Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Editor-in-Chief
H E R B E R T D. KAESZ
Department of Chemistry and Biochemistry
University of California, Los Angeles
INORGANIC
SYNTHESES
Volume 26
WILEY
A Wiley-Interscience Publication
J O H N W I L E Y & SONS
New York
Chichester
Brisbane
Toronto
Singapore
CONTENTS
Chapter One
C O M P O U N D S O F T H E MAIN G R O U P
E L E M E N T S AND T H E LANTHANIDES
1.
Potassium Tetradecahydrononaborate(l —)
1
2.
Bromotrimethylsilane
4
3.
Trimethylphosphine
7
4.
Phosphorus Trifluoride
5.
(i/ -Cyclopentadienyl)lanthanide Complexes from the Metallic
Elements
A. Tris(^ -cyclopentadienyl)(tetrahydrofuran)neodymium(III).
B.
Tris(^ -cyclopentadienyl)(tetrahydrofuran)samarium(III)...
C. Bis(?y -cyclopentadienyl)(l,2-dimethoxyethane)ytterbium(II)
12
5
5
5
17
20
21
5
Chapter Two
6.
MONONUCLEAR TRANSITION METAL
C O M P L E X E S Part I
Ammonium [(\R)-(endo, <r//?f/)]-3-bromo-l,7-dimethyl-2oxobicyclo[2.2.1]heptane-7-methanesulfonate, and Synthesis
and Resolution of ds-Dichlorobis(l, 2-ethanediamine)chromium(III) Chloride
A.
Ammonium [(\R)-(endo, anf/)]-3-bromo-l,7-dimethyl-2oxobicyclo[2.2.1]heptane-7-methanesulfonate [ammonium
( + ) -oi-bromocamphor-^sulfonate]
B.
cis-Dichlorobis( 1,2-ethanediamine)chromium(ITT) Chloride
Monohydrate
C
( + ) 9-A-ci5-Dichlorobis( 1,2-ethanediamine)chromium(ITI) Chloride Monohydrate
Organometallic Complexes of Isomeric Acyl Isocyanides
Chromium Carbonyl (Acyl Isocyanide) and (Acyl Cyanide)
Complexes
589
22
24
25
27
58
7.
28
31
XIII
xiv
Contents
(1
A.
(Benzoyl isocyanide)dicarbonyl(// -methylbenzoate)chromium(O)
(Benzoyl isocyanide)pentacarbonylchromium(O)
(Benzoyl cyanide)pentacarbonylchromium(O)
Β.
C.
32
34
35
8.
Diammonium pentachlorooxomolybdate(V)
36
9.
Carbyne Complexes of Tungsten
A.
Pentacarbonyl[(diethylamino)methylidyne]tungsten
Tetrailuoroborate
B. rran5-Tetracarbonyl[(diethylamino)methylidyne](isocyanato)tungsten
40
10.
(2,2-Dimethylpropylidyne)tungsten(VI) Complexes and
Precursors for Their Syntheses
A. Methoxytrimethysilane
B.
Trichlorotrimethoxytungsten
C. (2,2-Dimethylpropyl)magnesium Chloride
D. Tris(2,2-dimethylpropyl)(2,2dimethylpropylidyne)tungsten(VI)
E. Trichloro(l, 2-dimethoxyethane)(2,2-dimethylpropylidyne)tungsten( VI)
11.
Zerovalent Iron Isocyanide Complexes
A. Tetracarbonyl(2-isocyano-l, 3-dimethylbenzene)iron(0)
B.
Tricarbonylbis(2-isocyano-l, 3-dimethylbenzene)iron(0) . . . .
C. Dicarbonyltris(2-isocyano-l, 3-dimethylbenzene)iron(0)
D. Carbonyltetrakis(2-isocyano-l, 3-dimethylbenzene)iron(0)..
E.
Pentakis(2-isocyano-l, 3-dimethylbenzene)iron(0)
12.
Tetracarbonyliron(O) Complexes Containing Group V Donor
Ligands
A. Tetracarbonyl(triphenylphosphine)iron(0)
B.
Other Tetracarbonyl(Group V Donor Ligand) Iron(O)
Complexes
13.
ds-Tetraamminedihaloruthenium(III) Halide Complexes
A. c/s-Tetraamminedichlororuthenium(III) Chloride
B.
ds-Tetraamminedibromoruthenium(III) Bromide
14.
(^ -l,5-Cyclooctadiene)ruthenium(II) Complexes
A. Di-/z-chloroOy -l, 5-cyclooctadiene)ruthenium(II)
4
4
40
42
44
44
45
46
47
50
52
52
54
56
57
57
59
61
61
65
66
67
68
69
Contents
Β.
C.
D.
E.
F.
G.
H.
I.
J.
Κ.
xv
4
Bis(acetonitrile)dichloro(^ -1, 5cyclooctadiene)ruthenium(II)
Bis(benzonitrile)dichloro(?/ -l, 5cyclooctadiene)ruthenium(TI)
Bis(acetonitrile)dibromo(?7 -l, 5cyclooctadiene)ruthenium(K)
Bis(benzonitrile)dibromo(^ -1,5cyclooctadiene)ruthenium(II)
Tris(acetonitrile)chloro(f7 -1,5cyclooctadiene)ruthenium(II) Hexafluorophosphate(l —) ...
Tris(acetonitrile)bromo(^ -1,5cyclooctadiene)ruthenium(II) Hexafluorophosphate(l —) ...
Tetrakis(acetonitrile)(^ -1, 5-cyclooctadiene)ruthenium(II)
bis[hexafluorophosphate(l —)]
(η -1,5-Cyclooctadiene)tetrakis(hydrazine)ruthenium(II)
bis[tetraphenylborate(l —)]
(?7 -1, 5-Cyclooctadiene)tetrakis(methylhydrazine)
ruthenium(II)bis[hexafluorophosphate(l —)]
(η -1,
5-Cyclooctadiene)tetrakis(methylhydrazine)
ruthenium(II)bis[tetraphenylborate(l —)]
69
4
70
4
70
4
71
4
71
4
72
4
72
4
73
4
74
4
74
15.
Pentacarbonylhydridorhenium
77
16.
Organometallic Fluoro Complexes
A. Tetrakis[tricarbonylfluororhenium(I)]tetrahydrate
B.
(2,2 -Bipyridine)tricarbonylfluororhenium(I)
C. (2,2 -Bipyridine)tricarbonyl(phosphorodifluoridato)
rhenium(I)
D.
Dicarbonylbis[l,2-ethanediylbis(diphenylphosphine)]
fluoromolybdenum(II) hexafluorophosphate(l —)
81
82
82
(Tetrahydrothiophene)gold(I) or Gold(III) Complexes
A. Chloro(tetrahydrothiophene)gold(I)
B.
(Pentafluorophenyl)(tetrahydrothiophene)gold(I)
C. Tris(pentailuorophenyl)(tetrahydrothiophene)gold(III)
D.
Benzyltriphenylphosphonium
Chloro(pentafluorophenyl)aurate(l)
E.
B i s [ l , 2-phenylenebis(dimethylarsine)]gold(I)
bis(pentafluorophenyl)aurate(I)
F.
(Pentafluorophenyl)-juthiocy anato(triphenylphosphene)digold(I)
85
86
86
87
,
/
17.
83
84
88
89
90
χ vi
Contents
Chapter Three
18.
MONONUCLEAR TRANSITION M E T A L
C O M P L E X E S Part II. C O M P L E X E S W I T H
W E A K L Y B O N D E D ANIONS
Preface W. Beck
Carbonyl(// -cyclopentadienyl)(tetranuoroborato)molybdenum
and -tungsten Complexes
A. Tricarbonyl(/7 cyclopentadienyl)(tetrafluoroborato)molybdenum and
-tungsten
B. Dicarbonyl(?/ cyclopentadienyl)(tetrafluoroborato)(triphenylphosphine)molybdenum and -tungsten, MCp(CO) (PPh )(FBF )
( M = Mo, W)
C.
Tricarbonyl(/7 -cyclopentadienyl)(^ -ethene)molybdenum(1 + )tetrafluoroborate( 1 - )
D.
Carbonyl(f/ cyclopentadienyl)bis(diphenylacetylene)molybdenum(l + )
tetrailuoroborate( 1 —)
E.
Carbonyl(fj -cyclopentadienyl)(diphenylacetylene)
(triphenylphosphine)molybdenum(l + )tetrafluoroborate(1-)
F.
(Acetone)(tricarbonyl)(?/ -cyclopentadienyl)molybdenum(l + ) and -tungsten(l +)tetrafluoroborate(l —)
92
5
96
5
96
5
2
5
3
3
98
2
102
5
102
5
104
:5
19.
