 45°)
−1
2
tan 495° = tan[5(90°) + 45]
= − sin 45° =
= − cot 45° = −1
cot 495° = cot[5(90°) + 45°]
= − tan 45° = −1
G.E.
−1
2
−1
=
2
=
⎛ 1 ⎞
−⎜−
⎟ −1+1
2⎠
⎝
1
+
−1 +1 = 0
2
If cos θ = t (0 < t < 1) and θ does not lie in the first quadrant, find the value of (a) sinθ
(b) tan θ.
Sol. cos θ = t ⇒ lies in IV quadrant.
7.
x 2 = AC2 − BC2 = 1 − t 2
x = 1− t2
a) sin θ =
AB
= − 1− t2
AC
AB
1− t2
=−
b) tan θ =
BC
t
www.sakshieducation.com
www.sakshieducation.com
8.
1
and θ does not lie in third quadrant, find the values of
3
(i) cos θ (ii) cot θ
If sin θ = −
Solution:
1
θ does not lie in III Q
3
∴θ lies in IV Quadrant
sin θ = −
cos θ = 1 − sin 2 θ = 1 −
1 2 2
=
9
3
cos θ
=2 2
sin θ
9. Find the value of sin 3300 . cos1200 + cos 2100 . sin 3000
Solution:
1
sin 3300 = sin ( 3600 − 300 ) = − sin 300 = −
2
1
3
3
cos1200 = − cos 2100 = −
; sin 3000 = sin ( 3600 − 600 ) = −
2
2
2
1
1 ⎛
3⎞⎛
3⎞
sin 3300 cos1200 + cos 2100 . sin 3000 = − × − + ⎜⎜ −
⎟⎟ ⎜⎜ −
⎟ =1
2
2 ⎝ 2 ⎠ ⎝ 2 ⎟⎠
1
10. If cosec θ + cot θ = , find cos θ and determine the quadrant in which θ lies.
3
2
2
Sol. cosec θ – cot θ = 1
(cosec θ + cot θ) (cosec θ – cot θ) = 1
cosec θ – cot θ = 3
…(1)
1
…(2)
and cosec θ + cot θ =
3
From (1) + (2)
cosec θ – cot θ = 3
1
cosec θ + cot θ =
3
1 10
2cosec θ = 3 + =
3 3
10
cos ecθ =
6
6
sin θ =
16
cot θ =
From (1) – (2)
cosec θ – cot θ = 3
cosec θ + cot θ =
1
3
www.sakshieducation.com
www.sakshieducation.com
1 8
−2 cot θ = 3 − =
3 3
−8
8
=
cot θ = −
2×3 6
∴ cos θ = cot θ ⋅ sin θ =
−8 6 −4
× =
6 10 5
Thus sin θ is +ve and cos θ is –ve
Then θ lies in II quadrant.
11. If sec θ + tan θ = 5, find the quadrant in which θ lies and find the value of sin θ.
Sol. sec θ + tan θ = 5
…(1)
We know, sec2 θ – tan2 θ = 1
(sec θ + tan θ)(sec θ – tan θ) = 1
1
sec θ + tan θ
1
sec θ − tan θ =
...(2)
5
Adding (1), (2)
sec θ − tan θ =
sec θ + tan θ = 5
sec θ − tan θ =
1
5
1
5
25 + 1
2sec θ =
5
26 1
sec θ = ×
5 2
13
sec θ =
5
12
12
tan θ = , sin θ =
5
13
2sec θ = 5 +
∴ sin θ ⋅ sec θ and tan θ are positives
∴ θ lies in I quadrant.
www.sakshieducation.com
www.sakshieducation.com
1
12. If cos A = cos B = − : A does not lie in second quadrant B does not lie in third quadrant
2
4sin B − 4 tan A
find the value of
tan B + sin A
Solution:
1
cos A = cos B = − ;
A does not lie in II Q
2
∴ A lies in III Q
3
sin A = −
2
1
cos B = −
B does not lie in III Q
2
∴ B lies in II Q
sin B =
3
2
tan A = 3
4sin B − 3 tan A
=
tan B + sin A
13.
