Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
www.sakshieducation.com Trigonometry 1.TRIGONOMETRIC RATIOS → 1. If a ray OP makes an angle θ with the positive direction of X-axis then y x ii) cos θ = i) Sin θ = r r x y iii) tan θ = (x ≠ 0) iv) cot θ = (y ≠ 0) y x y r r (x ≠ 0) vi) cosec θ = (y ≠ 0) v) sec θ = x y 2. Relations : i) sin θ cosec θ = 1 ii) cos θ sec θ = 1 O iii) tan θ cot θ = 1 iv) sin2 θ + cos2 θ = 1 → (sec θ + tan θ) (sec θ – tan θ) = 1. v) 1 + tan2 θ = sec2 θ 1 → sec θ + tan θ = =1 sec θ − tan θ vi) 1 + cot2 θ = cosec2 θ → (cosec θ + cot θ) (cosec θ – cot θ) = 1 1 → cosec θ + cot θ = cosec θ − cot θ 2 2 vii) sec θ + cosec θ = sec2 θ . cosec2 θ viii) tan2 θ – sin2 θ = tan2 θ . sin2 θ; cot2 θ – cos2 θ = cot2 θ . cos2 θ ix) sin2 θ + cos4 θ = 1 – sin2 θ cos2 θ = sin4 θ + cos2 θ x) sin4 θ + cos4 θ = 1 – 2sin2 θ cos2 θ xi) sin6 θ + cos6 θ = 1 – 3sin2 θ cos2 θ xii) sin2 x + cosec2 x ≥ 2 xiii) cos2 x + sec2 x ≥ 2 xiv) tan2 x + cot2 x ≥ 2. 3. Values of trigonometric ratios of certain angles ↓ ratio angle → sin cos 0o 0 1 π/6 π/4 1/2 1/ 2 3/2 1/ 2 tan 0 1/ 3 cot undefined 3 cosec undefined 2 sec 1 2/ 3 1 1 2 2 π/3 3/2 1/2 π/2 1 0 3 undefined 1/ 3 0 2/ 3 1 2 undefined www.sakshieducation.com P r y θ x x www.sakshieducation.com 4. Signs of Trigonometric ratios : If θ lies in I, II, III, IV quadrants then the signs of trigonometric ratios are as follows. II 90o < θ < 180o sin θ and cosec θ are (+)ve I 0o < θ < 90o all the ratios are (+)ve III 180o < θ < 270o tan θ and cot θ are (+)ve IV 270o < θ < 360o cos θ and sec θ are (+)ve Note : i) 0o, 90o, 180o, 270o. 360o, 450o, ….. etc. are called quadrant angles. ii) With “ALL SILVER TEA CUPS” symbol we can remember the signs of trigonometric ratios. 5. Coterminal angles : If two angles differ by an integral multiples of 360o then two angles are called coterminal angles. Thus 30o, 390o, 750o, 330o etc., are coterminal angles. Fn sin θ cos θ 90 ∓ θ cos θ ± sin θ ± cot θ tan θ cosec θ sec θ ± cosec θ sec θ cot θ ± tan θ 180 ∓ θ ± sin θ − cos θ 270 ∓ θ − cos θ ∓ sin θ 360 ∓ θ ∓ sin θ cos θ ∓ tan θ ∓ tan θ ± cot θ ± cosec θ − sec θ ∓ cosec θ − sec θ ∓ cosec θ sec θ ∓ cot θ ± tan θ ∓ cot θ 6. Complementary Angles : Two Angles A, B are said to complementary ⇒ A + B = 90o 7. Supplementary angles : Two angles A, B are said to be supplementary ⇒ A + B = 180o. www.sakshieducation.com www.sakshieducation.com PROBLEMS VSAQ’S Convert the following into simplest form : 1. tan(θ – 14π) Sol. –tan(14π – θ) = tan[7 ⋅ 2π – θ] = –[–tan θ] = tan θ 2. cosec (5π + θ) Sol. cosec (5π + θ) = –cosec θ (∵ cos ec(nπ + θ) = (−1) n cos ecθ) ⎛ 7π ⎞ Find the value of cos ⎜ − ⎟ ⎝ 2 ⎠ 7π ⎛ 7π ⎞ Sol. cos ⎜ − ⎟ = cos =0 2 ⎝ 2 ⎠ 3. (∵ cos(2n + 1) π = 0) 2 4. Find the value of cot(315°) Sol. cot(315°) = – cot 315° = –[cot 360° – 45°] = – [– cot 45°] = cot 45° = 1 5. Evaluate cos245° + cos2135° + cos2 225° + cos2 315° 1 Sol. cos 45° = , cos135° = cos(180° − 45°) 2 www.sakshieducation.com www.sakshieducation.com = cos 45° =− 1 2 cos 225° = cos(180° + 45°) = cos 45° =− 1 2 cos135° = cos(360° − 45°) 1 = cos 45° = 2 Given expression 2 2 2 ⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ ⎜ ⎟ +⎜− ⎟ +⎜− ⎟ +⎜ ⎟ 2⎠ ⎝ 2⎠ ⎝ 2⎠ ⎝ 2⎠ ⎝ 1 1 1 1 = + + + =2 2 2 2 2 2 6. cos 225° – sin 225° + tan 495° – cot 495° Sol. cos 225° = cos(180° + 45°) 1 = cos 45° = − 2 sin 225° = sin(180° + 45°) −1 2 tan 495° = tan[5(90°) + 45] = − sin 45° = = − cot 45° = −1 cot 495° = cot[5(90°) + 45°] = − tan 45° = −1 G.E. −1 2 −1 = 2 = ⎛ 1 ⎞ −⎜− ⎟ −1+1 2⎠ ⎝ 1 + −1 +1 = 0 2 If cos θ = t (0 < t < 1) and θ does not lie in the first quadrant, find the value of (a) sinθ (b) tan θ. Sol. cos θ = t ⇒ lies in IV quadrant. 7. x 2 = AC2 − BC2 = 1 − t 2 x = 1− t2 a) sin θ = AB = − 1− t2 AC AB 1− t2 =− b) tan θ = BC t www.sakshieducation.com www.sakshieducation.com 8. 1 and θ does not lie in third quadrant, find the values of 3 (i) cos θ (ii) cot θ If sin θ = − Solution: 1 θ does not lie in III Q 3 ∴θ lies in IV Quadrant sin θ = − cos θ = 1 − sin 2 θ = 1 − 1 2 2 = 9 3 cos θ =2 2 sin θ 9. Find the value of sin 3300 . cos1200 + cos 2100 . sin 3000 Solution: 1 sin 3300 = sin ( 3600 − 300 ) = − sin 300 = − 2 1 3 3 cos1200 = − cos 2100 = − ; sin 3000 = sin ( 3600 − 600 ) = − 2 2 2 1 1 ⎛ 3⎞⎛ 3⎞ sin 3300 cos1200 + cos 2100 . sin 3000 = − × − + ⎜⎜ − ⎟⎟ ⎜⎜ − ⎟ =1 2 2 ⎝ 2 ⎠ ⎝ 2 ⎟⎠ 1 10. If cosec θ + cot θ = , find cos θ and determine the quadrant in which θ lies. 