Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
AstronomicalObservingTechniques Lecture1:BlackBodiesinSpace ChristophU.Keller [email protected] Outline 1. BlackBodyRadia<on 2. AstronomicalMagnitudes 3. PointSourcesandExtendedSources 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 2 BlackbodyRadia@on Kirchhoff(1860):blackbodycompletelyabsorbsallincident rays:noreflec<on,notransmissionforallwavelengthsand forallanglesofincidence. CavityatfixedT,thermalequilibrium Incomingradia<onis"thermalized“by con<nuousabsorp<onandre-emissionof radia<onbycavitywall Smallholeàescapingradia<onwill approximateblack-bodyradia<on independentofproper<esofcavityor hole. 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 3 Kirchhoff’sLaw Conserva<onofpowerrequires: α + ρ +τ = 1 α ρ withα=absorp<vity,ρ=reflec<vity,τ=transmissivity cavityinthermal equilibriumwith completelyopaque sides: ε = 1− ρ α + ρ +τ = 1 τ =0 ⎫ ⎪ ⎬ α =ε ⎪ ⎭ τ ε=emissivity Kirchhoff’slawappliestoperfectblackbodyatallwavelengths Radiatorwithε=ε(λ)<1obencalledgreybody 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 4 TheColorofTelescopeDomes Credit NOAO/AURA/NSF: www.noao.edu/image_gallery/telescopes.html 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 5 Defini@onofaBlackBody • Blackbody(BB)isidealizedobjectthatabsorbsallEMradia<on • Cold(T~0K)BBsareblack(noemieedorreflectedlight) • AtT>0KBBsabsorbandre-emitcharacteris<cEMspectrum Manyastronomicalsources emitclosetoablackbody. Example:COBEmeasurement ofthecosmicmicrowave background 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 6 BlackBodyEmission SpecificintensityIνofblackbodygivenbyPlanck’slaw: 2hν 3 1 Iν (T ) = 2 inunitsof[Wm-2sr-1Hz-1] c ⎛ hν ⎞ exp⎜ ⎟ −1 ⎝ kT ⎠ Inwavelengthunits: 2hc 2 1 -3sr-1] I λ (T ) = 5 inunitsof[Wm λ ⎛ hc ⎞ exp⎜ ⎟ −1 ⎝ λkT ⎠ Conversionoffrequencyówavelengthunits: c c dv = 2 dλ or dλ = 2 dν λ 1-2-2016 ν Astronomical Observing Techniques: Blackbody Radiation 7 EmissionóPoweróTemperature Totalradiatedpowerperunitsurfacepropor<onaltofourthpower oftemperatureT: 4 I T d ν d Ω = M = σ T ν Ων σ=5.67·10-8Wm-2K-4(Stefan-Boltzmannconstant) ∫∫ ( ) AssumingBBradia?on,astronomersoAenspecifytheemissionfrom objectsviatheireffec?vetemperature. 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 8 Effec@veTemperatures Temperaturecorrespondingtomaximumspecificintensitygiven byWien’sdisplacementlaw: c T = 5.096 ⋅10 −3 mK or λmaxT = 2.98 ⋅10 −3 mK vmax CoolerBBshavepeakemission (effec<vetemperatures)atlonger wavelengthsandatlower intensi<es: effective temperature [K] 10000 T=293K 1000 100 10 1 0.100 1-2-2016 1.000 10.000 100.000 1000.000 wavelength [µm] Astronomical Observing Techniques: Blackbody Radiation 9 UsefulApproxima@ons 2hν 3 1 Planck: Iν (T ) = 2 c ⎛ hν ⎞ exp⎜ ⎟ −1 ⎝ kT ⎠ Highfrequencies(hv>>kT)èWienapproxima<on: 3 2 h ν ⎛ hν ⎞ Iν (T ) = 2 exp⎜ − ⎟ c ⎝ kT ⎠ Lowfrequencies(hv<<kT)èRayleigh-Jeansapproxima<on: 2ν 2 2kT Iν (T ) ≈ 2 kT = 2 c λ 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 10 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 