Pentacarbonyl(tetrafluoroborato)rhenium and -manganese and
Reactions Thereof
A.
Pentacarbonylmethylrhenium
B.
Pentacarbonyl(tetrafluoroborato)rhenium(I)
C. Pentacarbonyl(>/ -ethene)rheniurn( 1 + )tetrafluoroborate(l-)
D. Di-^ -(carbon dioxide)octadecacarbonyltetrarhenium
105
106
107
108
2
3
20.
Manganese(I) and Rhenium(i) Pentacarbonyl(trifluoromethanesulfonato) Complexes
A.
Pentacarbonyl(trifluoromethanesulfonato)manganese(l),
Mn(CO) (0 SCF )
B.
Pentacarbonyl(trtfluoromethanesulfonato)rhenium(I),
Re(CO) (0 SCF )
5
5
21.
3
3
3
3
Iridium(IlI) Complexes with the Weakly Bonded Anions
[ B F J - , and [ O S 0 C F ] "
2
3
110
Ill
113
114
115
117
Contents
A.
B.
C.
D.
Carbonylchlorohydrido(tetrafluoroborato)bis(triphenylphosphine)iridium(III)
Carbonylchloromethyl(tetrafluoroborato)bis(triphenylphosphine)iridium(III)
Chloro(dinitrogen)hydrido(tetrafluoroborato)bis(triphenylphosphine)iridium(III)
Carbonylhydridobis(trifluoromethanesulfonato)bis(triphenylphosphine)iridium(III)
22. Dihydridobis(solvent)bis(triphenylphosphine)iridium(II^
Tetrafluoroborates
A.
(^ -l,5-Cyclooctadiene)bis(triphenylphosphine)iridiurn(I)
Tetrafluoroborate(l —)
B.
Bis(acetone)dihydridobis(triphenylphosphine)iridium
Tetrafluoroborate(l —)
C. Diaquadihydridobis(triphenylphosphine)iridium(III)
Tetrafluoroborate( 1 —)
D.
(l,2-Diiodobenzene)dihydridobis(triphenylphosphine)iridium(TII) Tetrafluoroborate(l —)
xvii
117
118
119
120
122
4
23.
24.
25.
d5-Chlorobis(triethylphosphine)(trifluoromethanesulfonato)platinum(ll)
122
123
124
125
126
Acetonitrile Complexes of Selected Transition Metal Cations . . .
A. Tetrakis(acetonitrile)palladium(II) bis(tetrailuoroborate)(1-)
B.
c/5-Tetrakis(acetonitrile)dinitrosylmolybdenum(Il)
bis(tetrafluoroborate)( 1 —)
C.
c'/s-Tetrakis(acetonitrile)dinitrosyltungsten(II)
bis(tetrafluoroborate)( 1 —)
The Formation of the Hydrido(methanol)bis(trie(hylphosphine)platinum(II) Cation and Its Reactions with
Unsaturated Hydrocarbons
A.
rrans-Hydrido(methanol)bis(triethylphosphine)platinum(II)
bis(trifluoromethanesulfonate)(l —)
B.
^-Hydrido-hydridophenyltetrakis(triethylphosphine)diplatinum(II) tetraphenylborate(l - )
C.
c/s(3-Methoxy-3-oxo-/vO-propyl-KC )bis(triethylphosphine)platinum(II) tetraphenylborate(l —)
D. (^ -Cyclooctenyl)bis(triethylphosphine)platinum(II) tetraphenylborate(l - )
128
128
132
133
134
135
136
1
138
3
139
xviii
Contents
Ε.
trans-Ch\oro(cis~ 1,2-diphenylethenyl)bis(triethy 1phosphine)platinum(II)
Chapter Four
140
MONONUCLEAR TRANSITION METAL
C O M P L E X E S Part I I I . M E T A L L O C Y C L I C
COMPLEXES
Preface E. Lindner
Main Group Metal (Li or Mg) o-Phenylenedimethyl[oC H ( C H ) or o - C H { C H ( S i M e ) } ] Transfer Reagents
A. The di-Grignard Reagent of o-bis(Chloromethyl)benzene, 1
B.
o-Bis[(trimethylsilyl)methyl]benzene
C. μ-[(α,α', 1,2- h: a,a', l,2-h)-0-bis[trimethylsilyl)methyl]-benzene]bis(A^, N'-tetramethyl-l, 2ethanediamine)-dilithium
142
27.
Cyclometallated Organolithium Compounds
A.
[2-[(Dimethylamino)methyl]phenyl]lithium
B.
[2-[(Dimethylamino)methyl]-5-methylphenyl]lithium
C. [2-[(Dimethylamino)phenyl]-methyl]lithium
D. (Diethyl ether)[8-[(dimethylamino)-l-naphthyl]lithium
150
152
152
153
154
28.
Metallation of Aromatic Ketones with
Pentacarbony lmethylmanganese(I)
A.
Pentacarbonylmethylmanganese(I) and (2-AcetylphenylC, 0)tetracarbonylmanganese
B.
Octacarbonyl-1 -/c C, 2fc C-/i-[carbonyl-1 KC: 2;c[0(3-diphenylphosphino-1 KP)-o-phenylene-2K:C ] dimanganese, 5
26.
6
4
2
2
6
4
3
4
2
144
146
148
148
155
156
4
1
29.
Cyclo-Cotrimorization of Phosphinothioyls with Alkynes.
Phosphinothioyl-containing Manganese Analogs of Cyclopentadiene and Bicycloheptadienes
A.
Dimethylphosphine sulfide
B.
Octacarbonylbis-^-(dimethylphosphinothioyl-P: S)dimanganese
C.
Tetracarbonyl[2-(dimethylphosphinothioyl)-l,2-bis(methoxycarbonyl)ethenyl-C': S)manganese
D.
Tricarbonyl[?7 -3,6-dihydro-3,4,5,6tetrakis(methoxycarbonyl)-2,2-dimethyl2H-1,2-thiaphosphorin-2-ium-3,6-diyl]manganese
158
161
162
162
163
4
165
Contents
Ε.
F.
30.
31.
Tetramethyl thiophenetetracarboxylate
Tricarbonyl[>7 -2,5-dihydro-2,3,4,5tetrakis(methoxycarbonyl)-l, 1-dimethyl2tf-phosphol-l-ium-2,5-diyl]manganese
xix
166
4
167
Tetracarbonyl{[2-(diphenylphosphino)phenyl]hydroxymethyl-C, Pjmanganese
169
Cyclometallation Reactions
A. Benzylpentacarbonylmanganese
B. Tetracarbonyl[2-(phenylazo)phenyl-C\ N ]manganese
and ju-(azodi-1,2-phenylene-C , N : C ', Ν )-octacarbonyldimanganese
C. Bis[ u-chloro-[2-(phenylazo)phenyl-C , N ]palladium]
D. Tricarbonyl^-iphenylazoJphenyO-C , W ]cobalt
E. c/s-Bis(benzo[/i]quinolin-10-yl-C , N )dicarbonylruthenium(II)
F.
(f/ -Cyclopentadienyl)[2-[diphenoxyphosphino)oxy]phenyl-C, P]triphenylphosphite-P)ruthenium(II)
171
172
2
1
2
1
1
1
2
J
1
10
2
173
175
176
l
177
5
32.
178
6
(?7 -Hexamethylbenzene)ruihenium Complexes Containing Hy
dride and ori/to-Metallated Triphenylphosphine
A.
Chloro(i/ -hexamethylbenzene)(hydrido)(triphenylphosphine)ruthenium(II)
B.
[6-Diphenylphosphino)phenyl-C ,P](/] -hexamethylbenzene)(hydrido)ruthenium(II).
180
6
1
33.
An Osmium Containing Benzene Analog,
Ö s " ( C S C H C H C H C H ) ( C O ) ( P P h ) , Carbonyl (5-thioxo1,3-pentadiene-l, 5-diyl-C , C , S)bis(triphenylphosphine)osmium and Its Precursors
A. Dichlorotris(triphenylphosphine)osmium(lI)
B.
Dichloro(thiocarbonyl)tris(triphenylphosphinc)osmium(II) .
C. Dihydrido(thiocarbonyl)tris(triphenylphosphine)osmium(II)
D. Carbonyl(thiocarbonyl)tris(triphenylphosphine)osmium(0)..
E. Carbonyl(5-thioxo-1,3-pentadiene-1,5-diyl-C , C ,5)bis(triphenylphosphine)osmium,
3
1
182
2
5
1
Os(CSCHCHCHCH)(CO)(PPh )
3
34.
