Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Math 220 February 5 I. Determine the values of a for which limx→a f (x) exists. 1 + sin(x) if x < 0 f (x) = cos(x) if 0 ≤ x ≤ π sin(x) if x > π II. For what value of the constants a,b is the function f continuous on (−∞, ∞). cos(x) + 2 sin(x) if x < 0 f (x) = x2 + 6x + b if 0 ≤ x ≤ 2 x a if x > 2 III. Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval. 1. √ 3 x = 1 − x, (0, 1) 2. sin(x) = x + 3, (−4, 0) 3. x3 − 2x2 + 5 = ex , (−2, 1) IV. Determine the infinite limit. 1. lim− x+3 x−4 lim+ x+3 x−4 x→4 2. x→4 3. 3−x x→4 (x − 4)2 lim 4. lim ln(x2 − 16) x→4+ 5. lim cot(x) x→π + 6. lim− x→2 x2 + 5x + 6 x2 − 3x + 2 1 7. lim+ x→2 x2 − 4 x2 + 2x − 8 V. Find the limit or show that it does not exist. 1. x3 + 2x + 1 x→∞ x+3 lim 2. x3 + 2x + 1 x→∞ x4 + 3 lim 3. 2x + 1 − 3x3 x→∞ x2 + 5 lim 4. lim x→−∞ 5. √ 4x2 + 5x − 2x ex + 1 x→−∞ e2x + 5 lim 6. ex + 1 x→∞ e2x + 5 lim 7. lim ex sin(x + 3) x→−∞ 8. √ 16x8 − x3 x→−∞ 3x4 + 5x + 1 lim 9. sin(x2 ) + sin2 (x) + ex x→−∞ 3x4 + 5ex + 1 lim VI. Simplify the expression. 1. sin(2 cos−1 (x)) 2. cos(2 tan−1 (x)) 3. tan(cos−1 (x)) 4. sec(sin−1 (x)) 2 1 Solutions I. Determine the values of a for which limx→a f (x) exists. 1 + sin(x) if x < 0 f (x) = cos(x) if 0 ≤ x ≤ π sin(x) if x > π Answer: The functions 1 + sin(x), cos(x), sin(x) are continuous so the limit exists for at least all a except a = 0, π. At a = 0 lim f (x) = 1 + sin(0) = 1 + 0 = 1 x→0− lim f (x) = cos(0) = 1 = 1 x→0+ lim f (x) = lim+ f (x) = lim f (x) x→0− x→0 x→0 The limit exists at a = 0 At a = π lim f (x) = cos(π) = −1 x→π − lim f (x) = sin(π) = 0 x→π + lim f (x) 6= lim+ f (x) x→π − x→π The limit does not exist at a = 0 The limit exist for all values of a except a = π II. For what value of the constants a,b is the function f continuous on (−∞, ∞). cos(x) + 2 sin(x) if x < 0 f (x) = x2 + 6x + b if 0 ≤ x ≤ 2 x a if x > 2 Answer: f (x) is continuous at x = a if lim f (x) = f (a) x→a The functions cos(x) + 2 sin(x), x2 + 6x + b, ax are continuous. lim f (x) = cos(0) + 2 sin(0) = 1 + 0 = 1 x→0− lim+ f (x) = 02 + 6 · 0 + b = b x→0 3 lim f (x) = lim+ f (x) =⇒ b = 1 x→0− x→0 lim f (x) = 22 + 6(2) + 1 = 4 + 12 + 1 = 17 x→2− lim+ f (x) = a2 x→2 lim− f (x) = lim+ f (x) =⇒ a2 = 17 =⇒ a = x→0 √ 17 x→0 Thus the function will be continuous if b = 1 and a = √ 17 III. Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval. 1. √ 3 x = 1√ − x, (0, 1) Answer: f (x) = 3 x − 1 + x We want to show f (x) = 0 for some x ∈ (0, 1) f (x) is continuous for all real numbers. f (0) = −1 f (1) = 1 f (0) = −1 < 0 < 1 = f (1) Therefore by the Intermediate Value Theorem there exists c ∈ (0, 1) such that f (c) = 0. Thus the equation has a root. 2. sin(x) = x + 3, (−4, 0) Answer: f (x) = sin(x) − x − 3 We want to show f (x) = 0 for some x ∈ (−4, 0) f (x) is continuous for all real numbers. f (−4) = sin(−4) + 1 > 0 f (0) = −3 f (−4) < 0 < f (0) Therefore by the Intermediate Value Theorem there exists c ∈ (−4, 0) such that f (c) = 0. Thus the equation has a root. 3. x3 − 2x2 + 5 = ex , (−2, 1) Answer: f (x) = x3 − 2x2 + 5 − ex We want to show f (x) = 0 for some x ∈ (−2, 1) 4 f (x) is continuous for all real numbers. f (−2) = (−2)3 − 2(−2)2 + 5 − e−2 = −8 − 6 + 5 + e−2 = −9 + e−2 < 0 f (1) = 13 − 2(1)2 + 5 + e1 = 4 + e > 0 f (−2) < 0 < f (1) Therefore by the Intermediate Value Theorem there exists c ∈ (−2, 1) such that f (c) = 0. Thus the equation has a root. IV. Determine the infinite limit. 