3 2 2 Sol. cosec θ – cot θ = 1 (cosec θ + cot θ) (cosec θ – cot θ) = 1 cosec θ – cot θ = 3 …(1) 1 …(2) and cosec θ + cot θ = 3 From (1) + (2) cosec θ – cot θ = 3 1 cosec θ + cot θ = 3 1 10 2cosec θ = 3 + = 3 3 10 cos ecθ = 6 6 sin θ = 16 cot θ = From (1) – (2) cosec θ – cot θ = 3 cosec θ + cot θ = 1 3 www.sakshieducation.com www.sakshieducation.com 1 8 −2 cot θ = 3 − = 3 3 −8 8 = cot θ = − 2×3 6 ∴ cos θ = cot θ ⋅ sin θ = −8 6 −4 × = 6 10 5 Thus sin θ is +ve and cos θ is –ve Then θ lies in II quadrant. 11. If sec θ + tan θ = 5, find the quadrant in which θ lies and find the value of sin θ. Sol. sec θ + tan θ = 5 …(1) We know, sec2 θ – tan2 θ = 1 (sec θ + tan θ)(sec θ – tan θ) = 1 1 sec θ + tan θ 1 sec θ − tan θ = ...(2) 5 Adding (1), (2) sec θ − tan θ = sec θ + tan θ = 5 sec θ − tan θ = 1 5 1 5 25 + 1 2sec θ = 5 26 1 sec θ = × 5 2 13 sec θ = 5 12 12 tan θ = , sin θ = 5 13 2sec θ = 5 + ∴ sin θ ⋅ sec θ and tan θ are positives ∴ θ lies in I quadrant. www.sakshieducation.com www.sakshieducation.com 1 12. If cos A = cos B = − : A does not lie in second quadrant B does not lie in third quadrant 2 4sin B − 4 tan A find the value of tan B + sin A Solution: 1 cos A = cos B = − ; A does not lie in II Q 2 ∴ A lies in III Q 3 sin A = − 2 1 cos B = − B does not lie in III Q 2 ∴ B lies in II Q sin B = 3 2 tan A = 3 4sin B − 3 tan A = tan B + sin A 13. tan B = − 3 3 − 3× 3 3 2 2 =− = −3 3 3 3 − 3− 2 2 4× π⎞ ⎛ ⎛ 3π ⎞ sin(3π − A) cos ⎜ A − ⎟ tan ⎜ − A ⎟ 2⎠ ⎝ ⎝ 2 ⎠ = − cos 4 A 13 π π⎞ ⎛ ⎞ ⎛ cos ec ⎜ + A ⎟ sec(3π + A) cot ⎜ A − ⎟ 2⎠ ⎝ 2 ⎠ ⎝ Sol. sin(3π – A) = sin A π⎞ ⎛ ⎛π ⎞ cos ⎜ A − ⎟ = cos ⎜ − A ⎟ = sin A 2⎠ ⎝ ⎝2 ⎠ ⎛ 3π ⎞ tan ⎜ − A ⎟ = cot A ⎝ 2 ⎠ ⎛ 13π ⎞ cos ec ⎜ + A ⎟ = − sec A ⎝ 2 ⎠ sec(3π + A) = − sec A π⎞ ⎛ ⎛π ⎞ cot ⎜ A − ⎟ = − cot ⎜ − A ⎟ = − tan A 2⎠ ⎝ ⎝2 ⎠ sin A ⋅ sin A ⋅ cot A L.H.S. = − sec A ⋅ − sec A ⋅ − tan A cos A sin 2 A × sin A = 1 sin A − × 2 cos A cos A cos3 A = sin A cos A × = − cos 4 A − sin A www.sakshieducation.com www.sakshieducation.com 14. cot ⎛⎜ π ⎞⎟ cot ⎛⎜ 3π ⎞⎟ cot ⎛⎜ 5π ⎞⎟ cot ⎛⎜ 7 π ⎞⎟ cot ⎛⎜ 9π ⎞⎟ = 1 ⎝ 20 ⎠ ⎝ 20 ⎠ ⎝ 20 ⎠ ⎝ 20 ⎠ ⎝ 20 ⎠ 1 ⎛ π ⎞ Sol. cot ⎜ ⎟ = cot 9° = tan 9° ⎝ 20 ⎠ 1 ⎛ 3π ⎞ cot ⎜ ⎟ = cot 27° = tan 27° ⎝ 20 ⎠ ⎛ 5π ⎞ cot ⎜ ⎟ = cot 