11 SolarSpectrum http://en.wikipedia.org/wiki/Sunlight#mediaviewer/File:Solar_Spectrum.png 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 12 GreyBodies Manyemieersclosetobutnotperfectblackbodies. Withwavelength-dependentemissivityε<1: 2hc 2 1 I λ (T ) = ε (λ )⋅ 5 λ ⎛ hc ⎞ exp⎜ ⎟ −1 ⎝ λkT ⎠ Example:theSun (likemanystars) 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 13 BrightnessTemperature Brightnesstemperatureistemperatureaperfectblackbodywould havetoreproducetheobservedintensityofagreybodyobjectat frequencyν. Forlowfrequencies(hv<<kT): 2 Rayleighc Tb = ε ν ⋅ T = ε ν ⋅ Iv 2 Jeans 2kv OnlyforperfectBBsisTbthesameforallfrequencies. ( ) 1-2-2016 ( ) Astronomical Observing Techniques: Blackbody Radiation 14 Lambert’sCosineLaw Lambert’scosinelaw:radiantintensityfromanideal, diffusivelyreflec<ngsurfaceisdirectlypropor<onaltothe cosineoftheangleθbetweenthesurfacenormalandthe observer. Johann Heinrich Lambert (1728 – 1777) 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 15 Lamber@anEmiNers RadianceofLamber<anemieersisindependentofdirec<onθof observa<on(i.e.,isotropic). Twoeffectsthatcanceleachother: 1. Lambert’scosinelawàradiant intensityanddΩarereducedby cos(θ) 2. EmivngsurfaceareadAfora givendΩisincreasedbycos-1(θ) Perfectblackbodiesare Lamber?anemiJers! 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 16 TheSun:Lamber@anEmiNer? http://www.pa.msu.edu/people/frenchj/moon/moon-5day-1807.jpg http://sdo.gsfc.nasa.gov/data/ 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 17 FluxandIntensity • EnergyfluxFofstar=π×intensityIaveragedoverdisk • Stellardiskaverageinpolarcoordinatesr,φ 2π R r 1 I = I(r)r dr dϕ 2 ∫ ∫ πR 0 0 • Subs<tuterwithRsinθ,μ=cosθ R θ π /2 1 I = 2 ∫ I(θ ) sin θ cosθ dθ = 2 ∫ I µ d µ 0 0 • Fluxintegratedoverhemisphere F=∫ 2π 0 1-2-2016 ∫ π /2 0 I (θ ) cosθ sin θ dθ dφ = 2π ∫ I µ d µ 1 0 Astronomical Observing Techniques: Blackbody Radiation 18 SummaryofRadiometricQuan@@es * * *10-26Wm-2Hz-1=10-23ergs-1cm-2Hz-1iscalled1Jansky 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 19 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 20 Op@calAstronomersuse‘Magnitudes’ OriginsinGreekclassifica?onofstarsaccordingtotheirvisualbrightness. Brighteststarswerem=1,faintestdetectedwithbareeyewerem=6. FormalizedbyPogson(1856):1stmag~100×6thmag Magnitude #starsbrighter -27 Sun -13 Fullmoon -5 Venus 0 Vega 4 2 Polaris 48 Andromeda 250 6 Limitofnakedeye 4800 10 Limitofgoodbinoculars 14 Pluto 27 Visiblelightlimitof8mtelescopes 3.4 1-2-2016 Example Astronomical Observing Techniques: Blackbody Radiation 21 ApparentMagnitude Apparentmagnitudeisrela?vemeasureof monochroma<cfluxdensityFλofasource: ⎛ Fλ ⎞ mλ − M 0 = −2.5 ⋅ log⎜⎜ ⎟⎟ F0 ⎠ ⎝ M0definesreferencepoint(usuallymagnitudezero). Inprac<ce,measurements throughtransmissionfilterT(λ) thatdefinesbandwidth: ∞ ∞ m − M = −2.5 log T (λ )F dλ + 2.5 log T (λ )dλ λ ∫ 0 1-2-2016 λ ∫ 0 Astronomical Observing Techniques: Blackbody Radiation 22 PhotometricSystems Filtersusuallymatchedtoatmospherictransmission à