181
6
2
184
184
185
186
187
5
188
5
(1,3-butadiene-l,4-diyl)(/7 -Cyclopentadienyl)(triphenylphosphine)cobalt with Various Substituents
A. Chlorotris(triphenylphosphine)cobalt
189
190
xx
Contents
Β.
C.
5
(η -Cyclopentadienyl)bis(triphenylphosphine)cobalt
(^ -Cyclopentadienyl)[l, l'-(?7 -l,2-ethynediyl)dibenzene](triphenylphosphine)cobalt and (^ -cyclopentadienyl)(methyl-3-phenyl-^ -2-propynoate)(triphenylphosphine)cobalt
(i7 -Cyclopentadienyl)(2,3-dimethyl-l,4-diphenyl-l, 3butadiene-l,4-diyl)(triphenylphosphine)cobalt
[1,4-Bis(methoxycarbonyl)-2methyl-3-phenyl-l, 3butadiene-l,4-diyl)(^ -cyclopentadienyl)(triphenylphosphine)cobalt and [l,3-bis(methoxycarbonyl)-2methy 1-4-phenyl-1,3-butadiene-1,4-diyl)(^ cyclopentadienyl)-(triphenylphosphine)cobalt
5
191
2
5
2
D.
Ε.
192
5
195
5
5
35.
An Iridium(III) Complex Containing Cyclometallated T r i phenylphosphine Formed by Isomerization of an Iridium(I)
Triphenylphosphine Complex
A. Chlorotris(triphenylphosphine)iridium(I)
B.
(OC-6-53)Chloro[(2-diphenylphosphino)phenyl-C ,P]hydridobis(triphenylphosphine)iridium(III)
197
200
201
1
36.
Nickel-Containing Cyclic Amide Complexes
A.
[2-Methylpropanamidato(2-)-C , N ] (tricyclohexyl-
202
204
3
phosphine)nickel(II), (tcyp) T^iCH CH[CH )CO>JH
[Butanamidato(2-)C , /V](tricyclohexylphosphine)nickel(II),
T < i i C H C H C H C O ! ^ H (tcyp)
2
B.
2
37.
3
205
4
2
2
Six-Membered Cyclopalladated Complexes of 2-Benzylpyridine.
A.
Bis(/i-acetato)bis[2-(2-pyridinylmethyl)phenyl-C , Ν ]dipalladium(II)
B.
Di-^-chloro-bis[2-(2-pyridinylmethyl)phenyl-C , /V]dipalladium(II)
C. Chloro(3,5-dimethylpyridine) [2-(2-pyridinylmethyl)p h e n y l - C ^ N ] palladium(II)
206
208
1
208
1
38.
Cyclopalladated Compounds
A. Di-^-chloro-bis[2-[(dimethylamino)methyl]phenyl-C, /V)dipalladium(II)
B.
Di^-chloro-bis(8-quinolylmethyl-C, N)dipalladium(II)
209
210
211
212
213
Contents
Chapter Five
39.
P O L Y N U C L E A R TRANSITION M E T A L
COMPLEXES
Preface J. R. Shapley
Ditungsten Tetracarboxylates
A.
Tungsten Tetrachloride [ W C 1 ]
B.
Tetrakis(trifluoroacetato)ditungsten(II).
W (0 CCF ) (W-^W)
C.
Tetrakis(2,2-dimethylpropanoato)ditungsten(II).
W,(0,C-i-Bu) (W-^W)
D.
Tetrakis(acetato)ditungsten(II). W ( 0 C C H ) ( W - - W )
215
219
221
Diphenylphosphino-Bridged Dimanganese Complexes
A.
(/i-Diphenylphosphino)-^-hydrido-bis(tetracarbonylmanganese)(Mn—Mn)
B.
^-Nitrido-bis(triphenylphosphorus)(l +)(^-diphenylphosphino)bis(tetracarbonylmanganate)(Mn—Mn)(l — ) . . .
C.
Heterometallic Trinuclear Clusters
1. Octacarbonyl-1 K C , 2/v QjU-diphenylphosphino1:2fcP)-(triphenylphosphine-3K:P)-inani/t//odimanganesegold
2. (//-Chloromercurio)(//-diphenylphosphino)-bis(tetracarbonylmanganese)(Mn—Mn)
225
4
2
2
3
X
222
4
223
224
4
4
2
40.
4
41.
xxi
2
3
4
226
228
4
ι
229
230
Preparation of Some Bimetallic μ-(η -0,Ο)
Acetyl Complexes ..
A.
Dicarbonyl(^ -cyclopentadienyI)(tetrahydrofuran)iron
Hexafluorophosphate
B. (^-Acetyl-C:0)-Bis(dicarbonyl-/7 -cyclopentadienyliron)(1 + ) Hexafluorophosphate(l - )
C. (^-Acetyl^KC : lKO-tricarbonyl-l/c C, 2/cC-bis[l :2(η cyclopentadienyl)] (triphenylphosphine-2/vP)diiron(l + )
Hexafluorophosphate( 1 —)
D. (Ai-AcetyW/vC :1 /vO)-pentacarbonyl-/v C, 2/c C-bisr 1:2(η cyclopentadienyl)]molybdenumiron(l + ) Hexafluorophospate( 1 —)
Ε.
(μ-Acetyl-2/<C :1 ;cO)-tetracarbonyl-1 κ C,
2/c C-bis[l :2(/7 -cyclopentadienyl)(triphenyl{η -cyclopentadienyl)phosphine-1 κΡ)molybdenumiron(l + ) Hexafluorophosphate(l —)
231
Trinuclear Metal Complexes
A. Nonacarbonyl dihydrido^ -thio-triiron
B.
Nonacarbonyl-^ -thio-dicobaltiron
243
244
245
5
232
5
1
2
1
3
1
2
235
5
2
237
5
239
3
5
5
42.
3
3
241
xxii
43.
44.
Contents
Bis[^-nitrido-bis(triphenylphosphorus)( 1 -f) \_μ carbido-dodecacarbonyltetraferrate(2 —)]
4
246
Dinuclear Ruthenium(II) Carboxylate Complexes
Α. Di~^-chloro07 -bicyclo[2.2.1]hepta-2,5-diene)ruthenium(II)
Polymer
B.
(?7 -Bicyclo[2.2.1]hepta-2,5-diene)bis(^ -2-propenyl)ruthenium(II)
C. Di-//-chloro-(^ -cycloocta-1,5-diene)ruthenium(I I)
Polymer
D. (^-Cycloocta-1,5-diene)bis(/7 -2-propenyl)ruthenium(II)....
E.
^-Aqua-bis-(^-trifluoroacetato)-bis[^ -cyclooctal^-dienejitrifluoroacetato^utheniumlll)]
F.
jU-Aqua-bis-(^-chloroacetato)-bis[(chloroacetato)(^ -cycloocta-1,5-diene)ruthenium(II)]
G. ^-Aqua-bis-(^-trichloroacetato)-bis[(^ -bicyclo[2.2.1]hepta-2,5-diene)(trichloroacetato)ruthenium(II)]
249
4
4
250
3
251
4
3
253
254
4
254
4
256
4
45.
Polynuclear Ruthenium Complexes
A. Dodecacarbonyltriruthenium, R u ( C O )
B.
Dodecacarbonyltetra-^-hydrido-tetraruthenium,
Ru (/<-H) (CO)
3
4
46.
47.
4
12
259
259
262
A Phosphino Bridged Ruthenium Cluster:Nonacarbonylμ-hydrido-(/^diphenylphosphino)triruthenium(0)
264
[^-Nitrido-bis(triphenylphosphorus)( 1 4-)] [decacarbonyl-1 κ C, 2/c C, 3/c C-ju-hydrido-1: 2/< tf-bis(triethylsilyO-lfcSi, l/vSOtriangulo-triruthenate(l - ) ]
269
3
48.
12
256
3
4
2
T r i - and Tetranuclear Carbonyl-Ruthenium Cluster Com
plexes Containing Isocyanide, Tertiary Phosphine, and Phos
phite Ligands. Radical Ϊοη-Initiated Substitution of Metal
Cluster Carbonyl Complexes Under M i l d Conditions
A. Sodium Benzophenone Ketyl Solution
B.
Undecacarbonyl(dimethylphenylphosphine)triruthenium,
Ru (CO) (PMe Ph)
C.
Decacarbonyl(dimethylphenylphosphine)(2-isocyano2-methylpropane)triruthenium, Ru (CO) (CN-r-Bu)(PMe Ph)
D.
Decacarbonyl[methylenebis(diphenylphosphine)]triruthenium, R u ( C O ) [ ( P h P ) C H ]
3
11
2
3
1 0
2
2
273
10
2
3
271
273
2
275
276
Contents
Ε.