45° = 1 ⎝ 20 ⎠ ⎛ 7π ⎞ cot ⎜ ⎟ = cot 63° = cot(90° − 27°) = tan 27° ⎝ 20 ⎠ ⎛ 9π ⎞ cot ⎜ ⎟ = cot 81° = cot(90° − 9°) = tan 9° ⎝ 20 ⎠ π 3π 5π 7π 9π cot cot cot cot 20 20 20 20 20 1 1 = ⋅1⋅ tan 27°⋅ tan 9° = 1 tan 9° tan 27° ∴ cot ⎛ 11π ⎞ ⎛ 35π ⎞ ⎛ 7 π ⎞ sin ⎜ − ⎟ tan ⎜ ⎟ sec ⎜ − ⎟ 3 ⎠ 6 ⎠ ⎝ 3 ⎠ ⎝ ⎝ 15. Simplify . ⎛ 5π ⎞ ⎛ 7π ⎞ ⎛ 17π ⎞ cos ⎜ ⎟ cos ec ⎜ ⎟ cos ⎜ ⎟ ⎝ 4 ⎠ ⎝ 4 ⎠ ⎝ 6 ⎠ 11π ⎛ 11π ⎞ Sol. sin ⎜ − = − sin 660° ⎟ = − sin 3 ⎝ 3 ⎠ = − sin(2 ⋅ 360° − 60°) = sin 60° = 3 2 1 ⎛ 35π ⎞ tan ⎜ ⎟ = tan1050° = tan(3 ⋅ 360° − 30°) = − tan 30° = − 3 ⎝ 6 ⎠ ⎛ 7π ⎞ sec ⎜ − ⎟ = sec(−420°) = sec 420° = sec(360° + 60°) = sec 60° = 2 ⎝ 3 ⎠ ⎛ 5π ⎞ cos ⎜ ⎟ ⎝ 4 ⎠ = cos(225°) = cos(180° + 45°) = cos 45° = − ⎛ 7π ⎞ csc ⎜ ⎟ ⎝ 4 ⎠ = csc 315° = csc(360° − 45°) = − csc 45° = − 2 1 2 ⎛ 17 π ⎞ cos ⎜ ⎟ = cos 510° = cos(360° + 150°) ⎝ 6 ⎠ = cos100° = cos(180° − 30°) = − cos 30° = − 3 2 www.sakshieducation.com www.sakshieducation.com ⎛ 3 ⎞ ⎛ −1 ⎞ ⎜ ⎟⎜ ⎟ (2) 2 3 ⎝ ⎠ ⎠ L.H.S. = ⎝ ⎛ 3⎞ ⎛ −1 ⎞ ( 2) − − ⎜ ⎟ ⎜ ⎟ ⎝ 2⎠ ⎝ 2 ⎠ = 2 −1 = = R.H.S. 3 − 3 2 tan 610° + tan 700° 1 − p 2 = 16. If tan 20° = p, prove that . tan 560° − tan 470° 1 + p 2 Sol. tan 610° + tan 700° tan 560° − tan 470° tan(360° + 250°) + tan(360° + 340°) = tan(360° + 200°) − tan(360° + 110°) tan 250° − tan 340° tan 200° − tan110° tan(270° − 20°) − tan(360° − 20°) = tan(180° + 20°) + tan(90° + 20°) = cot 20° − tan 20° tan 20° + cot 20° 1 − tan 20° ° tan 20 = 1 tan 20° + tan 20° = 1 1 − p2 −p 1 − p2 p p = = = 1 p2 + 1 p2 + 1 p+ p p ∴ tan 610° + tan 700° 1 − p 2 = tan 560° − tan 470° 1 + p 2 17. If α, β are complementary angles such that b sin α = a, then find the value of (sin α cos β – cos α sin β). Sol. α and β are complementary angles. α + β = 90° β = 90° – α b sin α = a ⇒ sin α = a b 2 b2 − a 2 ⎛a⎞ cos α = 1 – sin α = 1 − ⎜ ⎟ = b2 ⎝b⎠ 2 2 www.sakshieducation.com www.sakshieducation.com b2 − a 2 cos α = b Since β = 90° – α sin β = sin(90 − α) = cos α ∴ cos α = sin β and α = 90° − β sin α = sin(90° − β) = cos β ∴ cos β = sin α = a b a b sin α cos β − cos α sin β ∴ cos β = a a b2 − a 2 b2 − a 2 = × − × b b b b a 2 (b 2 − a 2 ) a 2 − b 2 + a 2 2a 2 − b 2 = 2− = = b b2 b2 b2 18. If cos θ + sin θ = 2 cos θ then prove that cos θ − sin θ = 2 sin