tan B = − 3
3
− 3× 3
3
2
2
=−
=
−3 3 3
3
− 3−
2
2
4×
π⎞
⎛
⎛ 3π
⎞
sin(3π − A) cos ⎜ A − ⎟ tan ⎜ − A ⎟
2⎠
⎝
⎝ 2
⎠ = − cos 4 A
13
π
π⎞
⎛
⎞
⎛
cos ec ⎜
+ A ⎟ sec(3π + A) cot ⎜ A − ⎟
2⎠
⎝ 2
⎠
⎝
Sol. sin(3π – A) = sin A
π⎞
⎛
⎛π
⎞
cos ⎜ A − ⎟ = cos ⎜ − A ⎟ = sin A
2⎠
⎝
⎝2
⎠
⎛ 3π
⎞
tan ⎜ − A ⎟ = cot A
⎝ 2
⎠
⎛ 13π
⎞
cos ec ⎜
+ A ⎟ = − sec A
⎝ 2
⎠
sec(3π + A) = − sec A
π⎞
⎛
⎛π
⎞
cot ⎜ A − ⎟ = − cot ⎜ − A ⎟ = − tan A
2⎠
⎝
⎝2
⎠
sin A ⋅ sin A ⋅ cot A
L.H.S. =
− sec A ⋅ − sec A ⋅ − tan A
cos A
sin 2 A ×
sin A
=
1
sin A
−
×
2
cos A cos A
cos3 A
= sin A cos A ×
= − cos 4 A
− sin A
www.sakshieducation.com
www.sakshieducation.com
14. cot ⎛⎜ π ⎞⎟ cot ⎛⎜ 3π ⎞⎟ cot ⎛⎜ 5π ⎞⎟ cot ⎛⎜ 7 π ⎞⎟ cot ⎛⎜ 9π ⎞⎟ = 1
⎝ 20 ⎠ ⎝ 20 ⎠ ⎝ 20 ⎠ ⎝ 20 ⎠ ⎝ 20 ⎠
1
⎛ π ⎞
Sol. cot ⎜ ⎟ = cot 9° =
tan 9°
⎝ 20 ⎠
1
⎛ 3π ⎞
cot ⎜ ⎟ = cot 27° =
tan 27°
⎝ 20 ⎠
⎛ 5π ⎞
cot ⎜ ⎟ = cot 45° = 1
⎝ 20 ⎠
⎛ 7π ⎞
cot ⎜ ⎟ = cot 63° = cot(90° − 27°) = tan 27°
⎝ 20 ⎠
⎛ 9π ⎞
cot ⎜ ⎟ = cot 81° = cot(90° − 9°) = tan 9°
⎝ 20 ⎠
π
3π
5π
7π
9π
cot cot cot
cot
20
20
20
20
20
1
1
=
⋅1⋅ tan 27°⋅ tan 9° = 1
tan 9° tan 27°
∴ cot
⎛ 11π ⎞
⎛ 35π ⎞ ⎛ 7 π ⎞
sin ⎜ −
⎟ tan ⎜
⎟ sec ⎜ − ⎟
3 ⎠
6 ⎠ ⎝ 3 ⎠
⎝
⎝
15. Simplify
.