[//-Ethynediylbis(diphenylphosphine)]bis[undecacarbonyltriruthenium], { ( R u ( C O ) ) [ ^ - C ( P P h ) ] }
Undecacarbonyltetrahydrido[tris(4-methylphenyl) phosphite]tetraruthenium, R u H ( C O ) [P(OC H Me-/?) ] . . . .
Decacarbonyl(dimethylphenylphosphine)tetrahydrido[tris(4-methylphenyl) phosphite]tetraruthenium,
Ru H (CO) (PMe Ph)[P(OC H Me-p) ]
3
F.
4
G.
4
49.
xxiii
4
10
n
4
2
2
1r
2
6
4
6
2
4
2
3
3
277
277
278
Carbido-carbonyl Ruthenium Cluster Complexes
A. μ -Carbido-heptadecacarbonylhexaruthenium
B. ^ -Carbido-pentadecacarbonylpentaruthenium
C. Disodium or Bis[//-nitrido-bis(triphenylphosphorus)(l+)] Salts of
[^ -Carbidotetradecacarbonylpentaruthenate(2 —)]
Nitrido-Ruthenium Cluster Complexes
A. ^-Nitrido-bis(triphenylphosphorus)(l + )azide, P P N [ N ] . . .
B. ^-Nitrido-bis(triphenylphosphorus)( 1 + )hexadecacarbonylnitridohexaruthenate(l - ) , [ P P N ] [ R u N ( C O ) ] .
C. /i-Nitrido-bis(triphenylphosphorus)( 1 + )tetraadecacarbonylnitridopentaruthenate(l - ) , [ P P N ] [ R u N ( C O ) ]
280
281
283
51.
Some Useful Derivatives of Dodecacarbonyltriosmium
A. (Acetonitrile)undecacarbonyltriosmium
B.
Undecacarbonyl(pyridine)triosmium
C. Bis(acetonitrile)decacarbonyltriosmium
289
290
291
292
52.
Dodecacarbonyltetra-^-hydrido-refra/zeiiro-tetraosmium
293
53.
High Nuclearity Carbonyl Cluster Complexes of Osmium
A. Octadecacarbonylhexaosmium
B.
Bis[^-nitrido-bis(triphenylphosphorus)(l.+) pentadecacarbonylpentaosmate(2 —)
C. Bis[^-nitrido-bis(triphenylphosphorus)(l + ) ] octadecacarbonylhexaosmate(2 —)
D. Octadecacarbonyldihydridohexaosmium
295
295
300
301
Thioosmium Clusters
A. (μ-Benzenethiolclto)decacarbonyl-μ-hydrido-triosmium, 1 ..
B. μ -Carbonyl-nonacarbonyl-μ -thio-triosmium, 2
C. Nonacarbonyldi^ -thio-triosmium, 3.
D. Tridecacarbonyldi^ -thio-tetraosmium, 4
E. Dodecacarbonyldi^ -thio-tetraosmium, 5
303
304
305
306
307
307
6
5
5
50.
3
6
1 6
5
54.
3
3
3
3
3
1 4
284
286
286
287
288
299
xxiv
Contents
F.
55.
56.
Analogous Selenido Clusters
5
Tris(/y -cyclopentadienyl)bis(^ -phenylmethylidyne)-tricobalt
3
312
Bis(tetrabutylammonium) Hexa-ju-carbonyl-hexacarbonylhexaplatinate(2-), [ N ( C H ) ] [ P t ( C O ) ( / i - C O ) ] ...
316
4
2
6
6
4
58.
309
Bis(tetramethylammonium) Hexa-/i-carbonyl-hexacarbonylhexanickelate(2-), [ N ( C H ) ] [ N i ( C O ) ( ^ - C O ) ]
3
57.
308
9
4
6
2
6
6
6
Preparation of the Carbonyl Platinum Anions,
[ P t ( C O ) ] „ - (η = 3-5)
A. Bis(tetraethylammonium) Pentakis[tri-^-carbonyltricarbonyltriplatinate](2-), [ N ( C H ) ] [ P t ( C O ) ]
B.
Bis(tetraethylammonium) Tetrakis[tri-^-carbonyl-tricarbonyltriplatinate](2-), [ N ( C H ) ] [ P t ( C O ) ]
C. Bis(tetraethylammonium) Tris[tri-^-carbonyl-tricarbonyltriplatinate](2-), [ N ( C H ) ] [ P t ( C O ) ]
2
3
6
2
2
2
59.
5
4
5
5
2
4
4
2
2
3
6
3
3
6
6
5
4
3
Synthesis of Gold-Containing Mixed-Metal Cluster Complexes.
A. Chloro(triphenylphosphine)gold, AuCl(PPh )
B. ^ -Oxo-[tris(triphenylphosphinegold)] (1 + )tetrafluoroborate(l-),
[0{Au(PPh )} ][BF ]
C.
Dodecacarbonyltris(triphenylphosphine)cobalttrigoldtriruthenium, A u C o R u ( C O ) ( P P h )
3
319
320
321
322
324
325
3
3
3
60.
3
3
12
4
3
3
Mercury-Bridged Transition Metal Cluster Derivatives and
Their Precursor
A. Nonacarbonyl-/i -(/v:j? :/7 -3,3-dimethyl-l-butynyl)/i-hydrido-infl/7^ii/o-triruthenium
Β.
1. Nonacarbonyl-/i -(/v:^ :^ -3,3-dimethyl-l-butynyl)μ-iodomercurio-rr/aMc/w/o-triruthenium
2. /i-(Bromomercurio)-nonacarbonyl-/i -(/v:/7 :/7 -3,3dimethyl-l-butynyl)-fnVm#«/o-triruthenium
C. /i -Mercurio-bis-[Nonacarbonyl-/i -(/v: η : /?2-3,3dimethyl-l-butynyl)-rnY/M^u/o-triruthenium]
D. Nonacarbonyl-ju -(/v: η : >/ -3,3-dimethyl-1 -butynyl)^-{[tricarbonyl(^ -cyclopentadienyl)molybdio]mercurio}-fnarc#M/o-triruthenium
2
326
327
328
2
3
2
329
2
3
2
330
2
3
331
2
4
3
2
333
2
3
5
61.
Heterobinuclear Nonacarbonyl Complexes and Hydride Com
plexes of Iron-Chromium, Iron-Molybdenum, and I r o n Tungsten
333
335
Contents
A.
B.
C.
62.
/i-Nitrido-bis(triphenylphosphorus)(l + )tetracarbonyl hydridoferrate(l —)
^-Nitrido-bis(triphenylphosphorus)(l + )nonacarbonylhydridoferrate tungstate( 1 —)
Bis[^-nitrido-bis(triphenylphosphorus)(l + ) ]
nonacarbonylchromateferrate(l —)
xxv
336
336
339
Cyclopentadienylsodium and some Mono-, Tri-, and Tetranuclear Metal Carbonyl Derivatives and Cluster Complexes
A. Cyclopentadienylsodium— 1,2-dimethoxyethane
B.
Sodium tricarbonyl(f/ -cyclopentadienyl)metallates, D M E
solvates, N a [ M ( C O ) ( > ? - C H ) ] - 2 D M E
( M = Cr, M o , or W)
C. A Linear Dimetallioplatinum Complex
1. Bis(benzonitrile)-dichloroplatinum
2. A Linear Dimetallic Platinum Complex
D. Planar Tetranuclear Clusters with Mixed-Metal Cores
M ' M o ( C H ) ( C O ) ( P P h ) , (Μ' = Pd or Pt)
1. Hexacarbonylbis(f7 -cyclopentadienyl)bis(triphenylphosphine)dimolybdenumdiplatinum,
[Pt Mo (./ -C H )_ (CO) (PPh ) ]
2. Hexacarbonylbis(^ -cyclopentadienyl)bis(triphenylphosphine)dimolybdenumdipalladium,
[Pd Mo (^ -C H ) (CO) (PPh ) ]
341
342
5
5
3
2
2
2
5
2
5
6
3
5
343
345
346
2
5
5
2
2
5
5
2
6
2
6
3
2
347
5
5
2
63.
2
5
5
3
2
Mixed Trinuclear Dicobaltiron and Dicobaltruthenium Cluster
Complexes
A. Nonacarbonyl-^ -thio-dicobaltiron, FeCo (CO) S
B.
Nonacarbonyl-^ -thio-dicobaltruthenium, RuCo (CO) S ..
C.
Nonacarbonyl-/i -(phenylphosphinidene)dicobaltiron,
FeCo (CO) (PC H )S
D. Undecacarbonyldicobaltruthenium, R u C o ( C O )
3
2
9
3
2
9
348
351
352
352
3
2
9
6
5
2
64.