1. lim− x→4 x+3 x−4 Answer: x+3 7 lim− = − x→4 x − 4 0 2. lim+ x→4 + = −∞ − x+3 x−4 Answer: 7 x+3 lim+ = + x→4 x − 4 0 3. + =∞ + 3−x x→4 (x − 4)2 lim Answer: 3−x −1 lim = + 2 x→4 (x − 4) 0 − = −∞ + 4. lim ln(x2 − 16) x→4+ Answer: ln lim+ x − 16 = ln(0+ ) = −∞ 2 x→4 5 5. lim cot(x) x→π + Answer: −1 cos(π + ) = − lim+ cot(x) = + x→π sin(π ) 0 6. lim− x→2 − = −∞ − x2 + 5x + 6 x2 − 3x + 2 Answer: x2 + 5x + 6 x2 + 5x + 6 20 lim− 2 = lim− = − x→2 x − 3x + 2 x→2 (x − 2)(x − 1) 0 7. lim+ x→2 + = −∞ − x2 − 4 x2 + 2x − 8 Answer: x2 − 4 (x − 2)(x + 2) (x + 2) 4 2 lim+ 2 = lim+ = lim+ = = x→2 x + 2x − 8 x→2 (x + 4)(x − 2) x→2 (x + 4) 6 3 V. Find the limit or show that it does not exist. 1. x3 + 2x + 1 x→∞ x+3 lim Answer: x3 + 2x + 1 1/x lim x→∞ x+3 1/x 2 x + 2 + 1/x = lim x→∞ 1 + 3/x = lim x→∞ > x2 + 2 + 1/x 0 > 1+ 3/x = −∞ 2. x3 + 2x + 1 x→∞ x4 + 3 lim 6 0 Answer: x3 + 2x + 1 1/x4 lim x→∞ x4 + 3 1/x4 1/x + 2/x3 + 1/x4 = lim x→∞ 1 + 3/x4 0 = lim 0 * 0 * > 3 + 4 1/x + 2/x 1/x 0 * x→∞ 4 1 + 3/x =0 3. 2x + 1 − 3x3 x→∞ x2 + 5 lim Answer: 2x + 1 − 3x3 1/x2 x→∞ x2 + 5 1/x2 2/x + 1/x2 − 3x = lim x→∞ 1 + 5/x2 lim 0 = lim x→∞ 0 * > 2 − 3x 2/x + 1/x 0 * 2 1 + 5/x = −∞ 4. lim x→−∞ √ 4x2 + 5x − 2x 7 Answer: lim x→−∞ √ 4x2 + 5x − 2x ! √ 2 4x + 5x + 2x √ 4x2 + 5x − 2x (4x2 + 5x − 4x2 = lim √ x→−∞ 4x2 + 5x − 2x 5x = lim √ x→−∞ 4x2 + 5x − 2x 5x = lim √ x→−∞ 4x2 + 5x − 2x 5 p = lim x→−∞ − 4 + 5/x − 2 5 q = lim 0 x→−∞ > − 4+ 5/x −2 5 = √ − 4−2 5 = −4 5 =− 4 5. ex + 1 x→−∞ e2x + 5 lim Answer: ex + 1 x→−∞ e2x + 5 0+1 = 0+5 1 = 5 lim 6. ex + 1 x→∞ e2x + 5 lim 8 1/x √ −1/ x2 ! Answer: e−2x e−2x e−x + e−2x = lim x→−∞ 1 + 5e−2x ex + 1 lim 2x x→−∞ e +5 = lim x→−∞ *0 * 0 −2x e−x + e 0 * 1 + 5 e−2x =0 7. lim ex sin(x + 3) x→−∞ Answer: −ex ≤ ex sin(x + 3) ≤ ex sin(x + 3) lim −ex ≤ lim ex sin(x + 3) ≤ lim ex x→−∞ x→−∞ x→−∞ x 0 ≤ lim e sin(x + 3) ≤ 0 x→−∞ x lim e sin(x + 3) = 0 x→−∞ 8. √ 16x8 − x3 x→−∞ 3x4 + 5x + 1 lim Answer: √ ! 16x8 − x3 −1/ x8 lim x→−∞ 3x4 + 5x + 1 1/x4 p − 16 − 1/x5 = lim x→−∞ 3 + 5/x3 + 1/x4 q 0 * 5 − 16 − 1/x = lim 0 0 x→−∞ * * 3 4 3 + 5/x + 1.x √ − 16 = 3 4 =− 3 √ 9 9. sin(x2 ) + sin2 (x) + ex x→−∞ 3x4 + 5ex + 1 lim Answer: −2 + ex sin(x2 ) + sin2 (x) + ex 2 + ex ≤ ≤ 3x4 + 5ex + 1 3x4 + 5ex + 1 3x4 + 5ex + 1 2 2 x sin(x ) + sin (x) + ex 2 + ex −2 + e ≤ lim ≤ lim lim x→−∞ x→−∞ 3x4 + 5ex + 1 x→−∞ 3x4 + 5ex + 1 3x4 + 5ex + 1 −2 + ex =0 x→−∞ 3x4 + 5ex + 1 2 + ex lim =0 x→−∞ 3x4 + 5ex + 1 lim sin(x2 ) + sin2 (x) + ex =0 x→−∞ 3x4 + 5ex + 1 lim VI. Simplify the expression. 1. sin(2 cos−1 (x)) Answer: sin(2 cos−1 (x)) = 2 sin(cos−1 (x)) cos(cos−1 (x)) = 2 sin(cos−1 (x))x √ = 2 1 − x2 x √ = 2x 1 − x2 2. cos(2 tan−1 (x)) Answer: cos(2 tan−1 (x)) = cos2 (tan−1 (x)) − sin2 (tan−1 (x)) 2 2 1 x = √ − √ 1 + x2 1 + x2 1 x2 = − 1 + x2 1 + x2 1 − 2x2 = 1 + x2 10 3. tan(cos−1 (x)) Answer: sin(cos−1 (x)) cos(cos−1 (x)) √ 1 − x2 = x tan(cos−1 (x)) = 4. sec(sin−1 (x)) Answer: 1 cos(sin−1 (x)) 1 =√ 1 − x2 sec(sin−1 (x)) = 11