θ Solution: cos θ + sin θ = 2 cos θ -------- (1) squaring and adding (1) & (2) Let cos θ − sin θ = x -------(2) ( cos θ + sin θ ) 2 + ( cos θ − sin θ ) = 2 ( 2 cos θ ⇒ 2 − 2 cos 2 θ = x 2 ⇒ x = 2 sin θ ) 2 + x2 ∴ cos θ − sin θ = 2 sin θ 19. If 8 tan A = 15 and 25 sin B = –7 and neither A nor B is in the fourth quadrant, then show 304 that sin A cos B + cos A sin B = − . 425 Sol. 8 tan A = –15 15 tan A = − 8 A lies in II quadrant 15 −8 sin A = , cos A = 17 17 25sin B = −7 7 25 B lies in III quadrant 7 −24 sin B = − , cos B = 25 25 L.H.S. : sin A cos B + cos A sin B sin B = − www.sakshieducation.com www.sakshieducation.com 15 −24 −8 −7 −3 × 24 −8 × −7 × + × = + 17 25 17 25 17 × 5 17 × 25 −360 56 −304 = + = 425 425 425 π 4π 6π 9π 20. Prove that sin 2 + sin 2 + sin 2 + sin 2 =2 10 10 10 10 Solution: π 4π 6π 9π sin 2 + sin 2 + sin 2 + sin 2 10 10 10 10 π π ⎞ ⎛π π ⎞ ⎛π π ⎞ ⎛ sin 2 + sin 2 ⎜ − ⎟ + sin 2 ⎜ + ⎟ + sin 2 ⎜ π − ⎟ 10 10 ⎠ ⎝ 2 10 ⎠ ⎝ 2 10 ⎠ ⎝ π π π π π π⎫ ⎧ sin 2 + cos 2 + cos 2 + sin 2 = 2 ⎨sin 2 + cos 2 ⎬ = 2 10 10 10 10 10 10 ⎭ ⎩ = = sin 2 21. If tan 200 = λ then show that 22. If sec θ + tan θ = π 10 + cos 2 π 10 =1 tan 1600 − tan1100 1 − λ 2 = 1 + tan 1600 tan 1100 2λ 2 find the value of sin θ and determine the quadrant in which θ lies 3 Solution: 2 3 2 3 2sec θ = + ⇒ sec θ = 13 /12 3 2 ∴θ lies in IV Quadrant sec θ + tan = 3 2 tan θ −15 = sin θ = sec θ 13 sec θ + tan θ = 23. If A, B, C, D are angles of a cyclic quadrilateral then prove that i) sin A – sin C = sin D – sin B ii) cos A + cos B + cos C + cos D = 0 Sol. A, B, C, D are the angles of a cyclic quadrilateral. A + C = 180°; B + D = 180° A = 180° – C, B = 180° – D i) sin A – sin C = sin D – sin B sin A + sin B = sin C + sin D we have A = 180° – C ⇒ Sin A = sin C …(1) B = 180° – D ⇒ sin B = sin D …(2) Adding (1) and (2) Sin A + sin B = sin C + sin D ii) cos A = cos (180° – C) = – cos C ⇒ cos A + cos C = 0 …(1) cos B = cos (180° – D) = – cos D www.sakshieducation.com www.sakshieducation.com ⇒ cos B + cos D = 0 …(2) Adding (1) and (2) cos A + cos B + cos C + cos D = 0. 24. If a cos θ – b sin θ = c, then show that a sin θ + b cos θ = ± a 2 + b 2 − c 2 . …(1) Sol. a cos θ – b sin θ = c Let a sin θ + b cos θ = k …(2) Squaring and adding 25. If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ±3. Sol. 3 sin A + 5 cos A = 5 Let 5 sin A – 3 cos A = k Squaring and adding (3 sin A + 5 cos A)2 + (5 sin A – 3 cos A)2 = 25 + k2 9sin 2 A + 25cos 2 A + 30sin A cos A + 25sin 2 A + 9 cos 2 A − 30sin A cos A = 25 + k 2 34sin 2 A + 34 cos 2 A = 25 + k 2 34(sin 2 A + cos 2 A) = 25 + k 2 34(1) = 25 + k 2 34 = 25 + k 2 k 2 = 34 − 26 = 9 k = ±3 tan θ + sec θ − 1 1 + sin θ = . tan θ − sec θ + 1 cos θ tan θ + sec θ − 1 Sol. We have tan θ − sec θ + 1 26. Prove that (tan θ + sec θ) − (sec 2 θ − tan 2 θ) tan θ − sec θ + 1 (tan θ + sec θ) − (sec θ + tan θ)(sec θ − tan θ) = tan θ − sec θ + 1 [tan θ + sec θ][1 − sec θ + tan θ] = tan θ − sec θ + 1 = tan θ + sec θ = sin θ 1 1 + sin θ + = cos θ cos θ cos θ tan θ + sec θ − 1 1 + sin θ ∴ = tan θ − sec θ + 1 cos θ = www.sakshieducation.com www.sakshieducation.com 27. Prove that (1 + cot θ − csc θ)(1 + tan θ + sec θ) = 2 . Sol. L.H.S. : (1 + cot θ − csc θ)(1 + tan θ + sec θ) 1 ⎤ ⎡ sin θ 1 ⎤ ⎡ cos θ = ⎢1 + − 1+ + ⎥ ⎢ ⎣ sin θ sin θ ⎦ ⎣ cosθ cos θ ⎥⎦ ⎡ sin θ + cos θ − 1 ⎤ ⎡ cos θ + sin θ + 1 ⎤ =⎢ ⎥⎦ ⎢⎣ ⎥⎦ sin θ cos θ ⎣ (sin θ + cos θ) 2 − 12 sin 2 θ + cos 2 θ + 2sin θ cos θ − 1 = sin θ cos θ sin θ cos θ 1 + 2sin θ cos θ − 1 sin θ cos θ = =2 = 2 = R.H.S. sin θ cos θ sin θ cos θ Eliminate θ from the following equations. = 28. x = a cos3θ ; y = b sin3 θ Sol. x = a cos3θ ; y = b sin3 θ 1/ 3 x ⎛x⎞ = cos3 θ ⇒ cos θ = ⎜ ⎟ a ⎝a⎠ 1/ 3 y ⎛y⎞ = sin 3 θ ⇒ sin θ = ⎜ ⎟ b ⎝b⎠ We have cos2 θ + sin2 θ = 1 2/3 2/3 ⎛x⎞ ⎛y⎞ ⇒ ⎜ ⎟ +⎜ ⎟ =1 ⎝a⎠ ⎝b⎠ 29. x = a cos4 θ = b sin4 θ. Sol. x = a cos 4 θ ⇒ cos 4 θ = ⇒ cos 2 θ = x a y = b sin 4 θ ⇒ sin 4 θ = ⇒ sin 2 θ = x a y b y b cos 2 θ + sin 2 θ = 1 1/ 2 x y ⎛x⎞ + =1⇒ ⎜ ⎟ a b ⎝a⎠ 1/ 2 ⎛y⎞ +⎜ ⎟ ⎝b⎠ =1 30. x = a(sec θ + tan θ) ; y = b (sec θ – tan θ) Sol. x = a(sec θ + tan θ) ; y = b (sec θ – tan θ) xy = ab(sec2 θ – tan2 θ) = ab (1) = ab xy = ab. www.sakshieducation.com www.sakshieducation.com ⎛π ⎞ cos (π − A ) cot ⎜ + A ⎟ cos ( − A ) ⎝2 ⎠ 31. Prove that = cos A ⎛ π ⎞ tan (π + A ) tan ⎜ 3 + A ⎟ sin ( 2π − A ) ⎝ 2 ⎠ SAQ’S 32. Prove that 3(sin θ − cos θ) 4 + 6(sin θ + cos θ) 2 + 4(sin 6 θ + cos6 θ) = 13 Sol. Consider (sin θ − cos