Stepwise Syntheses of Ruthenium Mixed-Metal Cluster
Complexes
A. Tetraethylammonium Bis(acetonitrile)tetrachlororuthenate(l - ) , ( E t N ) [ R u C l ( C H C N ) ]
B. Tetraethylammonium Dodecacarbonyltricobaltruthenate
(1 - ) , ( E t N ) [ C o R u ( C O ) ]
C. (Acetonitrile) dodecacarbonyltricobaltrutheniumcopper,
Co RuCu(CH CN)(CO) ]
4
4
4
3
3
2
12
353
354
356
356
358
12
359
Mixed-Metal Cluster Complexes of Nickel with Ruthenium or
with Osmium
360
3
65.
n
3
xxvi
Contents
Α.
5
ΝοηαοαΓΟοηγ1(^ -ογο1ορ6ηΐααΐ6ηγ1)ίπ-μ-Ηγαπαοnickel triosmium, O s N i ( ^ - H ) ( r / - C H ) ( C O )
Nonacarbonyl(^ -cyclopentadienyl)tri-μ-hydrido-nickeltriruthenium, Ru Ni(^-H) (?7 -C H )(CO)
5
3
Β.
3
5
5
9
5
3
66.
3
5
5
9
68.
365
365
367
A. Dicobaltplatinum Complex and Its Platinum Precursor
A. D i c h l o r o [ l , 2-ethanediylbis(diphenylphosphine)platinum . . .
B.
Heptacarbonyl[l,2-ethanediylbis(diphenylphosphine)]dicobaltplatinum
369
370
Salts of Mixed Platinum-Tetrarhodium Cluster Complexes
A. Bis[^-nitrido-bis(triphenylphosphorus)( 1 + ) ] [tetradecacarbonylplatinumtetrarhodate(2 —),
[(Ph P) N] [PtRh (CO) ]
B.
Bis[^-nitrido-bis(triphenylphosphorus)( 1 + ) ] [dodecacarbonylplatinumtetrarhodate(2 —),
[(Ph P) N] [PtRh (CO) ]
372
2
2
4
1 4
373
3
2
2
4
1 2
375
SOLID STATE
Synthesis and Crystal Growth of A [ M X ] ( A = Cs, Rb;
Μ = Ti, V, Cr; X = CI, Br)
A. Single Crystals of A [ C r X ]
B.
Synthesis of T i B r
C.
Polycrystalline A [ T i X ] and A [ V X ]
D. Single Crystals of A [ T i X ] and A [ V , X ]
3
2
2
9
9
3
3
2
3
70.
370
3
Chapter Six
69.
363
Triosmium and Trinickeltriosmium Cluster Complexes
Α. Nonacarbonyltris(?7 -cyclopentadienyl)-trinickeltnosmium .
Β.
Decacarbonyldihydridotriosmium
5
67.
362
5
9
2
3
9
2
3
9
9
Highly Conducting and Superconducting Synthetic Metals
A. Synthesis of 5,5', 6,6'-tetrahydro-2,2'-Bi-1,3dithiolo[4, 5-b][l,4]-dithiinylidene, B E D T - T T F
1. 1,3-Dithiolo[4,5-6]dithiin-2-thione, E D T - D T T , II . . . .
2. 5,5', 6,6-tetrahydro-2,2'-Bi-1,3-dithiolo[4,5-6]dithiinylidene, B E D T - T T F , I I I
B. Tetrabutylammonium Perrhenate and Superconducting
Bis(5,5', 6,6'-tetrahydrdo-2,2'-bi-l, 3-dithiolo[4,5-b] [ 1,4]dithiinylidene)perrhenate
377
381
382
383
384
386
389
390
391
Contents
C.
Tetrabutylammonium fluorosulfate and 2,2'-bi-l,3dithiolo[4,5-/)] [ 1,4]dithiinylidene fluorosulfate
Index of Contributors
Subject Index
Formula Index
xxvii
393
395
399
411
96
Mononuclear Transition Metal Complexes
5
18. C A R B O I N Y L ( T I - C Y C L O P E N T A D I E N Y L ) (TETRAFLUOROBORATO)MOLYBDENUM
A N D TUNGSTEN COMPLEXES
Submitted by WOLFGANG BECK, KLAUS SCHLOTER, KARLHEINZ
SÜNKEL, and GÜNTER URBAN*
Checked by THOMAS FORSCHNER, ALICIA TODARO, and ALAN CUTLER
1
5
A.
TRICARBONYL(n -CYCLOPENTADIENYL)(TETRAF L U O R O B O R A T O ) M O L Y B D E N U M AND - T U N G S T E N
1 3
An efficient method for the preparation of tetrafluoroborato complexes is
hydride abstraction from metal hydrides using triphenylmethylium
tetrafluoroborate. This method has been first reported by Sanders for
hydridoruthenium complexes.
13
2
[ P h C ] [ B F J + MCp(CO) H
3
MCp(CO) (FBF ) + Ph CH
3
3
3
3
Μ - Mo, W
In a similar way, the hexafluoroarsenato and hexafluoroantimonato
complexes M C p ( C O ) F E F ( M = M o , W; Ε = As, Sb) have been prepared
from M C p ( C O ) Η and [ P h C ] [ E F ] .
An alternative method for the preparation of M C p ( C O ) ( F B F ) ( M = Mo,
W) is protonation of M C P ( C O ) C H by H [ B F ] E t 0 .
3
5
l b
3
3
6
3
3
l c
3
3
4
2
Procedure
Tritylium tetrafluoroborate is commercially available (Fluka AG) and should
be freshly recrystallized from dichloromethane or dichloromethane-ethyl
acetate prior to use. The hydrido complexes, M C p ( C O ) H should be purified
by sublimation or by chromatography (neutral alumina, activity 3, pentane
eluant) prior to use. All solvents must be rigorously dried and handled under
an inert atmosphere, see the preceding general comments.
A quantity of [ P h C ] [ B F ] (0.33 g, 1.0 mmol) is dissolved in lOmL of
C H C L in a 50-mL Schlenk tube, under an inert atmosphere. The solution
is cooled to — 40 °C (using Dry Ice-acetone and a low-temperature
thermometer). To this is added M o C p ( C O ) H (Ref. 3) (0.22g, 0.89 mmol) or
3
3
3
2
4
2
3
* Institut für Anorganische Chemie der Universität München, Meiserstr. 1,8000 München 2.
Federal Republic of Germany.
'Department of Chemistry, Rensselaer Polytechnic Institute, Troy, 12180-3590.
5
Carbonyl( η -€ yclopentadienyl)-( Tetrafluoroborato ) Molybdenum
97
W C p ( C O ) H (Ref. 3) (0.30 g, 0.90 mmol). An immediate color change from
yellow to purple-red is observed. After stirring for 10 min, 0.2 m L of the
solution is syringed into an infrared (IR) solution cell and a spectrum is
taken. I f a more or less intense band is observed at ~ 1355 c m " , indicating
the presence of unreacted tritylium salt, small amounts of the corresponding
hydrides are then added via a spatula. After stirring for 5 min, the IR spectrum
is recorded for another solution aliquot. The addition of hydride is repeated
until the IR spectrum of the solution shows no band at 1355 c m . As soon
as this equivalence point is reached, a sudden color change from dark red
to lilac or violet is observed (see the solution in Section A). If this color
change does not occur, the presence of moisture can be suspected. I n this
case the solution may be used for a reaction with stronger ligands than water,
otherwise the preparation has to be tried again.
3
1
- 1
Two procedures are given for the treatment of the solution in Section A. I n
the first the solution is cooled down to — 60 °C, and 20 m L of hexane is added.
Careful evaporation under vacuum to ~ 20 mL removes most of the C H C 1 .
The lilac precipitate is isolated by centrifugation ( ~ 2 min at 1500rpm) and
decanting off the solution. Hexane (20mL) is added at — 60°C and the
suspension is stirred for 10 min. Centrifugation, decanting, and washing are
repeated three times. Then the product is dried at — 20 °C for 8 h on a highvacuum line (10" torr).
2
2
3
Alternate Procedure for Treatment of the Solution in Section A
The lilac colored reaction mixture is transferred into a second Schlenk flask
(lOOmL) using a double-ended stainless steel cannula. The second flask
contains hexane previously cooled to — 78 °C (Dry Ice-acetone bath). A lilac
colored solid precipitates. The solvent is siphoned off and the solid is washed
three times with hexane (20 mL) previously cooled to — 78 °C and transferred
into the flask using the double ended cannula technique. The wash solvent is
siphoned off and remaining solid is dried under vacuum (10~ torr, oil pump)
at - 40 C for 8 h. Yields: for MoCp(CO) (FBF ): 282-319 mg (85-96%), for
WCp(CO) (FBF ): 357-378 mg (85-90%).
3
3
3
3
3
Anal. Calcd. for C H B F M o 0 : C, 28.95; H , 1.52. Found: C, 28.27; H , 1.64.
Calcd. for C H B F 0 W : C, 22.28; H , 1.20. Found: C, 23.63; H , 1.39.
8
8
Properties*
*Scc Section B.
5
5
4
4
3
3
98
Mononuclear Transition Metal Complexes
5
B. D I C A R B O N Y L ^ - C Y C L O P E N T A D I E N Y L ) ( T E T R A F L U O R O BORATO)(TRIPHENYLPHOSPHINE)MOLYBDENUM AND
T U N G S T E N , M C p ( C O ) ( P P h ) ( F B F ) ( M = Mo, W )
4
2
3
3
Substitution of a CO group by a phosphine ligand makes the metai center
electron richer and therefore less Lewis acidic. This weakens the coordination
of the [ B F ] " ion. In addition, steric interactions with the phosphine ligands,
the possibility of cis-trans isomerism in the complexes with "four legged piano
stool" geometry, and the introduction of the Ρ nucleus as another sensitive
N M R probe make this variation of the synthesis described in Section A, an
interesting field of further investigation. The preparation described here for the
P P h compounds, can also be used with other PR ligands such as P M e ,
PEt , P(OPh) , or ^(dppe)[dppe = 1,2-ethanediyl-bis(diphenylphosphine)].
4
5
3 1
3
3
3
+
3
3
5
Dicarbonyl^ -cyclopentadienyl)hydrido(triphenyIphosphine)
molybdenum and -tungsten
M C p ( C O ) H + P P h - > M C p ( C O ) P P h H + CO
3
3
2
3
M = Mo,W
Monophosphine substituted carbonylcyclopentadienylhydrido complexes of
molybdenum and tungsten have been obtained by protonation of the anions
[ M C p ( C O ) ( P R ) ] ~ , or by substitution of CO with phosphines in the
hydrides M H ( C O ) C p . The straightforward synthesis of the hydrides M H
(CO) Cp ( M = M o , W ) makes the latter procedure preferable, at least for
PPh , P(OPh) , P M e , and PEt , where fast reactions and good yields can
always be obtained. For the analogous syntheses of P M e or P E t substituted
hydrides, special precautions for handling these highly toxic, malodorous, and
highly inflammable phosphines must be taken.
6
2
3
7
3
3
3
3
3
3
3
3
3
8
Procedure
A quantity of freshly sublimed M C p ( C O ) H (0.49g, Μ = M o or 0.66 g,
Μ = W, each 2.0 mmol) is dissolved in 15 mL of hexane at room temperature
in a 100-mL Schlenk flask. To this is added PPh (0.58 g, 2.1 mmol) under
vigorous stirring. The Schlenk tube is then connected to a mercury bubbler
and a stream of argon (0.5 L m i n ) is passed over the solution for 2h (it is
3
3
- 1
f
Commonly known as 1,2-bis(diphenylphosphino)ethane.
5
Carbonylf η -Cyclopentadienyl)-(
Tetraßuoroborato
)Molybdenum
99
not necessary to bubble the argon through the solution). Soon a white
precipitate forms, which is isolated by filtration under argon and washed twice
with 5 m L of hexane. The product is dried at room temperature for 6 h in vacuo.
It may be recrystallized from C H C 1 - hexane. Yields: M o C p ( C O ) ( P P h ) H ,
625 mg, 65%; WCp(CO) (PPh )H, 636 mg (56%).
2
2
2
2
3
3
Properties
The hydrides M C p ( C O ) ( P P h ) H are yellowish-white powders. They are air
stable for several minutes exposure as solids, however, for extended storage
they should be kept under argon. IR spectra (in CH C1 ): v
= 1936,
1856cm" (Mo); 1923, 1835cm" (W); Ή N M R [ i n C D C 1 (Mo), C D C 1
( W ) ] : <5 H ) = 5.08 (Mo); 5.10 ppm (W); δ
= - 5 . 5 6 (Mo), - 7 . 0 6 p p m
(W), "doublets" J 3
= 47Hz (Mo), 55Hz (W); P N M R (in C D C 1 ) :
<5
= 74.3 (Mo), 40.9 ppm (W) (relative to H P 0 ) . A fast equilibrium
between the eis and trans isomers leads to averaging of the signals and
coupling constants at room temperature. Both isomers can be distinguished
by low-temperature H N M R [<5
: - 5 . 3 3 d and — 6.14d; J , 3 i i = 64
and 21.4Hz; 5 . ,: - 6 . 9 0 d , - 7 . 3 6 d , J 3 , = 65 and 2 2 H z ] .
The analogous P M e and P E t containing hydrides tend to form oils and
decompose quickly on contact with air; the tungsten compounds are more
stable than the molybdenum analogs. Their spectral properties are similar to
those of the PPh compounds. The best yields are obtained with the P(OPh)
ligand, which leads exclusively to the stable eis isomers.
2
3
2
1
2
2
(CS
( C O )
1
S
(Μ
2
3
H )
3 1
2
(
2
l p l H ) a v
(PPh3)
3
2
4
5
l
2
(Mo
H)
p
H )
2
(W
H
(
3
l p
H )
3
3
3
5
5
Dicarbonyl^ -cyclopentadienyl)(tetrafluoroborato)(triphenylphosphine)molybdenum and -tungsten
4
[ P h C ] [ B F ] + MCp(CO) (PPh )H — > MCp(CO),(PPh )(FBF )
+ Ph CH
3
4
2
3
3
3
3
Μ - Mo, W
Procedure
Generally, the same guidelines as described in Section A have to be followed. A
quantity of M o C p ( C O ) ( P P h ) H (0.45 g, 0.94 mmol) or W C p ( C O ) ( P P h ) H
(0.55 g, 0.97 mmol) is added to a solution of [ P h C ] [ B F ] (0.33 g, 1.00 mmol)
in 10 m L C H C 1 at — 4 0 ° C contained in a Schlenk flask (lOOmL) equipped
with a magnetic stirring bar. The mixture is stirred for 20 min, after which an
IR spectrum is recorded of an aliquot (0.2 mL) to inspect the intensity of the
2
3
2
3
2
2
4
3
100
Mononuclear Transition Metal Complexes
- 1
band at 1355 c m . Small amounts of the hydride are added until the IR
spectrum, recorded at 5-min intervals shows no band at 1355 cm . Usually, a
lilac precipitate forms before the equivalence point is reached. The equivalence
point is again indicated by a lilac color of the solution. Complete precipitation
of the product is obtained by addition of 20 m L of hexane at — 60 °C, or by
transfer of the complete reaction mixture to another Schlenk flask con
taining the hexane cooled to — 60 °C (see the procedure in Section A).
Isolation of the product is the same as described in Section A.
Yields: M o C p ( C O ) ( P P h ) ( F B F ) - 2 C H C l 632mg. (86%); WCp(CO) (PPh )(FBF ) 556 mg (85%).
- 1
2
3
3
3
2
2
2
3
Anal. Calcd. for C H B F M o O P - 2 C H C l : C, 44.1; H , 3.29. Found:
C, 45.0; H , 3.32.
2 5
2 0
4
2
2
2
Properties
All tetrafluoroborato complexes are very sensitive to moisture. Schlenk tubes
used for storage therefore have to be heated to 400 °C or more under vacuum
for several hours; O-ring stopcocks or similar grease-free stopcocks are
superior to the usual ground glass stopcocks. Although the phosphine
containg B F complexes are thermally more stable than the unsubstituted
compounds, storage at temperatures below — 25 °C under Ar is recommended
for all these compounds. They dissolve in C H C 1 and C H C 1 below - 40 °C
without decomposition, while solvents with donor properties like acetone or
acetonitrile dissolve these complexes under substitution of tetrafluoroborato
ligands by the solvent to give ionic complexes, for example,
[MoCp(CO) (acetone)] [ B F ] . They can be characterized by their IR spectra
in the region from 1200 to 700 c m and by their low-temperature F and,
where appropriate, P N M R spectra.
4
2
3
2
3
4
- 1
3 1
1 9
9
TABLE I. Spectroscopic Data of MoCp(CO) L(FBF ).
2
3
L = CO
IR: v
= 2071, 1988cm- (in C H C 1 )
v , , = 1130, 884, 7 2 2 c m (in Nujol)
F N M R : - 155d ( M o F B F ) , - 370q ( M o F B F ) , 95 Hz [ J „ ]
1
( C O )
2
2
- 1
(
B F )
1 9
a
2
3
3
L = PPh
( F
F )
3
1
IR: v
= 1991, 1903cm" (in C H C 1 )
v „ = 1119, 901, 7 3 2 c m - (in Nujol)
F NMR: - 155d ( M o F B F ) , - 3 4 4 q , - 3 9 1 q ( M o F B F ) , 90 Hz [ V _ ]
( C O )
2
2
1
(
1 9
B F )
fl
3
3
ι
δ in ppm, relative to C F C 1 , in C D C 1 , - 8 0 ° C .
3
2
2
( F
F )
Carbonyl( ^-Cyclopentadienyl)-( Tetrafluoroborato ) Molybdenum
101
TABLE IL Spectroscopic Data of WCp(CO) L(FBF ).
2
IR: v
=
v
=
FNMR:
1
( C O )
2
2
1
( I l ß F )
1 9
3
L = CO
2067, 1975cm- (in C H C I )
1149, 874, 704 c m " (in Nujol)
- 153d ( W F B F ) , - 394q ( W F B F ) , 99 Hz [ J __ ]
L = PPh
1988, 1963, 1877cm- (in Nujol)
a
2
3
3
(F
F)
3
IR: v
( C O )
v u
(
1 9
B F )
1
=
= 1148, 887, 720 c m
- 1
(in Nujol)
2
F N M R : * - 156d ( W F B F ) , - 3 7 1 q ( W F B F ) , 98 Hz [ J _ J .
3
3
( F
F
a
ö in ppm, relative to C F C 1 , in C D C 1 , - 52 °C.
ö in ppm, relative to C F C 1 , in C D C 1 , - 80 °C.
3
2
2
3
2
2
h
-
Coordination of the [ B F ] ion lowers the T symmetry of [ B F ] and makes
the fluorine atoms nonequivalent. Therefore the IR spectra show three instead
of one v n . absorptions (Tables l a n d II); the low-temperature F N M R
spectra show two distinct fluorine resonances, a high-field quartet (which
may be split by coupling to the phosphorus in the PR substituted compounds
and a doublet at lower field, close to the resonance of free [ B F ] ;
the
P N M R spectrum shows at low temperature a pseudodoublet, produced by
coupling with the coordinated fluorine (Tables I and II). Compounds
M o C p ( C O ) ( P R ) ( F B F ) are obtained as eis and trans isomers. In
WCp(CO) (P(OPh )(FBF ) total isomerization from the pure eis hydride to
the pure trans-BF compound could be followed via N M R .
4
d
4
1-4
(
B
1 9
F)
9
3
-
1 3
4
3 1
2
3
3
2
3
3
9
4
Reactions of tetrafluoroborato complexes with ethylene, diphenylacetylene
and acetone
Genera] Remarks
The tetrafluoroborate ligand of these highly reactive complexes can be easily
substituted by a series of Ν, Ο, P, and S σ d o n o r s
and π donors (see
Section C--F).
As described in Sections A and B, a lilac solution of the corresponding
tetrafluoroborato complex is prepared at — 30°C in 10mL of C H C 1 .
Complete reaction of the trityaborptionlium salt is verified by checking for the
disappearance of the 1355cm" band in the IR spectrum of the solution.
This solution is used for the following reactions without isolation of the
tetrafluoroborato complex.
1 3 , 4 , 1 0 , 1 1
2
1
2
102
Mononuclear Transition Metal Complexes
5
C.
2
T R I C A R B O N YL(n - C Y C L O P E N T A D I E N Y L ) (η -ΕΤΗΕΝΕ)MOLYBDENUM(l +) TETRAFLUOROBORATE(l - )
l
2
MoCp(CO) (FBF ) + C H —
3
3
2
a
[MoCp(CO) (^ -C H )][BF ]
4
3
2
4
4
The title compound can be obtained in three ways. One method starts from
M o ( C H ) ( C O ) C l , which is reacted with C H at a pressure of 70 bar in the
presence of A1C1 and consecutive precipitation with ammonium salt. A
second method involves ß-hydride abstraction from the ethyl group in
M o C p ( C O ) ( C H ) by [ P h C ] [ B F ] . The third method, described here,
has the advantage of mild reaction conditions and a good overall yield.
Analogous complexes with other olefins have been prepared similarly.
5
5
3
2
4
12
3
1 3
3
2
5
3
4
4
Procedure
Ethylene (1 bar), dried over P O , is bubbled through a vigorously stirred lilac
solution of M o C p ( C O ) ( F B F ) (1 mmol) in C H C 1 in a Schlenk flask (50 m L )
cooled to — 30 °C. With continuous ethylene bubbling, the cooling bath is
removed and the flask is permitted to warm up to + 20 °C over a 4-h period.
The flow of ethylene is then stopped, and the reaction mixture stirred under
argon for another 30 min. The yellow precipitate is isolated by centrifugation
or filtration under Ar. After washing four times with 5 m L of C H C 1 , the
product is dried 1 h at + 40 °C on a high-vacuum line. It may be recrystallized
from acetone-diethyl ether. Yield: 282 mg (79%).
2
3
s
3
2
2
2
2
Properties
The compound decomposes on heating at 102 to 108 °C. Infrared spectra (in
Nujol): v
= 2104, 2053, 2001cm" ; U N M R (acetone-d ) δ = 635ppm
(C H ).
1
1
( C O )
5
D.
6
5
5
CARBONYL(n -CYCLOPENTADIENYL)BIS(DIPHENYLACETYLENE)MOLYBDENUM(l + ) TETRAFLUOROBORATEO - )
l
a
M o C p ( C O ) ( F B F ) + 2PhCCPh
3
3
• [MoCp(CO)(PhCCPh) ][BF ]
+ 2CO
2
4
Other syntheses of cationic bis(alkyne) complexes of molybdenum and
tungsten of the same type include A g B F oxidation of the dimer
4
Carbonyl( ^-Cyclopentadienyl)-(Tetrafluoroborato
) Molybdenum
103
[ M o C p ( C O ) ] in C H C 1 in the presence of diphenylacetylene or several
other alkynes. Protonation of M o C p ( C O ) C H with C F C O O H and
consecutive addition of 2-butyne in acetonitrile, followed by precipitation with
a methanolic solution of [ N H ] [ P F ] gives the corresponding 2-butyne
complex.
Refluxing
a
solution
of
MoCp(CO) Cl
with
( H O C H ) C C ( C H O H ) leads to an analogous compound. The method
described here uses very mild conditions and can be applied also for other
alkynes, like 2-butyne or acetylene.
3
2
2
2
14
3
4
3
3
6
15
3
16
2
2
17
Procedure
Diphenylacetylene (535 mg, 3.0 mmol) is added to a lilac solution of
M o C p ( C O ) F B F (1 mmol in 10 m L C H C 1 , prepared as described above) at
- 30 °C under vigorous stirring in a Schlenk flask (50 mL) equipped with a
magnetic stirring bar. The flask is connected to a mercury bubbler and flushed
by a constant flow of argon or nitrogen gas. After 30 min, the gas flow is
stopped and the cooling bath removed. Stirring is continued for 4 days at room
temperature, over which time a yellow precipitate is formed. Diethyl ether
(20 mL) is added and the yellowish red suspension is filtered under argon. The
residue on the frit is extracted three times with 10mL of C H C 1 . The
combined extracts are evaporated to 5 mL, to which is added diethyl ether
(20mL). The orange-yellow precipitate is isolated by centrifugation or
filtration under argon, washed three times with 10-mL aliquots of diethyl
ether, and then dried for 1 h in vacuo at 40 °C. The product may be
recryst-allized from CH Cl -pentane. Yield: 235 mg (37%).
3
3
2
2
2
2
2
2
Anal. Calcd. for C H B F M o O : C, 64.58; H , 3.99. Found: C, 63.98; H , 4.09.
3 4
2 5
4
Properties
The yellow compound is soluble in polar solvents such as C H C 1 , acetone, or
acetonitrile. Although prolonged exposure to air leads to decomposition, the
compound can be handled in air for short periods of time. Its IR spectrum in
Nujol shows one V i
vibration at 2088cm" and a weak V i
band at
2040cm" . Also a weak absorption at 1741 c m " occurs, which may be due to
the v
band of the coordinated alkyne. The H N M R spectrum in C H C 1
has a sharp singlet for the C H protons at δ = 6.20 ppm, besides the broad
resonance of the phenyl protons of the diphenylacetylene. Interestingly, K B r
pellets of the compound several hours after initially formed, show a
bathochromic shift of the v
band, which is also observed with other cationic
alkyne complexes.
2
2
1
2
c
o
3
1
c
o
1
l
(C
C )
2
5
( C O )
17
5
2
104
Mononuclear Transition Metal Complexes
5
E.
CARBONYL^ -CYCLOPENTADIENYL)(DIPHENYLACETYLENE)(TRiPHENYLPHOSPHINE)MOLYBDENUM(l +)
TETRAFLUOROBORATE(l - )
1
8
M o C p ( C O ) ( P P h ) ( F B F ) + PhCCPh
2
3
3
• [MoCp(CO)(PPh )(PhCCPh)][BF ] + CO
3
4
19
Green and coworkers prepared the title compound and other related
monoalkyne complexes by reaction of the corresponding bis(alkyne) complex
with triphenylphosphine (or other phosphines) in good yields. The method
described here works for several alkynes, for example, 2-butyne or phenylacetylene, and also for phosphines, for example, P E t or P(OPh) .
3
3
Procedure
Diphenylacetylene (1.78 g, 10.0 mmol) is added to a magnetically stirred lilac
suspension of M o C p ( C O ) P P h F B F (1.0mmol in 10mL of C H C 1 , as
described previously) in a Schlenk flask (50 mL) cooled to — 30 °C. The flask is
connected to a mercury bubbler and purged with argon for 15 min. The gas
flow is stopped and the cooling bath is allowed to warm up to room
temperature. Stirring is continued for 2 days during which time the flask is
purged several times with argon to remove the carbon monoxide evolved in
the reaction. Then hexane (20 mL) is added. Stirring is continued for another
day at ambient temperature, after which the dark green suspension is filtered
under argon. The residue on the filter is washed four times with 15-mL aliquots
of hexane and then dried 3 h under vacuum at 25 °C. Yield: 408 mg (57%).
2
Anal
3
3
2
2
Calcd. for C H B F M o O P : C, 63.7; H , 4.22. Found: C, 62.8; H , 4.15.
3 8
3 0
4
Properties
The title compound is soluble in polar organic solvents, for example, acetone,
acetonitrile, or dichloromethane. Although storing under inert gas is recommended, no decomposition can be observed when handled as a solid in air
for short periods of time. IR (in CH C1 ): v
= 1987cm" ; *H N M R
(CD C1 ): <5
= 5.77 ppm, V C H P ( C H ) I 8-7 ppm;
P N M R (in
CD Cl )(5 pp = 54.8 ppm.
The crystal structure of this compound shows a slightly elongated C ^ C
bond of the alkyne and the usual deviation from linearity at the two carbon
atoms of the triple b o n d .
1
2
2
{ 1 2 C O )
3 1
2
2
2
2
6
(CsH5)
(
h3)
1 8 1 9
V
6
5
3
5
Carbonyl( η -C yclopenladienyl)-( Tetrafluoroborato ) Molybdenum
105
5
F.
(ACETONE)(TRICARBONYL)^ -CYCLOPENTADiENYL)M O L Y B D E N U M ( l + ) A N D -TUNGSTEN(1 + )
TETRAFLUOROBORATE(l - )
,
a 1 0
MCp(CO) (FBF ) + (CH ) CO — - [MCp(CO) (OC(CH ) )][BF ]
3
3
3
2
3
3
2
4
Μ = Mo, W
Procedure
A lilac solution of the tetrafluoroborato complex M C p ( C O ) ( F B F ) , Μ = M o
or W (1 mmol in 10 m L of C H C 1 ) is prepared as indicated above in a Schlenk
flask (50 mL) and cooled to — 30 °C. To this is added acetone (0.1 m L ,
1.38 mmol). A n immediate color change to red occurs, and stirring is continued
for 3 h. Hexane (15 mL) is then added. The solution is cooled to — 78 °C (Dry
Ice) and stored overnight giving a dark red precipitate. This is isolated by
centrifugation and washed twice with 19 m L of hexane at 0 ° C . Alternatively,
the supernatant solution may be removed by a stainless steel cannula fitted
with a sintered glass frit. The solids are washed with two aliquotes of cold
(0 °C) hexane (19 mL), each removed by use of the stainless steel cannula fitted
with the glass frit. The product is then dried for 6 h at 0 ° C on a high
vacuum line. Yield: [ M o C p ( C O ) ( O C ( C H ) ) ] [ B F ] 350 mg (90%);
[ W C p ( C O ) ( O C ( C H ) ) ] [ B F ] 420mg (88%).
3
2
3
3
3
2
3
2
3
2
4
4
Anal. Calcd. for C , Η , B F M o 0 : C, 33.88; H,2.84. Found: C, 33.87; H , 2.85.
Calcd. for C H B F 0 W : C, 27.65; H , 2.32. Found: C, 26.90; H , 2.45.
Similar acetone complexes can also be prepared from the P P h containing
tetrafluoroborate complexes.
Λ
1 1
1
1 1
4
4
4
4
3
Properties
Solutions of the compounds in C H C 1 or acetone decompose at 20 °C within
a short time, especially, when traces of water are present. The solid compounds
can be stored under argon at - 30 °C for several weeks without
decomposition.
IR (CH C1 ): v
= 2072, 1987cm" (Mo) IR (in Nujol): v
= 2050,
1930 c m " (W); v
, = 1660 c m " (Mo), 1640 c m " (W). H N M R (in
CD C1 ): <5 H,) = 6.11 (Mo), 6.19 ppm (W); <5
= 2.39 (Mo), 2.43 ppm
(W).
2
2
1
2
2
( C O )
( C 0 )
1
1
(M
2
2
(C3
0
1
l
c
(CH3)
References
1. (a) W. Beck and K . Schloter, Ζ. Naturforsch. Teil ß , 33, 1214 (1978); (b) Κ. Sünkel, U . Nagel,
and W. Beck, J. Organomet. Chem., 251, 227 (1983); (c) M . Appel, K. Schloter, J. Heidrich, and
W. Beck, J. Organomet. Chem., 322, 77 (1987).
106
Mononuclear Transition Metal Complexes
2. J. R. Sanders, J. Chem. Soc. Dalton Trans., 1972, 1333.
3. (a) R. B. King and F. G. A. Stone, Inorg. Synth., 7, 107 (1963). E. O. Fischer, Inorg. Synth., 7,
136 (1963); (b) R. B. King, Organometallic Syntheses, Vol. 1, Academic Press, New York, 1965,
p. 156; (c) W. P. Fehlhammer, W. A. Herrmann, and G. K . Öfele, in Handbuch der
Präparativen Anorganischen Chemie, Vol. 2, 3rd ed., F. Enke Verlag, Stuttgart, 1981.
4. K. Sünkel, H . Ernst, and W. Beck, Z . Naturforsch. Teil B, 36, 474 (1980).
5. J. W. Faller and A. S. Anderson, J. Am. Chem. Soc, 92, 5852 (1970).
6. (a) A. R. Manning, J. Chem. Soc. A, 1968,651; (b) M . J. Mays and S. M . Pearson, J. Chem. Soc.
A, 1968, 2291.
7. (a) A. Bainbridge, P. J. Craig, and M . Green, J. Chem. Soc. A, 1968,2715; (b) P. Kalck, R. Pince,
R. Poilblanc, and J. Roussel, J. Organomet, Chem., 24, 445 (1970).
8. R. T. Markham, E. A. Dietz, Jr., and D . R. Martin, Inorg. Synth., 16, 153 (1976).
9. K . Sünkel, G. Urban, and W. Beck, J. Organomet. Chem., 252, 187 (1983); M . Appel and W.
Beck, J. Organomet. Chem., 319, C l (1987).
10. K . Sünkel, G. Urban, and W. Beck, J. Organomet. Chem., 290, 231 (1985).
11. K . Schloter and W. Beck, Z . Naturforsch. Teil B, 35,985 (1980); G. Urban, K . Sünkel, and W.
Beck, J. Organomet. Chem., 290, 329 (1985).
12. E. O. Fischer and K . Fichtel, Chem. Ben, 94, 1200 (1961).
13. M . Cousins and M . L . H . Green, J. Chem. Soc, 1963, 889.
14. M . Bottrill and M . Green, J. Chem. Soc. Dalton Trans., 1977, 2365.
15. P. L. Watson and R. G. Bergman, J. Am. Chem. Soc, 102, 2698 (1980).
16. J. W. Faller and H . H . Murray, J. Organomet. Chem., 172, 171 (1979).
17. K . Schloter, K . Sünkel and W. Beck, unpublished results.
18. Κ. Sünkel, U . Nagel, and W. Beck, J. Organomet. Chem., 222, 251 (1981).
19. S. R. Allen, P. K. Baker, S. G. Barnes, M . Green, L. Trollope, L. Manojlovic-Muir, and K. W.
Muir, J. Chem. Soc. Dalton Trans., 1981, 873.