differentobservatories=differentfilters à manyphotometricsystems: U B V R I u transmission [%] 60 40 20 0 300 500 u' 700 g' 900 transmission [%] g r i z r' i' 50 z' SDSS Filters 500 700 900 1100 80 60 Thuan-Gunn Filters 40 20 0 300 1100 100 0 300 v 100 80 500 700 u 100 transmission [%] transmission [%] 100 v 900 b 1100 y 80 60 Stromgren Filters 40 20 0 300 500 700 900 1100 wavelength [nm] 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 23 ABandSTMAGSystems ForgivenfluxdensityFv,ABmagnitudedefinedas: m( AB ) = −2.5 ⋅ log Fν − 48.60 • objectwithconstantfluxperunitfrequencyintervalhaszerocolor • zeropointdefinedtomatchzeropointsofJohnsonV-band • usedbySDSSandGALEX • Fvinunitsof[ergs-1cm2Hz-1] STMAGsystemdefinedsuchthatobjectwithconstantfluxperunit wavelengthintervalhaszerocolor.STMAGsareusedbytheHST photometrypackages. 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 24 ColorIndices Colorindex=differenceofmagnitudesatdifferentwavebands= ra<ooffluxesatdifferentwavelengths • ColorindicesofA0Vstar(Vega) aboutzerolongwardofV • Colorindicesofblackbodyin Rayleigh-Jeanstailare: B-V=-0.46 U-B=-1.33 V-R=V-I=...=V-N=0.0 Color-magnitude diagram for a typical globular cluster, M15. 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 25 AbsoluteMagnitude Absolutemagnitude=apparentmagnitudeofsourceifitwereat distanceD=10parsecs: M = m + 5 − 5 log D MSun=4.83(V);MMilkyWay=−20.5àΔmag=25.3àΔlumi=14billionLo However,interstellarex<nc<onEorabsorp<onAaffectsthe apparentmagnitudes E (B − V ) = A(B ) − A(V ) = (B − V )observed − (B − V )intrinsic Needtoincludeabsorp<ontoobtaincorrectabsolutemagnitude: M = m + 5 − 5 log D − A 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 26 BolometricMagnitude Bolometricmagnitudeisluminosityexpressedinmagnitudeunits= integralofmonochroma<cfluxoverallwavelengths: ∞ M bol = −2.5 ⋅ log ∫ F (λ )dλ 0 Fbol ; Fbol W = 2.52 ⋅10 m2 −8 Ifsourceradiatesisotropically: L M ; LΘ = 3.827 ⋅10 26 W bol = −0.25 + 5 ⋅ log D − 2.5 ⋅ log LΘ Bolometricmagnitudecanalsobederivedfromvisualmagnitude plusabolometriccorrec<onBC: M bol = M V + BC BCislargeforstarsthathaveapeakemissionverydifferentfromtheSun’s. 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 27 PhotometricSystemsandConversions Fλ 1-2-2016 F Astronomical Observing Techniques: Blackbody Radiation 28 PointSourcesandExtendedSources Pointsources=spa<allyunresolved Extendedsources=wellresolved Brightness~1/distance2 Surfacebrightness~const(distance) Sizegivenbyobservingcondi<ons Brightness~1/d2andareasize~1/d2 Surfacebrightness[mag/arcsec2]isconstantwithdistance! 1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 29 Calcula@ngSurfaceBrightness Surfacebrightnessofextendedobjectsinunitsof mag/srormag/arcsec2 SurfacebrightnessSofareaAinmagnitudes: S = m + 2.5 ⋅ log10 A Observedsurfacebrightness[mag/arcsec2]convertedinto physicalsurfacebrightnessunits: 2 2 S mag/arcsec = M Θ + 21.572 − 2.5 ⋅ log10 S LΘ /pc withLΘ = 3.839 ×10 26 W = 3.839 ×1033 erg s -1 [ 1-2-2016 ] Astronomical Observing Techniques: Blackbody Radiation [ ] 30