⎛ 5π ⎞
⎛ 7π ⎞
⎛ 17π ⎞
cos ⎜ ⎟ cos ec ⎜ ⎟ cos ⎜
⎟
⎝ 4 ⎠
⎝ 4 ⎠
⎝ 6 ⎠
11π
⎛ 11π ⎞
Sol. sin ⎜ −
= − sin 660°
⎟ = − sin
3
⎝ 3 ⎠
= − sin(2 ⋅ 360° − 60°)
= sin 60° =
3
2
1
⎛ 35π ⎞
tan ⎜
⎟ = tan1050° = tan(3 ⋅ 360° − 30°) = − tan 30° = −
3
⎝ 6 ⎠
⎛ 7π ⎞
sec ⎜ − ⎟ = sec(−420°) = sec 420° = sec(360° + 60°) = sec 60° = 2
⎝ 3 ⎠
⎛ 5π ⎞
cos ⎜ ⎟
⎝ 4 ⎠
= cos(225°) = cos(180° + 45°) = cos 45° = −
⎛ 7π ⎞
csc ⎜ ⎟
⎝ 4 ⎠
= csc 315° = csc(360° − 45°) = − csc 45° = − 2
1
2
⎛ 17 π ⎞
cos ⎜
⎟ = cos 510° = cos(360° + 150°)
⎝ 6 ⎠
= cos100° = cos(180° − 30°) = − cos 30° = −
3
2
www.sakshieducation.com
www.sakshieducation.com
⎛ 3 ⎞ ⎛ −1 ⎞
⎜
⎟⎜
⎟ (2)
2
3
⎝
⎠
⎠
L.H.S. = ⎝
⎛
3⎞
⎛ −1 ⎞
(
2)
−
−
⎜
⎟
⎜
⎟
⎝ 2⎠
⎝ 2 ⎠
=
2
−1
=
= R.H.S.
3
− 3
2
tan 610° + tan 700° 1 − p 2
=
16. If tan 20° = p, prove that
.
tan 560° − tan 470° 1 + p 2
Sol.
tan 610° + tan 700°
tan 560° − tan 470°
tan(360° + 250°) + tan(360° + 340°)
=
tan(360° + 200°) − tan(360° + 110°)
tan 250° − tan 340°
tan 200° − tan110°
tan(270° − 20°) − tan(360° − 20°)
=
tan(180° + 20°) + tan(90° + 20°)
=
cot 20° − tan 20°
tan 20° + cot 20°
1
− tan 20°
°
tan
20
=
1
tan 20° +
tan 20°
=
1
1 − p2
−p
1 − p2
p
p
=
=
=
1 p2 + 1 p2 + 1
p+
p
p
∴
tan 610° + tan 700° 1 − p 2
=
tan 560° − tan 470° 1 + p 2
17. If α, β are complementary angles such that b sin α = a, then find the value of
(sin α cos β – cos α sin β).
Sol. α and β are complementary angles.
α + β = 90°
β = 90° – α
b sin α = a ⇒ sin α =
a
b
2
b2 − a 2
⎛a⎞
cos α = 1 – sin α = 1 − ⎜ ⎟ =
b2
⎝b⎠
2
2
www.sakshieducation.com
www.sakshieducation.com
b2 − a 2
cos α =
b
Since β = 90° – α
sin β = sin(90 − α) = cos α
∴ cos α = sin β
and α = 90° − β
sin α = sin(90° − β) = cos β
∴ cos β = sin α =
a
b
a
b
sin α cos β − cos α sin β
∴ cos β =
a a
b2 − a 2
b2 − a 2
= × −
×
b b
b
b
a 2 (b 2 − a 2 ) a 2 − b 2 + a 2 2a 2 − b 2
= 2−
=
=
b
b2
b2
b2
18. If cos θ + sin θ = 2 cos θ then prove that cos θ − sin θ = 2 sin θ
Solution:
cos θ + sin θ = 2 cos θ -------- (1) squaring and adding (1) & (2)
Let cos θ − sin θ = x -------(2)
( cos θ + sin θ )
2
+ ( cos θ − sin θ ) =
2
(
2 cos θ
⇒ 2 − 2 cos 2 θ = x 2 ⇒ x = 2 sin θ
)
2
+ x2
∴ cos θ − sin θ = 2 sin θ
19. If 8 tan A = 15 and 25 sin B = –7 and neither A nor B is in the fourth quadrant, then show
304
that sin A cos B + cos A sin B = −
.