θ) 2 = sin2 θ + cos2 θ – 2 sin θ cos θ= 1 – 2 sin θ cos θ (sin θ – cos θ)4 = [(sin θ – cos θ)2]2 = [1 − 2sin θ cos θ]2 = 1 + 4sin 2 θ cos 2 θ − 4sin θ cos θ ∴ (sin θ − cos θ) 4 = 1 + 4sin 2 θ cos 2 θ − 4sin θ cos θ (sin θ + cos θ) 2 = sin 2 θ + cos 2 θ + 2sin θ cos θ = 1 + 2sin θ cos θ ∴ (sin θ + cos θ) 2 = 1 + 2sin θ cos θ sin 6 θ + cos6 θ = (sin 2 θ)3 + (cos 2 θ)3 = (sin 2 θ + cos 2 θ)3 − 3sin 2 θ cos 2 θ(sin 2 θ + cos 2 θ) = 1 − 3sin 2 θ cos 2 θ (∵ sin 2 θ + cos 2 θ = 1) ∴ sin 6 θ + cos6 θ = 1 − 3sin 2 θ cos 2 θ ∴ 3(sin θ − cos θ) 4 + 6(sin θ + cos θ) 2 + 4(sin 6 θ + cos6 θ) = 3[1 + 4sin 2 θ cos 2 θ − 4sin θ cos θ] + 6[1 + 2sin θ cos θ] + 4[1 − 3sin 2 θ cos 2 θ] = 3 + 12sin 2 θ cos 2 θ − 12sin θ cos θ + 6 + 12sin θ cos θ + 4 − 12sin 2 θ cos 2 θ = 3 + 6 + 4 = 13 1 ⎤ ⎡ 33. Show that cos 4 α + 2 cos 2 α ⎢1 − = 1 − sin 4 α . 2 ⎥ ⎣ sec α ⎦ 1 ⎤ ⎡ Sol. L.H.S. : cos 4 α + 2 cos 2 α ⎢1 − 2 ⎥ ⎣ sec α ⎦ = cos 4 α + 2 cos 2 α sin 2 α (∵1 − cos 2 α = sin 2 α) = cos 2 α[cos 2 α + 2sin 2 α] = (1 − sin 2 α)[(1 − sin 2 α) + 2sin 2 α] = (1 − sin 2 α)(1 + sin 2 α) = 1 − sin 4 α = R.H.S. www.sakshieducation.com www.sakshieducation.com 34. Prove that (1 + sin θ − cos θ) 2 1 − cos θ . = (1 + sin θ + cos θ) 2 1 + cos θ Sol. Consider 1 + sin θ − cos θ = (1 − cos θ) + sin θ = 2sin 2 θ θ θ θ⎡ θ θ⎤ + 2sin cos = 2sin ⎢sin + cos ⎥ 2 2 2 2⎣ 2 2⎦ Again consider 1 + sin θ + cos θ = (1 + cos θ) + sin θ θ θ θ + 2sin cos 2 2 2 θ⎡ θ θ⎤ = 2 cos ⎢cos + sin ⎥ 2⎣ 2 2⎦ = 2 cos 2 2 ⎡ θ⎡ θ θ⎤ ⎤ ⎢ 2sin 2 ⎢sin 2 + cos 2 ⎥ ⎥ ⎣ ⎦⎥ L.H.S.: ⎢ ⎢ 2 cos θ ⎡cos θ + sin θ ⎤ ⎥ ⎢⎣ 2 ⎢⎣ 2 2 ⎥⎦ ⎥⎦ θ θ sin 2 2sin 2 2 = 2 = 1 − cos θ = R.H.S. = θ θ 1 + cos θ cos 2 2 cos 2 2 2 2sin θ 1 − cos θ + sin θ 35. If . = x , find the value of 1 + cos θ + sin θ 1 + sin θ 2sin θ =x Sol. 1 + cos θ + sin θ θ θ 2 ⋅ sin cos 2 2 ⇒ =x θ θ 2 θ 2 cos + 2sin cos 2 2 2 θ θ 4sin cos 2 2 ⇒ =x θ⎡ θ θ⎤ 2 cos ⎢cos + sin ⎥ 2⎣ 2 2⎦ θ 2sin 2 ⇒ =x ...(1) θ θ cos + sin 2 2 www.sakshieducation.com www.sakshieducation.com θ θ θ + 2sin cos 2 2 2 = θ θ 2 θ 2 θ sin + cos + 2sin cos 2 2 2 2 θ⎡ θ θ⎤ θ 2sin ⎢sin + cos ⎥ 2sin 2⎣ 2 2⎦ 2 = = = x (∵ from(1)) θ θ θ θ ⎡ ⎤ sin + cos ⎢⎣sin 2 + cos 2 ⎥⎦ 2 2 1 − cos θ + sin θ 1 + sin θ 2sin 2 www.sakshieducation.com