Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Section 5.4 Sum and Difference Identities for Sine and Tangent 82. Since 270° is a quadrantal angle whose terminal side lies along the y-axis, follow the reasoning in Case 2 in the text. If θ is a small positive angle, then 270° − θ lies in quadrant III and tan θ and cot θ are positive. Thus, tan ( 270° − θ ) = cot θ. Section 5.4 Sum and Difference Identities for Sine and Tangent 1. sin15° = sin ( 45° − 30°) = sin 45° cos 30° − cos 45° sin 30° 2 3 2 1 = ⋅ − ⋅ 2 2 2 2 6 2 6− 2 = − = 4 4 4 Thus, the correct choice is C. 2. sin105° = sin (60° + 45°) = sin 60° cos 45° + cos 60° sin 45° 3 2 1 2 6 2 = ⋅ + ⋅ = + 2 2 2 2 4 4 6+ 2 = 4 Thus, the correct choice is A. 3. tan15° = tan (60° − 45°) tan 60° − tan 45° = 1 + tan 60° tan 45° 3 −1 3 −1 1− 3 = = ⋅ 1 + 3 (1) 1 + 3 1 − 3 sin ( −105°) = 6 2 − 6− 2 − = 4 4 4 Thus, the correct choice is B. 6. tan (−105°) = − tan105° = − tan (60° + 45°) tan 60° + tan 45° =− 1 − tan 60° tan 45° 3 +1 3 +1 1+ 3 =− =− ⋅ 1 − 3 (1) 1− 3 1+ 3 3 + 3 +1+ 3 1− 3 4+2 3 =− = 2+ 3 −2 Thus, the correct choice is D. =− 7.−8. 9. sin 3 + 3 +1+ 3 4 + 2 3 = = −2 − 3 1− 3 −2 Thus, the correct choice is F. 5. sin ( −105°) = sin ( 45° − 150°) = sin 45° cos150° − cos 45° sin150° Answers will vary. 5π ⎛π π ⎞ = sin ⎜ + ⎟ ⎝4 6⎠ 12 = sin π cos π + cos π sin 4 6 4 2 3 2 1 = ⋅ + ⋅ 2 2 2 2 6 2 6+ 2 = + = 4 4 4 10. sin 3 − 3 − 1 + 3 −4 + 2 3 = = 2− 3 1− 3 −2 Thus, the correct choice is E. = 2⎛ 3⎞ 2 1 − − ⋅ 2 ⎜⎝ 2 ⎟⎠ 2 2 =− = 4. tan105° = tan (60° + 45°) tan 60° + tan 45° = 1 − tan 60° tan 45° 3 +1 3 +1 1+ 3 = = ⋅ 1 − 3 (1) 1 − 3 1 + 3 233 11. tan π 6 13π ⎛ π 5π ⎞ = sin ⎜ + ⎟ ⎝4 12 6 ⎠ π π 5π 5π = sin cos + cos sin 4 6 4 6 2⎛ 3⎞ 2 ⎛1⎞ = − + ⎜ ⎟ 2 ⎜⎝ 2 ⎟⎠ 2 ⎝ 2 ⎠ 2− 6 = 4 π 12 ⎛π π⎞ = tan ⎜ − ⎟ = ⎝4 6⎠ 3 1− 1− 3 = = 3 1+ 1+ 3 tan π 4 1 + tan π 6 tan π 6 3 3 ⋅ 3 = 3− 3 3 3 3+ 3 3 ( 4 ) ( ) 3− 3 3− 3 3− 3 = ⋅ = 3 + 3 3 − 3 32 − 3 = π − tan 2 2 9 − 6 3 + 3 12 − 6 3 = = 2− 3 9−3 6 Copyright © 2013 Pearson Education, Inc. 234 Chapter 5 Trigonometric Identities 5π ⎛π π ⎞ = tan ⎜ + ⎟ = 12. tan ⎝6 4⎠ 12 π tan 6 1 − tan π + tan π 4 tan π 6 4 3 3 +1 +1 3 3 +3 = 3 = 3 ⋅ = 3 3 3 3− 3 1− 1− 3 3 ( ) ( ) 3+ 3 3 +3 3+ 3 = ⋅ = 3 − 3 3 + 3 32 − 3 = 13. sin ⎛ 5π ⎞ ⎛ π π⎞ = tan ⎜ − − ⎟ 17. sin ⎜ − ⎟ ⎝ 12 ⎠ ⎝ 6 4⎠ ⎛ π⎞ ⎛ π⎞ tan ⎜ − ⎟ + tan ⎜ − ⎟ ⎝ 6⎠ ⎝ 4⎠ = ⎛ π⎞ ⎛ π⎞ 1 − tan ⎜ − ⎟ tan ⎜ − ⎟ ⎝ 6⎠ ⎝ 4⎠ = 2 = sin π cos 4 π + cos π 3 4 2 1 2 3 = ⋅ + ⋅ = 2 2 2 2 = π sin 3 2+ 6 4 = = ⎛π π ⎞ = sin ⎜ − ⎟ 14. sin ⎝4 6⎠ 12 π = sin π cos π − cos π sin 4 6 4 2 3 2 1 = ⋅ − ⋅ 2 2 2 2 6 2 6− 2 = − = 4 4 4 3 2 6 =− 4 =− π 3 cos π 6 − cos π sin = − sin π = = π ⎛ 5π ⎞ ⎛ π π⎞ 16. sin ⎜ − = sin ⎜ − − ⎟ ⎝ 12 ⎟⎠ ⎝ 6 4⎠ π π ⎛ π⎞ ⎛ π⎞ = sin ⎜ − ⎟ cos − cos ⎜ − ⎟ sin ⎝ 6⎠ ⎝ 6⎠ 4 4 π 1 − tan π 6 π 4 π tan − 3 −3 3+ 3 ⋅ 3− 3 3+ 3 −3 3 − 3 − 9 − 3 3 32 − ( 3) 2 = −12 − 6 3 9−3 −12 − 6 3 = −2 − 3 6 ⎛ π⎞ ⎛ π⎞ tan ⎜ − ⎟ + tan ⎜ − ⎟ ⎝ 4⎠ ⎝ 3⎠ = ⎛ π⎞ ⎛ π⎞ 1 − tan ⎜ − ⎟ tan ⎜ − ⎟ ⎝ 4⎠ ⎝ 3⎠ 4 3 4 2 1 2 ⋅− ⋅ 2 2 2 2 − 6− 2 − = 4 4 π 6 − tan ⎡ π ⎛ π ⎞⎤ ⎛ 7π ⎞ 18. tan ⎜ − = tan ⎢ − + ⎜ − ⎟ ⎥ ⎝ 12 ⎟⎠ ⎣ 4 ⎝ 3 ⎠⎦ π ⎛ 7π ⎞ ⎛ π π⎞ 15. sin ⎜ − = sin ⎜ − − ⎟ ⎝ 12 ⎟⎠ ⎝ 3 4⎠ π π ⎛ π⎞ ⎛ π⎞ = sin ⎜ − ⎟ cos − cos ⎜ − ⎟ sin ⎝ 3⎠ ⎝ 3⎠ 4 4 = − sin π 4 3 − −1 − 3 −3 3 = = ⎛ 3⎞ 3− 3 1− ⎜ ⎟ (1) 3 ⎝ ⎠ 2 9 + 6 3 + 3 12 + 6 3 = = 2+ 3 9−3 6 7π ⎛π π ⎞ = sin ⎜ + ⎟ ⎝4 3⎠ 12 − tan π cos − cos sin 6 4 6 4 1 2 3 2 =− ⋅− ⋅ 2 2 2 2 2 6 − 2− 6 =− − = 4 4 4 = = ( −1 + − 3 ( ) 1 − ( −1) − 3 ) = −1 − 3 1 + 3 ⋅ 1− 3 1+ 3 −1 − 3 − 3 − 3 12 − ( 3) 2 −1 − 3 1− 3 = −4 − 2 3 1− 3 −4 − 2 3 = 2+ 3 −2 19. sin 76° cos 31° − cos 76° sin 31° = sin (76° − 31°) = sin 45° = 2 2 20. sin 40° cos 50° + cos 40° sin 50° = sin ( 40° + 50°) = sin 90° = 1 21. tan 80° + tan 55° = tan (80° + 55°) 1 − tan 80° tan 55° = tan135° = −1 Copyright © 2013 Pearson Education, Inc. Section 5.4 Sum and Difference Identities for Sine and Tangent 22. tan 80° − tan (−55°) = tan ⎣⎡80° − (−55°)⎦⎤ 1 + tan 80° tan (−55°) = tan135° = −1 23. tan100° + tan 80° = tan (100° + 80°) 1 − tan100° tan 80° = tan180° = 0 24. tan 512π + tan π4 1 − tan 512π tan π4 ⎛ 5π π ⎞ = tan ⎜ + ⎝ 12 4 ⎟⎠ = tan π 3π 3π ⎛ 3π ⎞ cos x + sin sin x − x ⎟ = cos 31. cos ⎜ ⎝ 4 ⎠ 4 4 ⎛ ⎛ 2⎞ 2⎞ cos x + ⎜ = ⎜− ⎟ ⎟ sin x ⎝ 2 ⎠ ⎝ 2 ⎠ 2 = (− cos x + sin x ) 2 2 (sin x − cos x ) = 2 32. sin ( 45° + θ ) = sin 45° cos θ + sin θ cos 45° 2π =− 3 3 2 2 sin θ + cos θ 2 2 2 (sin θ + cos θ ) = 2 = 3π π 3π + cos sin 5 10 5 10 ⎛ π 3π ⎞ ⎛π ⎞ = sin ⎜ + = sin ⎜ ⎟ = 1 ⎝ 5 10 ⎟⎠ ⎝2⎠ 25. sin cos tan θ + tan 30° 1 − tan θ tan 30° 1 tan θ + 3 = ⎛ 1 ⎞ 1− ⎜ tan θ ⎝ 3 ⎟⎠ 3 tan θ + 1 = 3 − tan θ 33. tan (θ + 30°) = 26. sin100° cos10° − cos100° sin10° = sin (100° − 10°) = sin 90° = 1 27. cos (30° + θ ) = cos 30° cos θ − sin 30° sin θ 3 1 cos θ − sin θ 2 2 1 = 3 cos θ − sin θ 2 3 cos θ − sin θ = 2 = ( ) ⎛π ⎞ 34. tan ⎜ + x ⎟ = ⎝4 ⎠ = ( ) 29. cos (60° + θ ) = cos 60° cos θ − sin 60° sin θ 1 3 cos θ − sin θ 2 2 1 = cos θ − 3 sin θ 2 cos θ − 3 sin θ = 2 = ( ) 30. cos (45° − θ ) = cos 45° cos θ + sin 45° sin θ 2 2 cos θ + sin θ 2 2 2 = (cos θ + sin θ ) 2 2 (cos θ + sin θ ) = 2 = tan π 4 1 − tan + tan x π tan x 4 1 + tan x 1 + tan x = = 1 − 1 ⋅ tan x 1 − tan x 28. cos (θ − 30°) = cos θ cos 30° + sin θ sin 30° 3 1 cos θ + sin θ 2 2 1 3 cos θ + sin θ = 2 3 cos θ + sin θ = 2 235 π π ⎛π ⎞ 35. sin ⎜ + x ⎟ = sin cos x + cos sin x ⎝4 ⎠ 4 4 2 2 = cos x + sin x 2 2 2 (cos x + sin x ) = 2 3π 3π ⎛ 3π ⎞ − x ⎟ = sin cos x − cos sin x 36. sin ⎜ ⎝ 4 ⎠ 4 4 ⎛ 2⎞ ⎛ 2⎞ =⎜ ⎟ (cos x ) − ⎜ − 2 ⎟ (sin x ) 2 ⎝ ⎠ ⎝ ⎠ ⎛ 2⎞ ⎛ 2⎞ =⎜ ⎟ (cos x ) + ⎜ 2 ⎟ (sin x ) ⎝ 2 ⎠ ⎝ ⎠ 2 (cos x + sin x ) = 2 37. sin ( 270° − θ ) = sin 270° cos θ − cos 270° sin θ = (−1)(cos θ ) − (0)(sin θ ) = − cos θ Copyright © 2013 Pearson Education, Inc. 236 Chapter 5 Trigonometric Identities tan180° + tan θ 1 − tan180° tan θ 0 + tan θ = = tan θ 1 − 0 ⋅ tan θ 38. tan (180° + θ ) = tan 2π − tan x 1 + tan 2π tan x 0 − tan x = = − tan x 1 + 0 ⋅ tan x 39. tan ( 2π − x ) = 40. sin (π + x ) = sin π cos x + cos π sin x = 0 ⋅ cos x + ( −1) sin x = − sin x tan π − tan x 1 + tan π tan x 0 − tan x = = − tan x 1 + 0 ⋅ tan x 41. tan (π − x ) = 42. To follow the method of Example 2 to find tan ( 270° − θ ) , we need to use the tangent of a difference formula: tan 270° − tan θ tan (270° − θ ) = 1 + tan 270° tan θ However, tan 270º is undefined. 43. Answers will vary. 44. If A, B, and C are angles of a triangle, then A + B + C = 180°. Therefore, we have sin ( A + B + C ) = sin180° = 0. 3 5 , sin t = , and s and t are in 5 13 quadrant I. First find the values of sin s, tan s, cos t, and tan t. Because s and t are both in quadrant I, the values of sin s and cos t, tan s, and tan t will be positive. 45. cos s = 2 9 16 4 ⎛3⎞ = = sin s = 1 − ⎜ ⎟ = 1 − ⎝5⎠ 25 25 5 2 25 144 12 ⎛5⎞ = = cos t = 1 − ⎜ ⎟ = 1 − ⎝ 13 ⎠ 169 169 13 tan s = sin s = cos s sin t = tan t = cos t 4 5 3 5 5 13 12 13 = 4 3 5 = 12 (a) sin ( s + t ) = sin s cos t + cos s sin t ⎛ 4 ⎞ ⎛ 12 ⎞ ⎛ 3 ⎞ ⎛ 5 ⎞ = ⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ 48 15 63 = + = 65 65 65 4 + 5 tan s + tan t = 3 4 12 5 1 − tan s tan t 1 − 3 12 48 + 15 63 = = 36 − 20 16 (b) tan ( s + t ) = ( )( ) (c) From parts (a) and (b), sin (s + t) > 0 and tan (s + t) > 0. The only quadrant in which the values of both the sine and the tangent are positive is quadrant I, so s + t is in quadrant I. 3 12 and sin t = − , s is in quadrant I 5 13 and t is in quadrant III. First find the values of cos s, cos t, tan s, and tan t. Because s is in quadrant I and t is in quadrant III, the values of cos s, tan s, and tan t will be positive, while cos t will be negative. 46. sin s = 2 9 16 4 ⎛3⎞ cos s = 1 − ⎜ ⎟ = 1 − = = ⎝5⎠ 25 25 5 2 144 ⎛ 12 ⎞ cos t = − 1 − ⎜ − ⎟ = − 1 − ⎝ 13 ⎠ 169 25 5 =− =− 169 13 3 5 4 5 tan s = sin s = cos s tan t = 12 sin t − 13 12 = 5 = cos t − 13 5 = 3 4 (a) sin ( s + t ) = sin s cos t + cos s sin t ⎛ 3 ⎞ ⎛ 5 ⎞ ⎛ 4 ⎞ ⎛ 12 ⎞ = ⎜ ⎟ ⎜− ⎟ + ⎜ ⎟ ⎜− ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ 15 ⎛ 48 ⎞ 63 =− + ⎜− ⎟ = − 65 ⎝ 65 ⎠ 65 (b) tan ( s + t ) = 3 4 + 125 ( )( ) = 1− 63 63 = =− −16 16 Copyright © 2013 Pearson Education, Inc. 3 4 12 5 15 + 48 20 − 36 Section 5.4 Sum and Difference Identities for Sine and Tangent (c) From parts (a) and (b), sin (s + t) < 0 and tan (s + t) < 0. The only quadrant in which the values of sine and tangent are both negative is quadrant IV, so s + t is in quadrant IV. 8 3 and cos t = − , s and t are in 17 5 quadrant III First find the values of sin s, sin t, tan s, and tan t. Because s and t are both in quadrant III, the values of sin s and sin t will be negative, while tan s and tan t will be positive. 47. cos s = − ⎛ 8⎞ sin s = − 1 − cos 2 s = − 1 − ⎜ − ⎟ ⎝ 17 ⎠ = − 1− 2 64 225 15 =− =− 289 289 17 ⎛ 3⎞ sin t = − 1 − cos 2 t = − 1 − ⎜ − ⎟ ⎝ 5⎠ 2 9 16 4 =− =− 25 25 5 15 sin s − 17 15 = = tan s = cos s − 178 8 = − 1− tan t = 4 sin t − 5 4 = 3 = cos t − 5 3 (a) sin ( s + t ) = sin s cos t + cos s sin t ⎛ 15 ⎞ ⎛ 3 ⎞ ⎛ 8 ⎞ ⎛ 4 ⎞ = ⎜− ⎟ ⎜− ⎟ + ⎜− ⎟ ⎜− ⎟ ⎝ 17 ⎠ ⎝ 5 ⎠ ⎝ 17 ⎠ ⎝ 5 ⎠ 45 32 77 = + = 85 85 85 (b) tan ( s + t ) = 15 8 + 4 3 ( )( ) = 1− 77 77 = =− −36 36 15 8 4 3 45 + 32 24 − 60 15 4 , sin t = , s is in quadrant II, and 17 5 t is in quadrant I. First find the values of sin s, cos t, tan s, and tan t. Because s is in quadrant II and t is in quadrant I, the values of sin s, cos t, and tan t will be positive, while tan s will be negative. 64 8 = 289 17 2 3 ⎛4⎞ cos t = 1 − ⎜ ⎟ = ⎝5⎠ 5 8 tan s = sin s 8 = 1715 = − cos s − 17 15 tan t = sin t = cos t 4 5 3 5 = 4 3 (a) sin ( s + t ) = sin s cos t + cos s sin t ⎛ 8 ⎞ ⎛ 3 ⎞ ⎛ 15 ⎞ ⎛ 4 ⎞ = ⎜ ⎟ ⎜ ⎟ + ⎜− ⎟ ⎜ ⎟ ⎝ 17 ⎠ ⎝ 5 ⎠ ⎝ 17 ⎠ ⎝ 5 ⎠ 24 60 36 = − =− 85 85 85 (b) tan(s + t) = (− 158 ) + 34 = −24 + 60 = 36 8 1 − (− 15 )( 43 ) 45 + 32 77 (c) To find the quadrant of s + t, notice from 36 <0 the preceding that sin( s + t ) = − 85 36 and tan ( s + t ) = > 0 . The only 77 quadrant in which the value of sine is negative and tangent is positive is quadrant III, so s + t is in quadrant III. 2 1 and sin t = − , s is in quadrant II 3 3 and t is in quadrant IV. First find the values of cos s, cos t, tan s, and tan t. Because s is in quadrant II and t is in quadrant IV, the values of cos s, tan s, and tan t will be negative, while cos t will be positive. 49. sin s = 2 4 5 5 ⎛2⎞ cos s = − 1 − ⎜ ⎟ = − 1 − = − =− ⎝3⎠ 9 9 3 2 (c) From parts (a) and (b), sin (s + t) > 0 and tan (s + t) < 0. The only quadrant in which the value of the sine is positive and the value of the tangent is negative is quadrant II, so s + t is in quadrant II. 48. cos s = − 2 225 ⎛ 15 ⎞ = sin s = 1 − ⎜ − ⎟ = 1 − ⎝ 17 ⎠ 289 237 1 ⎛ 1⎞ cos t = 1 − ⎜ − ⎟ = 1 − = ⎝ 3⎠ 9 8 9 8 2 2 = 3 3 2 sin s 2 2 5 tan s = = 3 =− =− cos s − 5 5 5 = 3 −1 sin t 1 2 tan t = = 3 =− =− 2 2 cos t 4 2 2 Copyright © 2013 Pearson Education, Inc. 3 (continued on next page) 238 Chapter 5 Trigonometric Identities (continued) (a) sin ( s + t ) = sin s cos t + cos s sin t 5 ⎞⎛ 1⎞ ⎛2⎞⎛2 2 ⎞ ⎛ = ⎜ ⎟⎜ + ⎜− − ⎟ ⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎠⎟ ⎝⎜ 3 ⎠⎟ = 4 2 5 4 2+ 5 + = 9 9 9 (b) Different forms of tan (s + t) will be obtained depending on whether tan s and tan t are written with rationalized denominators. ( ) = −8 5 − 5 2 tan ( s + t ) = 1 − (− ) (− ) 20 − 2 10 − 2 55 + − 2 4 2 5 5 = = 2 4 −8 5 − 5 2 20 + 2 10 ⋅ 20 − 2 10 20 + 2 10 −160 5 − 16 50 − 100 2 − 10 20 400 − 40 −160 5 − 80 2 − 100 2 − 20 5 = 360 −180 5 − 180 2 − 5 − 2 = = 360 2 or ( ) tan ( s + t ) = 1 − ( − ) (− ) − 2 5 + − 2 5 1 2 2 2 1 ⎛ 1⎞ sin s = 1 − ⎜ − ⎟ = 1 − = ⎝ 5⎠ 25 24 2 6 = = 5 5 24 25 2 9 ⎛3⎞ cos t = − 1 − ⎜ ⎟ = − 1 − ⎝5⎠ 25 16 4 =− =− 25 5 2 6 tan s = sin s = 5 = −2 6 cos s − 15 tan t = sin t 3 = 54 = − cos t − 5 4 3 (a) sin ( s + t ) = sin s cos t + cos s sin t ⎛ 2 6 ⎞ ⎛ 4⎞ ⎛ 1⎞ ⎛3⎞ =⎜ ⎟ ⎜− ⎟ + ⎜− ⎟ ⎜ ⎟ ⎝ 5 ⎠⎝ 5⎠ ⎝ 5⎠ ⎝5⎠ = 1 −8 6 3 −8 6 − 3 − = 25 25 25 2 2 −4 2 − 5 4 2 + 5 = = 2 10 − 2 2 − 2 10 4 2 + 5 2 + 2 10 = ⋅ 2 − 2 10 2 + 2 10 8 2 + 8 20 + 2 5 + 2 50 = 4 − 40 8 2 + 16 5 + 2 5 + 10 2 = −36 18 2 + 18 5 − 2 − 5 = = 2 −36 (c) To find the quadrant of s + t, notice from the preceding that sin ( s + t ) = 4 2+ 5 >0 9 −8 5 − 5 2 ≈ −1.8 < 0 . 20 − 2 10 The only quadrant in which the values of sine are positive and tangent is negative is quadrant II. Therefore, s + t is in quadrant II. and tan ( s + t ) = 1 3 , sin t = , and s and t are in 5 5 quadrant II. First find the values of sin s, tan s, cos t, and tan t. Because s and t are both in quadrant II, the values of sin s is positive. Cos t, tan s, and tan t are all negative 50. cos s = − (b) tan ( s + t ) = = tan s + tan t 1 − tan s tan t −2 6 + − 34 ( 1 − −2 ( ) = −8 46 − 3 4− 6 6 6 ) (− 34 ) 4 −8 6 − 3 4−6 6 −8 6 − 3 4 + 6 6 = ⋅ 4−6 6 4+6 6 −32 6 − 288 − 12 − 18 6 = 16 − 216 6 +6 −50 6 − 300 = = 4 −200 Note that other forms of tan (s + t) will be obtained depending on whether tan s and tan t are written with rationalized deonominators. = (c) From parts (a) and (b), sin (s + t) < 0 and tan (s + t) > 0. The sine is negative in quadrants III and IV, while the tangent is positive in quadrants I and III. Therefore, s + t is in quadrant III. Copyright © 2013 Pearson Education, Inc. Section 5.4 Sum and Difference Identities for Sine and Tangent 51. sin165° = sin (180° − 15°) = sin180° cos15° − cos180° sin15° = (0) cos15° − ( −1) sin15° = 0 + sin15° = sin15° Now use a difference identity to find sin 15°. sin15° = sin ( 45° − 30°) = sin 45° cos 30° − cos 45° sin 30° 2 3 2 1 = ⋅ − ⋅ 2 2 2 2 6 2 6− 2 = − = 4 4 4 52. sin 255° = sin (270° − 15°) = sin 270° cos15° − cos 270° sin15° = ( −1) cos15° − (0) sin15° = − cos15° − 0 = − cos15° Now use a difference identity to find cos15°. cos15° = cos ( 45° − 30°) = (cos 45° cos 30° + sin 45° sin 30°) 2 3 2 1 6 2 ⋅ + ⋅ = + 2 2 2 2 4 4 6+ 2 = 4 ⎛ 6+ 2⎞ Thus, sin 255° = − cos15° = − ⎜ ⎟ 4 ⎝ ⎠ − 6− 2 . = 4 = 53. tan165° = tan (180° − 15°) tan180° − tan15° = 1 + tan180° tan15° 0 − tan15° = = − tan15° 1 + 0 ⋅ tan15° Now use a difference identity to find tan15°. tan 45° − tan 30° tan15° = tan (45° − 30°) = 1 + tan 45° tan 30° 3 1− 3 = 3− 3 = 3 3+ 3 1 + 1⋅ 3 3− 3 3− 3 9−3 3 − 3 3 +3 = ⋅ = 9−3 3+ 3 3− 3 12 − 6 3 = = 2− 3 6 Thus, ( 239 54. tan 285° = tan (360° − 75°) tan 360° − tan 75° = 1 + tan 360° tan 75° − tan 75° 0 − tan 75° = = 1 + 0 ⋅ tan 75° 1+ 0 = − tan 75° Now use a sum identity to find tan 75°. 3 +1 tan 75° = tan (30° + 45°) = 3 3 ⋅1 1− 3 3 +3 3 +3 3 +3 = = ⋅ 3− 3 3− 3 3+ 3 3 + 3 3 + 3 3 + 9 12 + 6 3 = = 9−3 6 = 2+ 3 Thus, ( ) tan 285° = − tan 75° = − 2 + 3 = −2 − 3. 55. tan π ⎞ 11π ⎛ = tan ⎜ π − ⎟ ⎝ 12 12 ⎠ π tan π − tan 12 π = = − tan π 12 1 + tan π tan 12 Now use a difference identity to find tan π ⎛π π ⎞ tan = tan ⎜ − ⎟ = ⎝4 6⎠ 12 tan π − tan 4 1 + tan π π π 12 6 π tan 4 6 3 3 3− 3 1− 1− 3 = 3 = 3 = 3 3 3+ 3 1 + 1⋅ 1+ 3 3 3 3− 3 3− 3 3− 3 = = ⋅ 3+ 3 3+ 3 3− 3 9 − 6 3 + 3 12 − 6 3 = = 9−3 6 6 2− 3 = = 2− 3 6 Thus, 11π π tan = − tan = − 2 − 3 = −2 + 3. 12 12 ( ) tan165° = − tan15° = − 2 − 3 = −2 + 3. Copyright © 2013 Pearson Education, Inc. ) ( ) . 240 Chapter 5 Trigonometric Identities π ⎞ ⎛ 13π ⎞ ⎛ 13π ⎞ ⎛ = − sin ⎜ = − sin ⎜ π + ⎟ 56. sin ⎜ − ⎟ ⎟ ⎝ 12 ⎠ ⎝ 12 ⎠ ⎝ 12 ⎠ π π ⎞ ⎛ = − ⎜ sin π cos + cos π sin ⎟ ⎝ 12 12 ⎠ π π⎤ ⎡ = − ⎢(0) cos + (−1) sin ⎥ 12 12 ⎣ ⎦ π ⎞ π ⎞ ⎛ ⎛ = − ⎜ 0 − sin ⎟ = − ⎜ − sin ⎟ ⎝ ⎝ 12 ⎠ 12 ⎠ = sin π 12 ⎛π π ⎞ = sin ⎜ − ⎟ ⎝4 6⎠ = sin π ⎛π ⎞ 59. tan ⎜ + θ ⎟ appears to be equivalent to ⎝2 ⎠ − cot θ . π 12 Now use a difference identity to find sin sin 3π 3π ⎛ 3π ⎞ sin ⎜ cos θ + cos sin θ + θ ⎟ = sin ⎝ 2 ⎠ 2 2 = ( −1) cos θ + (0) sin θ = − cos θ cos π − cos π 4 6 4 2 3 2 1 = ⋅ − ⋅ = 2 2 2 2 sin π 12 π . ⎛π ⎞ tan ⎜ + θ ⎟ = ⎝2 ⎠ 6 6− 2 4 = ⎛π ⎞ sin ⎜ + θ ⎟ ⎝2 ⎠ π ⎛ ⎞ cos ⎜ + θ ⎟ ⎝2 ⎠ sin π 2 π cos θ + cos 2 sin θ π sin θ 2 2 1 ⋅ cos θ + 0 ⋅ sin θ cos θ = = 0 ⋅ cos θ − 1 ⋅ sin θ − sin θ = − cot θ The graphs in exercises 57−60 are shown in the following window. This window can be obtained through the Zoom Trig feature. cos cos θ − sin π ⎛π ⎞ 60. tan ⎜ − θ ⎟ appears to be equivalent to ⎝2 ⎠ cot θ . ⎛π ⎞ 57. sin ⎜ + θ ⎟ appears to be equivalent to ⎝2 ⎠ cos θ . ⎛π ⎞ tan ⎜ − θ ⎟ = ⎝2 ⎠ π π ⎛π ⎞ sin ⎜ + θ ⎟ = sin cos θ + sin θ cos ⎝2 ⎠ 2 2 = 1 ⋅ cos θ + sin θ ⋅ 0 = cos θ + 0 = cos θ = ⎛π ⎞ sin ⎜ − θ ⎟ ⎝2 ⎠ ⎛π ⎞ cos ⎜ − θ ⎟ ⎝2 ⎠ sin π 2 π cos θ − cos π 2 sin θ π cos θ + sin sin θ 2 2 1 ⋅ cos θ − 0 ⋅ sin θ cos θ = = 0 ⋅ cos θ + 1 ⋅ sin θ sin θ = cot θ cos ⎛ 3π ⎞ + θ ⎟ appears to be equivalent to 58. sin ⎜ ⎝ 2 ⎠ − cos θ . 61. Verify sin 2 x = 2 sin x cos x is an identity. sin 2 x = sin ( x + x ) = sin x cos x + cos x sin x = 2 sin x cos x Copyright © 2013 Pearson Education, Inc. Section 5.4 Sum and Difference Identities for Sine and Tangent 62. Verify sin ( x + y ) + sin ( x − y ) = 2 sin x cos y is an identity. sin ( x + y ) + sin ( x − y ) = (sin x cos y + cos x sin y ) + (sin x cos y − cos x sin y ) = 2 sin x cos y ⎛ 7π ⎞ ⎛ 2π ⎞ + x ⎟ − cos ⎜ + x ⎟ = 0 is an identity. 63. Verify sin ⎜ ⎝ 6 ⎠ ⎝ 3 ⎠ 7π 7π 2π 2π ⎛ 7π ⎞ ⎛ 2π ⎞ ⎛ ⎞ ⎛ ⎞ + x ⎟ − cos ⎜ + x ⎟ = ⎜ sin sin ⎜ cos x + cos sin x ⎟ − ⎜ cos cos x − sin sin x ⎟ ⎝ 6 ⎠ ⎝ 3 ⎠ ⎝ ⎠ ⎝ ⎠ 6 6 3 3 ⎛ 1 ⎞ ⎛ 1 ⎞ 3 3 = ⎜ − cos x − sin x ⎟ − ⎜ − cos x − sin x ⎟ = 0 2 2 ⎝ 2 ⎠ ⎝ 2 ⎠ 64. Verify tan ( x − y ) − tan ( y − x ) = tan ( x − y ) − tan ( y − x ) = 65. Verify 2 ( tan x − tan y ) is an identity. 1 + tan x tan y tan x − tan y tan y − tan x tan x − tan y − tan y + tan x 2 ( tan x − tan y ) − = = 1 + tan x tan y 1 + tan y tan x 1 + tan x tan y 1 + tan x tan y cos (α − β ) = tan α + cot β is an identity. cos α sin β cos (α − β ) cos α cos β + sin α sin β cos α cos β sin α sin β cos β sin α = = + = + = cot β + tan α cos α sin β cos α sin β cos α sin β cos α sin β sin β cos α sin ( s + t ) = tan s + tan t is an identity. cos s cos t sin ( s + t ) sin s cos t + cos s sin t sin s cos t cos s sin t sin s sin t = = + = + = tan s + tan t cos s cos t cos s cos t cos s cos t cos s cos t cos s cos t 66. Verify 67. Verify that sin ( x − y ) tan x − tan y = is an identity sin ( x + y ) tan x + tan y sin x cos y cos x sin y sin x cos y cos x sin y − ⋅ − ⋅ sin ( x − y ) sin x cos y − cos x sin y cos x cos y cos x cos y cos x cos y cos x cos y = = = sin x cos y cos x sin y sin ( x + y ) sin x cos y + cos x sin y sin x cos y cos x sin y + ⋅ + ⋅ cos x cos y cos x cos y cos x cos y cos x cos y sin x sin y sin x sin y ⋅1 − 1⋅ − cos x cos y cos x cos y tan x − tan y = = = sin x sin y sin x sin y tan x + tan y ⋅1 + 1⋅ + cos x cos y cos x cos y sin ( x + y ) cot x + cot y = is an identity. cos ( x − y ) 1 + cot x cot y Working with the right side, we have cos x cos y cos x cos y + + cot x + cot y sin x sin y sin x sin y sin x sin y cos x sin y + sin x cos y sin ( x + y ) = = ⋅ = = cos x cos y cos x cos y sin x sin y sin x sin y + cos x cos y cos ( x − y ) 1 + cot x cot y 1+ 1+ sin x sin y sin x sin y 68. Verify Copyright © 2013 Pearson Education, Inc. 241 242 Chapter 5 Trigonometric Identities sin ( s − t ) cos ( s − t ) sin s + = is an identity. sin t cos t sin t cos t sin ( s − t ) cos ( s − t ) sin s cos t − sin t cos s cos s cos t + sin t sin s + = + sin t cos t sin t cos t sin s cos 2 t − sin t cos t cos s sin t cos t cos s + sin 2 t sin s sin s cos 2 t + sin s sin 2 t = + = sin t cos t sin t cos t sin t cos t 2 2 sin s cos t + sin t sin s = = sin t cos t sin t cos t 69. Verify ( ) tan (α + β ) − tan β = tan α is an 1 + tan (α + β ) tan β identity. tan (α + β ) − tan β = tan ⎣⎡(α + β ) − β ⎦⎤ 1 + tan (α + β ) tan β = tan α 70. Verify 71. ∠β and ∠ABC are supplementary, so m∠ABC = 180° − β . 72. α + (180° − β ) + θ = 180° ⇒ α − β + θ = 0 ⇒ θ = β −α 73. tan θ = tan ( β − α ) = tan β − tan α 1 + tan β tan α 74. Substituting m1 for tan α and m2 for tan β into the expression in exercise 69, we have tan β − tan α m − m1 = 2 tan θ = 1 + tan α tan β 1 + m1m2 75. x + y = 9, 2 x + y = −1 Convert each equation to slope-intercept form to find the slopes: x + y = 9 ⇒ y = − x + 9 ⇒ m1 = −1 2 x + y = −1 ⇒ y = −2 x − 1 ⇒ m2 = −2 −2 − ( −1) m2 − m1 1 = =− ⇒ 1 + m1m2 1 + ( −1)( −2) 3 1 ⎛ ⎞ θ = tan −1 ⎜ − ⎟ ≈ −18.4° ⎝ 3⎠ Note that the angle must be positive, so θ ≈ 18.4° tan θ = 76. 5 x − 2 y + 4 = 0, 3 x + 5 y = 6 Convert each equation to slope-intercept form to find the slopes: 5 x − 2 y + 4 = 0 ⇒ −2 y = −5 x − 4 ⇒ 5 5 y = x + 2 ⇒ m1 = 2 2 3x + 5 y = 6 ⇒ 5 y = −3x + 6 ⇒ 3 6 3 y = − x + ⇒ m2 = − 5 5 5 tan θ = − 35 − 52 m2 − m1 = 1 + m1m2 1 + 5 − 3 2 5 − 53 − ( )( ) 5 2 10 −6 − 25 ⋅ = 1 + 52 − 53 10 10 − 15 −31 = = 6.2 ⇒ −5 −1 θ = tan 6.2 ≈ 80.8° = ( )( ) 0.6W sin (θ + 90°) sin12° 0.6 (170) sin (30 + 90) ° = sin12° 102 sin120° = ≈ 425 lb sin12° (This is a good reason why people frequently have back problems.) 77. (a) F = (b) F = = = = = 0.6W sin (θ + 90°) sin12° 0.6W (sin θ cos 90° + sin 90° cos θ ) sin12° 0.6W (sin θ ⋅ 0 + 1 ⋅ cos θ ) sin12° 0.6W (0 + cos θ ) sin12° 0.6 W cos θ ≈ 2.9W cos θ sin12° (c) F will be maximum when cos θ = 1 or θ = 0° . ( θ = 0° corresponds to the back being horizontal which gives a maximum force on the back muscles. This agrees with intuition since stress on the back increases as one bends farther until the back is parallel with the ground.) 0.6W sin (θ + 90°) , W = 200, sin12° θ = 45° 0.6 (200) sin ( 45 + 90) ° F= sin12° 120 sin135° = ≈ 408 lb sin12° 78. (a) F = Copyright © 2013 Pearson Education, Inc. Chapter 5 Quiz (b) The calculator should be in degree mode. Graph 0.6 ( 200) sin ( x + 90°) 120 sin ( x + 90°) y= = sin12° sin12° and y = 400 on the same screen to find the point of intersection. 243 sin (120π t + φ ) = 0 ⇒ sin ⎡⎣120π (0.0142) + φ ⎤⎦ = 0 ⇒ 120π (0.0142) + φ = 0 φ = −120π (0.0142) ≈ −5.353 Thus, V = 50 sin (120 t – 5.353). (c) 50 sin (120π t − 5.353) ⎡(sin120π t )(cos 5.353) ⎤ = 50 ⎢ − (cos120π t )(sin 5.353)⎥⎦ ⎣ A force of 400 lb is exerted when θ ≈ 46.1°. ⎛πt π ⎞ 79. E = 20 sin ⎜ − ⎟ ⎝ 4 2⎠ π πt π⎞ ⎛ πt = 20 ⎜ sin cos − cos sin ⎟ ⎝ 4 2 4 2⎠ πt ⎞ ⎛ πt = 20 ⎜ sin (0) − cos (1) ⎟ ⎝ ⎠ 4 4 πt ⎞ πt ⎛ = 20 ⎜ 0 − cos ⎟ = −20 cos ⎝ 4 ⎠ 4 80. (a) The calculator should be in radian mode. ⎤ ≈ 50 ⎡(sin120π t )(0.5977) ⎢ − (cos120π t )(−0.8017 )⎥⎦ ⎣ ≈ 29.89sin120π t + 40.09 cos120π t ≈ 30sin120π t + 40 cos120π t 81. y ′ = r cos (θ + R ) = r [ cos θ cos R − sin θ sin R ] = ( r cos θ ) cos R − ( r sin θ ) sin R = y cos R − z sin R ⎛π ⎞ 82. z ′ = r sin (θ + R ) = r cos ⎜ − (θ + R ) ⎟ ⎝2 ⎠ ⎛⎛ π ⎞ ⎞ = r cos ⎜ ⎜ − θ ⎟ − R ⎟ ⎠ ⎝⎝ 2 ⎠ ⎡ ⎤ ⎛π ⎞ ⎛π ⎞ = r ⎢ cos ⎜ − θ ⎟ cos R + sin ⎜ − θ ⎟ sin R ⎥ ⎝2 ⎠ ⎝2 ⎠ ⎣ ⎦ = r [sin θ cos R + cos θ sin R ] = ( r sin θ ) cos R + (r cos θ ) sin R = z cos R + y sin R Chapter 5 Quiz (Sections 5.1−5.4) 7 , θ is in quadrant IV 25 In quadrant IV, the cosine and secant function values are positive. The tangent, cotangent, and cosecant function values are negative. 1. sin θ = − (b) Using the maximum and minimum features on your calculator, the amplitude appears to be 50. So, let a = 50. ⎛ 7 ⎞ cos θ = 1 − sin 2 θ = 1 − ⎜ − ⎟ ⎝ 25 ⎠ = 1− Estimate the phase shift by approximating the first t-intercept where the graph of V is increasing. This is located at t ≈ 0.0142. tan θ = 49 = 625 2 576 24 = 625 25 7 sin θ − 25 7 = 24 = − cos θ 24 25 Copyright © 2013 Pearson Education, Inc. (continued on next page) 244 Chapter 5 Trigonometric Identities (a) cos ( A + B ) = cos A cos B − sin A sin B 3 ⎛ 12 ⎞ 4 ⎛ 5 ⎞ = ⎜− ⎟ − ⎜− ⎟ 5 ⎝ 13 ⎠ 5 ⎝ 13 ⎠ 36 20 16 =− + =− 65 65 65 (continued) cot θ = 1 1 24 = 7 =− tan θ − 24 7 sec θ = 1 1 25 = 24 = cos θ 24 25 1 1 25 = 7 =− csc θ = sin θ − 25 7 2. cot 2 x + csc 2 x = ⎛ 7π 3. sin ⎜ − ⎝ 12 cos 2 x 1 1 + cos 2 x + = 2 2 sin x sin x sin 2 x ⎞ ⎛ 7π ⎞ ⎛π π ⎞ ⎟⎠ = − sin ⎜⎝ ⎟⎠ = − sin ⎜⎝ + ⎟⎠ 12 3 4 π π π⎞ ⎛ π = − ⎜ sin cos + cos sin ⎟ ⎝ 3 4 3 4⎠ ⎡ 3 ⎛ 2 ⎞ 1 ⎛ 2 ⎞⎤ = −⎢ ⎜ ⎟+ ⎜ ⎟⎥ ⎣⎢ 2 ⎝ 2 ⎠ 2 ⎝ 2 ⎠ ⎦⎥ ⎛ 6 ⎛ 6+ 2⎞ 2⎞ = −⎜ + = −⎜ ⎟ ⎟ 4 ⎠ 4 ⎝ 4 ⎝ ⎠ − 6− 2 = 4 4. cos (180° − θ ) = − cos θ 3 5 π , sin B = − , 0 < A < , and 5 13 2 3π π <B< 2 3 y cos A = = ⇒ y = 3, r = 5 . Substituting 5 r into the Pythagorean theorem, we have x 2 + 33 = 52 ⇒ x = 4 , since sin A > 0. Thus, 4 sin A = . 5 5. cos A = We will use a Pythagorean identity to find the value of cos B. 2 25 ⎛ 5⎞ cos B = − 1 − ⎜ − ⎟ = − 1 − ⎝ 13 ⎠ 169 144 12 =− =− 169 13 Note that cos B is negative because B is in quadrant III. (b) sin ( A + B ) = sin A cos B + cos A sin B 4 ⎛ 12 ⎞ 3 ⎛ 5 ⎞ = ⎜− ⎟ + ⎜− ⎟ 5 ⎝ 13 ⎠ 5 ⎝ 13 ⎠ 48 15 63 =− − =− 65 65 65 (c) Both cos ( A + B ) and sin ( A + B ) are negative. Thus ( A + B ) is in quadrant III. 3π ⎛ 3π ⎞ tan 4 + tan x 6. tan ⎜ + x⎟ = ⎝ 4 ⎠ 1 − tan 3π tan x 4 −1 + tan x −1 + tan x = = 1 − (−1) tan x 1 + tan x 1 + sin θ sin θ = is an identity. 2 csc θ − 1 cot θ Working with the right side, we have sin θ sin θ csc θ + 1 = ⋅ csc θ − 1 csc θ − 1 csc θ + 1 sin θ csc θ + sin θ 1 + sin θ = = csc2 θ − 1 cot 2 θ 7. Verify ⎛π ⎞ ⎛π ⎞ 8. Verify sin ⎜ + θ ⎟ − sin ⎜ − θ ⎟ = sin θ is an ⎝3 ⎠ ⎝3 ⎠ identity. ⎛π ⎞ ⎛π ⎞ sin ⎜ + θ ⎟ − sin ⎜ − θ ⎟ ⎝3 ⎠ ⎝3 ⎠ π ⎛ π ⎞ = ⎜ sin cos θ + cos sin θ ⎟ ⎝ ⎠ 3 3 π ⎛ π ⎞ − ⎜ sin cos θ − cos sin θ ⎟ ⎝ ⎠ 3 3 π ⎛1⎞ = 2 cos sin θ = 2 ⎜ ⎟ sin θ = sin θ ⎝2⎠ 3 sin 2 θ − cos 2 θ = 1 is an identity. sin 4 θ − cos 4 θ sin 2 θ − cos 2 θ sin 4 θ − cos 4 θ sin 2 θ − cos 2 θ 1 = = =1 2 2 2 2 1 sin θ − cos θ sin θ + cos θ 9. Verify ( Copyright © 2013 Pearson Education, Inc. )( ) Section 5.5 Double-Angle Identities 10. Verify 245 cos ( x + y ) + cos ( x − y ) = cot x is an identity. sin ( x − y ) + sin ( x − y ) cos ( x + y ) + cos ( x − y ) (cos x cos y − sin x sin y ) + (cos x cos y + sin x sin y ) 2 cos x cos y cos x = = = = cot x sin ( x + y ) + sin ( x − y ) (sin x cos y + cos x sin y ) + (sin x cos y − cos x sin y ) 2 sin x cos y sin x Section 5.5 Double-Angle Identities 1. C. 2 cos 2 15° − 1 = cos (2 ⋅ 15°) = cos 30° = 2. E. 3 2 2 tan15° 3 = tan ( 2 ⋅ 15°) = tan (30°) = 3 1 − tan 2 15° 3. B. 2 sin 22.5° cos 22.5° = sin (2 ⋅ 22.5°) = sin 45° = 4. A. cos 2 5. F. 4 sin 6. D. π − sin 2 6 π 3 cos 2 tan π3 1 − tan 2 π 3 π 3 π 6 2 2 π 1 ⎛ π⎞ = cos ⎜ 2 ⋅ ⎟ = cos = ⎝ 6⎠ 3 2 2π ⎛ π⎞ = 2 sin ⎜ 2 ⋅ ⎟ = 2 sin ⎝ 3⎠ 3 3 = 2⋅ = 3 2 2π ⎛ π⎞ = tan ⎜ 2 ⋅ ⎟ = tan =− 3 ⎝ 3⎠ 3 2 , cos θ < 0 5 cos 2θ = 1 − 2 sin 2 θ ⇒ 7. sin θ = 2 4 8 17 ⎛2⎞ cos 2θ = 1 − 2 ⎜ ⎟ 1 − 2 ⋅ = 1− = ⎝5⎠ 25 25 25 289 336 ⎛ 17 ⎞ = sin 2 2θ = 1 − ⎜ ⎟ = 1 − ