Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Name: ________________________ Rec/Sec: ____________ Review Test4 (Math1650:500) Instructor: Koshal Dahal Multiple Choice Identify the choice that best completes the statement or answers the question. ____ 1. Find the equivalent expression. tan 4 x sec 4 x a. cot 2 x csc 2 x b. csc 2 x cot 2 x c. csc 2 x tan 2 x d. tan 2 x sec 2 x e. sec 2 x tan 2 x ____ 2. Simplify the following trigonometric expression. sec 2 x 1 sec 2 x a. 1 b. sin x c. sin 2 x d. sec 2 x ____ 3. Simplify the following trigonometric expression. sin(z) + cos(–z) + sin(–z) a. sin z b. cos z c. 2sin z – cos z d. 2sin z ____ 4. Simplify the following trigonometric expression as much as possible. csc x sin x csc x a. sin x b. cos 2 x c. sin 2 x d. csc x ____ 5. Simplify the following trigonometric expression as much as possible. sin 2 t + cos 2 t + tan 2 t a. tan x b. sec 2 x c. sec x d. tan 2 x 1 Test 4 date: Fri, May 1 Name: ________________________ ____ ID: A 6. Simplify the following trigonometric expression as much as possible. sin x 1 cos x 1 cos x sin x a. 2 sin x b. cos x c. sin x d. 2 csc x ____ 7. Simplify the following trigonometric expression as much as possible. sec 2 y tan 2 y a. b. c. d. ____ csc 2 y csc x tan x sin 2 x sec 2 x 8. Find the equivalent expression. 1 tan x 1 tan x sec x csc x a. sinx cos x cos x sin x b. cos x sin x cos x sin x c. cos x sin x sinx cos x d. sinx cos x sinx cos x e. sinx cos x ____ 9. Simplify the following trigonometric expression as much as possible. 1 1 csc x cot x csc x cot x a. 2 csc x b. cot x c. cot 2 x d. csc x 2 Name: ________________________ ID: A ____ 10. Find the equivalent expression. 1 sin x 1 sin x 1 sin x 1 sin x a. 4tanx sec x b. 4cot x sec x c. 4 cot x csc x d. 4cot x csc x e. 4 tanx sec x ____ 11. Make the indicated trigonometric substitution in the given algebraic expression and simplify. Assume 01 2 x 1x sin t 1 tan t cos t . , x sin t 2 a. b. c. d. ____ 12. Use an addition or subtraction formula to find the exact value of the expression. sin (705) a. 6 4 b. 6 4 2 c. 6 4 2 2 ____ 13. Use an addition or subtraction formula to find the exact value of the expression. tan (255) a. 1 3 1 b. 2 3 c. d. 2 3 1 1 3 3 Name: ________________________ ID: A ____ 14. Use an addition or subtraction formula to find the exact value of the expression. ÊÁ 11 ˆ˜ ˜˜ sin ÁÁÁ ÁË 12 ˜˜¯ 6 a. 4 2 b. 3 4 6 c. 6 4 3 d. 6 4 2 ____ 15. Use an addition or subtraction formula to find the exact value of the expression. ÊÁ ˆ˜ cos ÁÁÁ ˜˜˜˜ ÁË 12 ¯ 6 a. 4 2 b. 6 4 2 c. 6 4 2 d. 2 4 6 ____ 16. Use an addition or subtraction formula to write the expression as a trigonometric function of one number. sin34 cos 56 cos 34 sin56 a. sin (90) b. cos (180) c. cos (90) d. sin (90) 4 Name: ________________________ ID: A ____ 17. Use an addition or subtraction formula to write the expression as a trigonometric function of one number. ÊÁ 3 cos ÁÁÁ ÁË 4 a. b. c. d. ˆ˜ Ê ˆ Ê ˜˜ cos ÁÁÁ ˜˜˜ sin ÁÁÁ 3 ˜˜ ÁÁ 8 ˜˜ ÁÁ 4 ¯ Ë ¯ Ë ÊÁ 7 ˆ˜ ˜˜ cos ÁÁÁÁ ˜˜ Ë 8 ¯ ÊÁ 7 ˆ˜ ˜˜ sin ÁÁÁÁ ˜˜ 8 Ë ¯ ÊÁ 7 ˆ˜ ˜˜ sin ÁÁÁÁ ˜˜ 8 Ë ¯ ÊÁ 7 ˆ˜ ˜˜ cos ÁÁÁÁ ˜˜ 8 Ë ¯ ˆ˜ ÊÁ ˆ˜ ˜˜ sin ÁÁ ˜˜ ˜˜ ÁÁ 8 ˜˜ ¯ Ë ¯ ____ 18. Simplify the following expression as much as possible. ÊÁ 9 ˆ˜ tan ÁÁÁ x ˜˜˜˜ ÁË 2 ¯ a. tan(x) b. –tan(x) c. cot(x) d. –cot(x) ____ 19. Simplify the following expression. ÁÊ ˜ˆ sinÁÁÁÁ u ˜˜˜˜ 2¯ Ë a. sin u b. –cos u c. cos u d. –sin u ____ 20. Simplify the following expression. sin(v + x) – sin(v – x) a. 2cos(v)cos(x) b. 2sin(x)sin(v) c. 2cos(v)sin(x) d. 2cos(x)sin(v) ____ 21. Simplify the following expression cos(p + z) – cos(p – z) a. –2cos(p)cos(z) b. 2cos(p)cos(z) c. 2sin(p)sin(z) d. –2sin(p)sin(z) 5 Name: ________________________ ID: A ____ 22. Simplify the expression. tan p – tan x sin(p x) a. cos p cos x cos(p x) b. cos p cos x sin(p x) c. cos p cos x ____ 23. Write the following expression in terms of sine only. sin z + cos z ÊÁ ˆ˜ 3 sin ÁÁÁÁ z ˜˜˜˜ a. Ë6 ¯ ÊÁ ˆ˜ 2 sin ÁÁÁÁ z ˜˜˜˜ b. Ë4 ¯ ÊÁ ˆ˜ 3 sin ÁÁÁÁ z ˜˜˜˜ c. Ë6 ¯ ÊÁ ˆ˜ 2 sin ÁÁÁ z ˜˜˜˜ d. ÁË 4¯ ____ 24. Write the following expression in terms of sine only. 5 sin x 5 3 cos x ÊÁ ˆ˜ a. 5 sin ÁÁÁÁ x ˜˜˜˜ 3¯ Ë ÊÁ ˆ˜ b. 5 sin ÁÁÁÁ x ˜˜˜˜ 3¯ Ë ÊÁ ˆ˜ c. 10sin ÁÁÁÁ x ˜˜˜˜ 3¯ Ë ÁÊ ˜ˆ d. 10sin ÁÁÁÁ x ˜˜˜˜ 3¯ Ë 6 Name: ________________________ ID: A ____ 25. Rewrite the expression as an algebraic expression in x. tan (sin – 1 x) 1 a. x2 1 x b. 1 x2 c. 1 x2 d. x2 1 ____ 26. Rewrite the expression as an algebraic expression in x. sin (cos – 1 x) a. b. x2 1 x–1 c. d. e. 1 x2 1–x x ____ 27. Find the exact value of the expression. ÊÁ ˆ ÁÁ 1 3 ˜˜˜ Á ˜˜ cos ÁÁ sin ÁÁ 2 ˜˜˜ Ë ¯ a. b. 2 1 2 c. 2 2 d. 3 2 7 Name: ________________________ ID: A ____ 28. Simplify the expression. sin 14x sin13x sin x sin6x a. sin7x cos 6x b. cos 7x sin 13x c. sin6x sin7x d. sin6x cos 7x e. cos 6x ____ 29. Find all solutions of the equation. 2 cos x 2 0 Select the correct answer, where k is any integer: 4 2k , 2k a. 5 5 7 b. 2k , 2k 4 4 7 c. k , k 4 4 9 d. 2k , 2k 5 5 ____ 30. Find all solutions of the equation. 2 sin x 1 0 Select the correct answer, where k is any integer: 11 k , k a. 6 6 5 b. k , k 6 6 5 c. 2k , 2k 6 6 11 d. 2k , 2k 6 6 8 Name: ________________________ ID: A ____ 31. Find all solutions of the following equation. 4 cos 2 x 3 0 Select the correct answer, where k is any integer: 5 7 11 2k , 2k , 2k , 2k a. 6 6 6 6 11 b. k , k 6 6 5 7 11 c. k , k , k , k 6 6 6 6 5 d. 2k , 2k 6 6 ____ 32. Find all solutions of the following equation. 4 cos 2 x – 4 cos x + 1 = 0 Select the correct answer, where k is any integer: 7 2k , 2k a. 4 4 5 b. 2k , 2k 3 3 5 c. 2k , 2k 6 6 3 d. 2k , 2k 4 4 ____ 33. Use an addition or subtraction formula to simplify the following equation. Then find all the solutions in the ÈÍ Í ˆ˜ interval ÍÍÍÍ 0, ˜˜˜˜ . ÍÎ 4 ¯ cos x cos 7 x – sin x sin 7 x = 0 a. b. c. d. 16 8 , 3 8 , 3 16 8 16 9 Name: ________________________ ID: A ÁÊ ____ 34. Plot the point that has the polar coordinates ÁÁÁÁ 5, Ë 4 a. d. b. e. ˜ˆ˜ ˜˜ . ˜ ¯ c. 10 Name: ________________________ ID: A ÁÊ 7 ____ 35. Plot the point that has the polar coordinates ÁÁÁÁ 3, 6 Ë a. d. b. e. c. ____ 36. Find the third term of the sequence. a n = 2n + 1 a. b. c. d. e. a3 a3 a3 a3 a3 =7 =6 =5 =1 =2 11 ˜ˆ˜ ˜˜ . ˜ ¯ Name: ________________________ ID: A ____ 37. Find the fourth term of the sequence. an = a. b. c. d. e. 1 n+1 a4 = 5 1 a4 = 5 4 a4 = 5 1 a4 = 4 1 a4 = 1 ____ 38. Find the 200th term of the sequence. an = 10 a. a 200 = 1 b. a 200 = 10 c. a 200 = 200 d. a 200 = 210 e. a 200 = 2000 ____ 39. Find the nth term of the sequence. 2, 4, 8, 16, ... a. an = 2 n – 1 b. an = 2n c. an = 2 n d. an = 2 n + 1 e. an = 2 + 2n ____ 40. Find the partial sum S 7 of the sequence. 5, 10, 15, 20, ... a. S 7 = 140 b. S 7 = 50 c. S 7 = 280 d. S 7 = 141 e. S 7 = 20 12 Name: ________________________ ID: A ____ 41. Find the partial sum S 5 of the sequence. 1, –1, 1, –1, ... a. S 5 = 0 b. S 5 = 2 c. S 5 = –2 d. S 5 = –1 e. S 5 = 1 ____ 42. Find the sum. 18 4 i4 18 a. 4 13 i4 18 b. 4 60 i4 18 c. 4 72 i4 18 d. 4 56 i4 18 e. 4 4 i4 ____ 43. Find the sum. 4 k2 k k1 4 a. k2 k 99 k 64 k 91 k 10 k 98 k1 4 b. k2 k1 4 c. k2 k1 4 d. k2 k1 4 e. k2 k1 13 Name: ________________________ ID: A ____ 44. Write the following sum. 7 k (k 9) k5 7 a. k(k 9) 5(5 9) 7(7 9) k5 7 b. k(k 9) 6(6 9) 7(7 9) k5 7 c. k(k 9) 6(6 9) 7(7 9) 8(8 9) k5 7 d. k(k 9) 5(5 9) 6(6 9) 7(7 9) k5 7 e. k(k 9) 5(5 9) 6(6 9) 8(8 9) k5 ____ 45. Write the following sum using sigma notation. 5 + 10 + 15 + 20 + ... + 50 50 a. 5 k0 10 b. k 5 k0 10 c. 5k k1 10 d. 5 k k0 50 e. k k5 ____ 46. The first term of the arithmetic sequence a is 4 and common difference d is 6. Find the nth term and the 10th term. a. a n 1 6(n 4), a 10 62 b. a n 4 6(n 1), a 10 58 c. a n 4 6(n 4), a 10 56 d. a n 6 4(n 1), a 10 59 e. a n 6 4(n 6), a 10 55 14 Name: ________________________ ID: A ____ 47. Find the common difference d of the arithmetic sequence. 5, 7, 9, 11, ... a. b. c. d. e. 2 2n n 7 5 ____ 48. Find the first five terms and determine if the sequence is arithmetic. an a. b. c. d. e. 2 6n a 1 8, a 2 a 1 8, a 2 a 1 8, a 2 a 1 8, a 2 a 1 8, a 2 14, a 3 14, a 3 14, a 3 14, a 3 14, a 3 20, a 4 20, a 4 20, a 4 20, a 4 20, a 4 23, a 5 30, a 5 24, a 5 26, a 5 27, a 5 35 The sequence is not arithmetic. 