Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Grade 8 SAMPLER MCAS Mathematics Student Set Click on the book titles below to navigate. MCAS Finish Line MCAS Performance Indicator Contents Introduction to MCAS Finish Line Mathematics 8. . . . . . . . . . . . . . . . . . . . . . 5 Understanding Mathematical Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Unit 1: Number Sense Lesson 1 Integers and Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Lesson 2 Scientific Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Lesson 3 Percents and Equivalent Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Lesson 4 Comparing Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Lesson 5 Ratios and Proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Lesson 6 Factors, Multiples, and Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Number Sense Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Unit 2: Operations, Part 1 Lesson 1 Operations with Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Lesson 2 Operations with Decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Lesson 3 Operations with Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Lesson 4 Operations with Percents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Operations, Part 1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Unit 3: Operations, Part 2 Lesson 1 Exponents and Square Roots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Lesson 2 Order of Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Lesson 3 Operation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Lesson 4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Operations, Part 2 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Unit 4: Geometry Lesson 1 Pythagorean Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Lesson 2 Intersecting Lines and Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Lesson 3 Angles of Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Lesson 4 Constructing Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Lesson 5 Solid Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Lesson 6 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Lesson 7 Congruence and Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Geometry Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Unit 5: Patterns, Relations, and Algebra Lesson 1 Algebraic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Lesson 2 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Lesson 3 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Lesson 4 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Lesson 5 Graphing Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 133 Lesson 7 Relationships Between Two Variables . . . . . . . . . . . . . . . . . . . . . . . 137 Patterns, Relations, and Algebra Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Lesson 6 Slope and Intercepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unit 6: Measurement Lesson 1 Units of Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Lesson 2 Converting Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Lesson 3 Perimeter and Circumference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Lesson 4 Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Lesson 5 Surface Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Lesson 6 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Measurement Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Unit 7: Data Analysis, Statistics, and Probability Lesson 1 Data and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Lesson 2 Box-and-Whisker and Stem-and-Leaf Plots . . . . . . . . . . . . . . . . . . . 177 Lesson 3 Histograms and Circle Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Lesson 4 Scatterplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Lesson 5 Venn Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Lesson 6 Probability of Compound Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Data Analysis, Statistics, and Probability Review. . . . . . . . . . . . . . . . . . . . . . 197 LESSON Factors, Multiples, and Primes 6 Indicator , 8.N.5 The greatest common factor (GCF) of two or more numbers is the greatest number that is a factor of all the numbers. Factors of 12: 1, 2, 3, 4, 6, 12 Factors of 16: 1, 2, 4, 8, 16 The GCF of 12 and 16 is 4. , The least common multiple (LCM) of two or more numbers is the least number that is a multiple of all the numbers. Multiples of 2: 2, 4, 6, 8, 10, 12, … Multiples of 3: 3, 6, 9, 12, … The first 6 prime numbers: 2 Two numbers are relatively prime if their GCF is 1. Every composite number may be expressed as a product of its prime factors, factors that are prime numbers. You can use a factor tree to find the prime factors. Write the number: 6 Continue until all the factors are prime: 2 2 The prime factorization of 60 is 2 2 3 5. Using exponents, you can write 60 22 3 5. Unit 1 7 11 13 The numbers 0 and 1 are special cases. They do not have two or more factors, so they are neither prime nor composite. 60 6 10 2 3 2 5 22 3 5 10 3 5 Every factor tree of a number results in the same prime factorization. 60 Write any two factors whose product equals the number: 3 The only even prime number is 2. All other even numbers are composite. 15 and 16 are relatively prime because there is no number greater than 1 that is a factor of both 15 and 16. , To find the multiples of a number n, multiply n by 1, then by 2, then by 3, and so on. 24 is divisible by 6. A number is prime if it has only two factors, itself and 1. A number that is not prime is composite. 13 is prime because its only factors are 1 and 13. 15 is composite; it has other factors besides 1 and 15. , To find the factors of a number n, find all pairs of numbers that multiply to equal n. Then list the numbers in order. If a number x is a multiple of a certain number n, we say x is divisible by n. The LCM of 2 and 3 is 6. , Remember— 5 or 60 2 30 2 2 15 2 2 3 5 22 3 5 33 Number Sense © The Continental Press, Inc. Do not duplicate. Read each problem. Circle the letter of the best answer. 1 Which of these numbers can be written as the product of two prime numbers? A 12 C 14 B 13 D 18 6 Lewis wants to cut this rectangular paper into the largest possible congruent (equalsized) squares. 16 cm The correct answer is C. 14 is the product of 2 7, and both 2 and 7 are prime numbers. Choices A and D can each be written as a product in many different ways, but not as the product of two primes. In choice B, 13 can only be written as 1 13, and 1 is not prime. 2 What is the greatest common factor (GCF) of 15, 20, and 30? A 1 C 10 B 5 D 15 of 3, 5, and 6? 15 C 30 B 18 D 60 The side length in centimeters of each square will be the greatest common factor (GCF) of 16 and 20. What will be the side length of each square? A 2 cm C 8 cm B 4 cm D 10 cm 7 A cable television station broadcasts a 3 What is the least common multiple (LCM) A 20 cm 4 What is the prime factorization of 36? A 23 C 2 2 32 B 49 D 4 2 92 5 Which set contains only prime numbers? cooking show once every 4 days and a home repair show once every 6 days. How often does the station broadcast the cooking show and the home repair show on the same day? A once every 12 days B once every 18 days C once every 24 days D once every 48 days 8 Which pair of numbers is relatively prime? A 3 and 6 A {2, 3, 4} B 4 and 10 B {3, 5, 6} C 5 and 15 C {4, 6, 8} D 8 and 15 D {5, 7, 11} 34 Unit 1 © The Continental Press, Inc. Do not duplicate. Number Sense Read each problem. Write your answers. 9 Ms. Harvey buys flowerpots in stacks of 12. She buys tulip bulbs in bags of 10. If Ms. Harvey wants to buy the same number of flowerpots and tulip bulbs, what is the least number of flowerpots she can buy? 60 Answer: ____________ The number of flowerpots Ms. Harvey buys has to be a multiple of 12. The number of tulip bulbs she buys has to be a multiple of 10. The least common multiple of 12 and 10 is 60. 10 What is the prime factorization of 120? Answer: ________________________ 11 Explain why the numbers 10 and 21 are relatively prime. __________________________________________________________________________ __________________________________________________________________________ 12 There are between 25 and 30 students in Terence’s math class. It is not possible to divide the students into 2 or more equal groups. How many students are there in the math class? Answer: ____________ 13 What is the least common multiple (LCM) of 4, 5, and 8? Answer: ____________ Unit 1 35 Number Sense © The Continental Press, Inc. Do not duplicate. Read the problem. Write your answer for each part. 14 The sieve of Eratosthenes is a method for finding prime numbers less than 100. It uses a chart like this: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 a. On the chart above, cross out 1. Then find the first prime number, circle it, and cross out all of its multiples. Repeat with the next prime number and the next, until only primes (circled numbers) are left. Ask Yourself What is the first prime number? What are its multiples? List all the primes less than 100. ________________________________________________________________________ ________________________________________________________________________ b. What was the last number whose multiples you actually needed to cross out? Explain why. ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 36 Unit 1 © The Continental Press, Inc. Do not duplicate. Number Sense 5 The Venn diagram shows the number of students at a middle school who went to the first school dance and/or the second school dance. 148 185 204 123 1st Dance 2nd Dance How many students went to the second dance? A 123 B 204 C 327 D 352 6 The table shows the distances 4 snowboarders jumped in a contest. SNOWBOARD JUMP CONTEST Contestant Distance Jumped (in meters) Adam 6.3 Sean 6 Kate 6.26 Jamal 6 2 7 1 3 Which list shows the distances in order from greatest to least? 1 2 A 6 3 , 6 7 , 6.26, 6.3 1 2 B 6 3 , 6.3, 6 7 , 6.26 2 1 2 1 C 6 7 , 6 3 , 6.26, 6.3 D 6 7 , 6 3 , 6.3, 6.26 Session One 5 © The Continental Press, Inc. Do not duplicate. Go On ➧ 14 The diagram shows the result of a 13 Look at this photograph. transformation of 䉭ABC. y 8 7 6 5 4 3 2 1 –8 –7 –6 –5 –4 –3 –2 –1 0 –1 B –2 –3 –4 –5 –6 –7 A C – 8 9 in. 12 in. According to the measurements marked, which of these is similar in shape to the photograph above? A 6 in. 8 in. B A C 1 2 3 4 5 6 7 8 x Which best describes this transformation? B A reflection across the x-axis 5 in. B rotation 180° clockwise around the origin 8 in. C C translation 4 units left and 4 units down 4 in. D translation 8 units left and 9 units down 6 in. D 15 A cat bowl holds 400 milliliters of water. 3 in. What is the equivalent amount in liters? A 0.04 L 6 in. B 0.4 L C 40,000 L D 400,000 L Session One 9 © The Continental Press, Inc. Do not duplicate. Go On ➧