425
Sol. 8 tan A = –15
15
tan A = −
8
A lies in II quadrant
15
−8
sin A = , cos A =
17
17
25sin B = −7
7
25
B lies in III quadrant
7
−24
sin B = − , cos B =
25
25
L.H.S. : sin A cos B + cos A sin B
sin B = −
www.sakshieducation.com
www.sakshieducation.com
15 −24 −8 −7 −3 × 24 −8 × −7
×
+ ×
=
+
17 25 17 25 17 × 5 17 × 25
−360 56 −304
=
+
=
425 425 425
π
4π
6π
9π
20. Prove that sin 2
+ sin 2
+ sin 2
+ sin 2
=2
10
10
10
10
Solution:
π
4π
6π
9π
sin 2
+ sin 2
+ sin 2
+ sin 2
10
10
10
10
π
π ⎞
⎛π π ⎞
⎛π π ⎞
⎛
sin 2 + sin 2 ⎜ − ⎟ + sin 2 ⎜ + ⎟ + sin 2 ⎜ π − ⎟
10
10 ⎠
⎝ 2 10 ⎠
⎝ 2 10 ⎠
⎝
π
π
π
π
π
π⎫
⎧
sin 2 + cos 2
+ cos 2 + sin 2 = 2 ⎨sin 2 + cos 2 ⎬ = 2
10
10
10
10
10
10 ⎭
⎩
=
= sin 2
21. If tan 200 = λ then show that
22. If sec θ + tan θ =
π
10
+ cos 2
π
10
=1
tan 1600 − tan1100 1 − λ 2
=
1 + tan 1600 tan 1100
2λ
2
find the value of sin θ and determine the quadrant in which θ lies
3
Solution:
2
3
2 3
2sec θ = + ⇒ sec θ = 13 /12
3 2
∴θ lies in IV Quadrant
sec θ + tan =
3
2
tan θ −15
=
sin θ =
sec θ
13
sec θ + tan θ =
23. If A, B, C, D are angles of a cyclic quadrilateral then prove that
i) sin A – sin C = sin D – sin B
ii) cos A + cos B + cos C + cos D = 0
Sol. A, B, C, D are the angles of a cyclic quadrilateral.
A + C = 180°; B + D = 180°
A = 180° – C, B = 180° – D
i) sin A – sin C = sin D – sin B
sin A + sin B = sin C + sin D
we have
A = 180° – C ⇒ Sin A = sin C …(1)
B = 180° – D ⇒ sin B = sin D …(2)
Adding (1) and (2)
Sin A + sin B = sin C + sin D
ii) cos A = cos (180° – C) = – cos C
⇒ cos A + cos C = 0
…(1)
cos B = cos (180° – D) = – cos D
www.sakshieducation.com
www.sakshieducation.com
⇒ cos B + cos D = 0
…(2)
Adding (1) and (2)
cos A + cos B + cos C + cos D = 0.
24. If a cos θ – b sin θ = c, then show that a sin θ + b cos θ = ± a 2 + b 2 − c 2 .
…(1)
Sol. a cos θ – b sin θ = c
Let a sin θ + b cos θ = k …(2)
Squaring and adding
25. If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ±3.
Sol. 3 sin A + 5 cos A = 5
Let 5 sin A – 3 cos A = k
Squaring and adding
(3 sin A + 5 cos A)2 + (5 sin A – 3 cos A)2 = 25 + k2
9sin 2 A + 25cos 2 A + 30sin A cos A + 25sin 2 A + 9 cos 2 A − 30sin A cos A = 25 + k 2
34sin 2 A + 34 cos 2 A = 25 + k 2
34(sin 2 A + cos 2 A) = 25 + k 2
34(1) = 25 + k 2
34 = 25 + k 2
k 2 = 34 − 26 = 9
k = ±3
tan θ + sec θ − 1 1 + sin θ
=
.
tan θ − sec θ + 1
cos θ
tan θ + sec θ − 1
Sol. We have
tan θ − sec θ + 1
26. Prove that
(tan θ + sec θ) − (sec 2 θ − tan 2 θ)
tan θ − sec θ + 1
(tan θ + sec θ) − (sec θ + tan θ)(sec θ − tan θ)
=
tan θ − sec θ + 1
[tan θ + sec θ][1 − sec θ + tan θ]
=
tan θ − sec θ + 1
= tan θ + sec θ
=
sin θ
1
1 + sin θ
+
=
cos θ cos θ
cos θ
tan θ + sec θ − 1 1 + sin θ
∴
=
tan θ − sec θ + 1
cos θ
=
www.sakshieducation.com
www.sakshieducation.com
27. Prove that (1 + cot θ − csc θ)(1 + tan θ + sec θ) = 2 .
Sol. L.H.S. : (1 + cot θ − csc θ)(1 + tan θ + sec θ)
1 ⎤ ⎡ sin θ
1 ⎤
⎡ cos θ
= ⎢1 +
−
1+
+
⎥
⎢
⎣ sin θ sin θ ⎦ ⎣ cosθ cos θ ⎥⎦
⎡ sin θ + cos θ − 1 ⎤ ⎡ cos θ + sin θ + 1 ⎤
=⎢
⎥⎦ ⎢⎣
⎥⎦
sin θ
cos θ
⎣
(sin θ + cos θ) 2 − 12 sin 2 θ + cos 2 θ + 2sin θ cos θ − 1
=
sin θ cos θ
sin θ cos θ
1 + 2sin θ cos θ − 1
sin θ cos θ
=
=2
= 2 = R.H.S.
sin θ cos θ
sin θ cos θ
Eliminate θ from the following equations.
=
28. x = a cos3θ ; y = b sin3 θ
Sol. x = a cos3θ ; y = b sin3 θ
1/ 3
x
⎛x⎞
= cos3 θ ⇒ cos θ = ⎜ ⎟
a
⎝a⎠
1/ 3
y
⎛y⎞
= sin 3 θ ⇒ sin θ = ⎜ ⎟
b
⎝b⎠
We have cos2 θ + sin2 θ = 1
2/3
2/3
⎛x⎞
⎛y⎞
⇒ ⎜ ⎟ +⎜ ⎟ =1
⎝a⎠
⎝b⎠
29. x = a cos4 θ = b sin4 θ.
Sol. x = a cos 4 θ ⇒ cos 4 θ =
⇒ cos 2 θ =
x
a
y = b sin 4 θ ⇒ sin 4 θ =
⇒ sin 2 θ =
x
a
y
b
y
b
cos 2 θ + sin 2 θ = 1
1/ 2
x
y
⎛x⎞
+
=1⇒ ⎜ ⎟
a
b
⎝a⎠
1/ 2
⎛y⎞
+⎜ ⎟
⎝b⎠
=1
30. x = a(sec θ + tan θ) ; y = b (sec θ – tan θ)
Sol. x = a(sec θ + tan θ) ; y = b (sec θ – tan θ)
xy = ab(sec2 θ – tan2 θ) = ab (1) = ab
xy = ab.
www.sakshieducation.com
www.sakshieducation.com
⎛π
⎞
cos (π − A ) cot ⎜ + A ⎟ cos ( − A )
⎝2
⎠
31. Prove that
= cos A
⎛ π
⎞
tan (π + A ) tan ⎜ 3 + A ⎟ sin ( 2π − A )
⎝ 2
⎠
SAQ’S
32. Prove that 3(sin θ − cos θ) 4 + 6(sin θ + cos θ) 2 + 4(sin 6 θ + cos6 θ) = 13
Sol. Consider (sin θ − cos θ) 2 = sin2 θ + cos2 θ – 2 sin θ cos θ= 1 – 2 sin θ cos θ
(sin θ – cos θ)4 = [(sin θ – cos θ)2]2 = [1 − 2sin θ cos θ]2 = 1 + 4sin 2 θ cos 2 θ − 4sin θ cos θ
∴ (sin θ − cos θ) 4 = 1 + 4sin 2 θ cos 2 θ − 4sin θ cos θ
(sin θ + cos θ) 2 = sin 2 θ + cos 2 θ + 2sin θ cos θ
= 1 + 2sin θ cos θ
∴ (sin θ + cos θ) 2 = 1 + 2sin θ cos θ
sin 6 θ + cos6 θ = (sin 2 θ)3 + (cos 2 θ)3
= (sin 2 θ + cos 2 θ)3 − 3sin 2 θ cos 2 θ(sin 2 θ + cos 2 θ)
= 1 − 3sin 2 θ cos 2 θ (∵ sin 2 θ + cos 2 θ = 1)
∴ sin 6 θ + cos6 θ = 1 − 3sin 2 θ cos 2 θ
∴ 3(sin θ − cos θ) 4 + 6(sin θ + cos θ) 2 + 4(sin 6 θ + cos6 θ)
= 3[1 + 4sin 2 θ cos 2 θ − 4sin θ cos θ] + 6[1 + 2sin θ cos θ] + 4[1 − 3sin 2 θ cos 2 θ]
= 3 + 12sin 2 θ cos 2 θ − 12sin θ cos θ + 6 + 12sin θ cos θ + 4 − 12sin 2 θ cos 2 θ
= 3 + 6 + 4 = 13
1 ⎤
⎡
33. Show that cos 4 α + 2 cos 2 α ⎢1 −
= 1 − sin 4 α .
2 ⎥
⎣ sec α ⎦
1 ⎤
⎡
Sol. L.H.S. : cos 4 α + 2 cos 2 α ⎢1 −
2 ⎥
⎣ sec α ⎦
= cos 4 α + 2 cos 2 α sin 2 α
(∵1 − cos 2 α = sin 2 α)
= cos 2 α[cos 2 α + 2sin 2 α]
= (1 − sin 2 α)[(1 − sin 2 α) + 2sin 2 α]
= (1 − sin 2 α)(1 + sin 2 α)
= 1 − sin 4 α = R.H.S.
www.sakshieducation.com
www.sakshieducation.com
34. Prove that
(1 + sin θ − cos θ) 2 1 − cos θ
.
=
(1 + sin θ + cos θ) 2 1 + cos θ
Sol. Consider
1 + sin θ − cos θ = (1 − cos θ) + sin θ
= 2sin 2
θ
θ
θ
θ⎡ θ
θ⎤
+ 2sin cos = 2sin ⎢sin + cos ⎥
2
2
2
2⎣ 2
2⎦
Again consider
1 + sin θ + cos θ = (1 + cos θ) + sin θ
θ
θ
θ
+ 2sin cos
2
2
2
θ⎡
θ
θ⎤
= 2 cos ⎢cos + sin ⎥
2⎣
2
2⎦
= 2 cos 2
2
⎡
θ⎡ θ
θ⎤ ⎤
⎢ 2sin 2 ⎢sin 2 + cos 2 ⎥ ⎥
⎣
⎦⎥
L.H.S.: ⎢
⎢ 2 cos θ ⎡cos θ + sin θ ⎤ ⎥
⎢⎣
2 ⎢⎣
2
2 ⎥⎦ ⎥⎦
θ
θ
sin 2
2sin 2
2 =
2 = 1 − cos θ = R.H.S.
=
θ
θ 1 + cos θ
cos 2
2 cos 2
2
2
2sin θ
1 − cos θ + sin θ
35. If
.
= x , find the value of
1 + cos θ + sin θ
1 + sin θ
2sin θ
=x
Sol.
1 + cos θ + sin θ
θ
θ
2 ⋅ sin cos
2
2
⇒
=x
θ
θ
2 θ
2 cos + 2sin cos
2
2
2
θ
θ
4sin cos
2
2
⇒
=x
θ⎡
θ
θ⎤
2 cos ⎢cos + sin ⎥
2⎣
2
2⎦
θ
2sin
2
⇒
=x
...(1)
θ
θ
cos + sin
2
2
www.sakshieducation.com
www.sakshieducation.com
θ
θ
θ
+ 2sin cos
2
2
2
=
θ
θ
2 θ
2 θ
sin + cos + 2sin cos
2
2
2
2
θ⎡ θ
θ⎤
θ
2sin ⎢sin + cos ⎥
2sin
2⎣ 2
2⎦
2
=
=
= x (∵ from(1))
θ
θ
θ
θ
⎡
⎤
sin + cos
⎢⎣sin 2 + cos 2 ⎥⎦
2
2
1 − cos θ + sin θ
1 + sin θ
2sin 2
www.sakshieducation.com
Related documents