28 The sequence is not arithmetic. 34 The sequence is arithmetic. 32 The sequence is arithmetic. 33 The sequence is arithmetic. ____ 49. If it is arithmetic, express the nth term of the sequence in the standard form a n a d(n 1) and find the common difference. an a. b. c. d. e. 8n 1 a n 3 7(n 1), d 7 a n 3 6(n 1), d 6 Not an arithmetic sequence. a n 3 5(n 1), d 5 a n 3 8(n 1), d 8 ____ 50. Find the fifth term of the arithmetic sequence. 2, 10, 18, 26, ... a. 26 b. 27 c. 34 d. 44 e. 5 ____ 51. Find the fifth term of the arithmetic sequence. 5, 9, 13, 17, ... a. b. c. d. e. 21 17 30 5 18 15 Name: ________________________ ID: A ____ 52. Find the nth term of the arithmetic sequence. 2, 2 + s, 2 + 2s, 2 + 3s, ... a. s 2n b. 2 sn c. s 2 (n 1) d. 2 s (n 1) 1 e. 2n sn (n 1) 2 ____ 53. The 12th term of an arithmetic sequence is 13 and the 5th term is 6. Find the 22th term. a. 24 b. 43 c. 21 d. 10 e. 23 ____ 54. The 20th term of an arithmetic sequence is 97, and the common difference is 5. Find a formula for the nth term. a. 20 + 5(n – 1) b. 2 + 5(n) c. 5 + 2(n – 1) d. 2 + 5(n – 1) e. 5 + 2(n + 1) ____ 55. Which term of the arithmetic sequence 3, 8, 13,... is 73? a. 15 b. 17 c. 14 d. 16 e. 13 ____ 56. Find the partial sum S n of the arithmetic sequence that satisfies the following conditions. a = 1, d = 4, n = 15 a. b. c. d. e. 57 435 465 870 61 16 Name: ________________________ ID: A ____ 57. Find the product of the numbers. 1 10 2 10 10 ,10 ,10 a. 380 b. 10 380 c. d. e. 3 10 ,10 4 10 , ... , 10 19 10 19 10 10 190 10 19 ____ 58. Find the nth term of the geometric sequence with given first term a and common ratio r. What is the fifth term? a a. 7 1 ,r 3 3 n Ê 7 ÁÁÁ 1 ˆ˜˜˜ 1 a n ÁÁ ˜˜ , a 5 3 Ë 3¯ 243 b. n1 7 ÊÁÁÁ 1 ˆ˜˜˜ 7 a n ÁÁ ˜˜ , a 5 3 Ë 3¯ 81 c. an d. an e. n1 7 ÊÁÁÁ 1 ˆ˜˜˜ 7 a n ÁÁ ˜˜ , a 5 3 Ë 3¯ 243 n1 1 ÁÊÁÁ 1 ˜ˆ˜˜ 7 , a5 3 ÁÁË 3 ˜˜¯ 81 n1 7 ÁÊÁÁ 1 ˜ˆ˜˜ 7 , a5 3 ÁÁË 3 ˜˜¯ 81 ____ 59. Determine whether the sequence 6, 24, 96, 384... is geometric. If it is geometric, find the common ratio. a. Geometric sequence, r = 6 1 b. Geometric sequence, r 4 c. Not a geometric sequence. d. Geometric sequence, r = 4 1 e. Geometric sequence, r 5 17 Name: ________________________ ID: A ____ 60. Determine whether the sequence is geometric. 8, –4, 2, –1,... If it is geometric, find the common ratio. 1 a. Geometric, 2 b. Not geometric. 1 c. Geometric, 2 d. Geometric, 2 e. Geometric, –2 ____ 61. Determine whether the sequence is geometric. If it is geometric, find the common ratio. e 4 , e 7 , e 10 , e 13 , ... a. Geometric, r = e 3 b. Not geometric. c. Geometric, r = 3 1 d. Geometric, r = 3 e e. Geometric, r = e 4 ____ 62. Find the first five terms of the sequence and determine if it is geometric. If it is geometric express the nth term of the sequence in the standard form a n ar n 1 . a n (1) 3 n a. –3, 9, –27, 81, –243; ; it is not geometric. b. –3, 9, –27, 81, –243; a n 3(4) n 1 n c. –3, 9, –27, 84, –243; a n 3(4) n 1 d. –3, 9, –27, 81, –243; a n 3(3) n 1 e. –3, 9, –27, 84, –243; a n 3(3) n 1 ____ 63. Determine the common ratio, the 6th term, and the nth term of the geometric sequence. 5, 20, 80, 320, ... a. b. c. d. e. Common ratio 5, the 6th term 5,120, and the nth term 4 n 1 Common ratio 4, the 6th term 5,120, and the nth term 54 n 1 Common ratio 4, the 6th term 12,500, and the nth term 5 n 1 Common ratio 5, the 6th term 12,500, and the nth term 54 n 1 Common ratio 4, the 6th term 5,120, and the nth term 4 n 1 18 Name: ________________________ ID: A ____ 64. Determine the nth term of the geometric sequence. 1, a. b. c. d. e. 11 ,11,11 11, ... 11 n 1 n1 ÁÊÁ 1 ˜ˆ˜ ˜˜ ÁÁ ˜˜ ÁÁ Ë 11 ¯ ÊÁ 1 ˆ˜ n 1 ÁÁÁ ˜˜˜ Á 11 ˜ Ë ¯ Not a geometric series. ÊÁ ˆn1 ÁÁ 11 ˜˜˜ Ë ¯ ____ 65. Determine the nth term of the geometric sequence. x2 x3 x4 , , , ... 5 25 125 xn a. 5 xn b. 5n c. x n 1 xn 1 d. 5n 1 xn e. 5n 1 x, ____ 66. The first term of a geometric sequence is 6, and the second term is 3. Find the fifth term. 3 a. 2 3 b. 8 6 c. 8 19 Name: ________________________ ____ 67. The common ratio in a geometric sequence is a. b. c. d. e. ID: A 4 7 , and the fourth term is . Find the third term. 3 3 3 4 4 7 6 3 14 4 7 4 ____ 68. Which term of the geometric sequence 5, 20, 80, . . . is 20480? a. 7th b. 13th c. 6th d. 8th e. 9th ____ 69. Find the partial sum Sn of the geometric sequence that satisfies the given conditions. a = 3, r = 4, n = 6 a. Sn = 4,092 b. Sn = 16,383 c. Sn = 8,190 d. Sn = 4,094 e. Sn = 4,095 ____ 70. Find the partial sum Sn of the geometric sequence that satisfies the given conditions. a4 a. b. c. d. e. 16, a 6 64, n 4 Sn = 60 Sn = 62 Sn = 28 Sn = 29 Sn = 30 ____ 71. Find the sum. 1 + 4 + 16 + ... + 4096 a. Sn = 1,365 b. Sn = 10,922 c. Sn = 21,845 d. Sn = 5,460 e. Sn = 5,461 20 Name: ________________________ ID: A ____ 72. Find the sum of the infinite geometric series. 1 a. b. c. d. e. 1 1 1 ... 3 9 27 4 2 5 4 1 2 3 3 2 ____ 73. Find the sum of the infinite geometric series. 1 a. b. c. d. e. 1 1 1 ... 5 25 125 5 6 11 12 6 5 1 6 4 5 21 ID: A Review Test4 Answer Section MULTIPLE CHOICE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: D C B B B D C B A E C C C A B A A C B C D C B D B C B E B C A B D A C A B B C A 1 ID: A 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: E B E D C B A D E C A D E D A B E E D C A D B E E B E A E E E E A 2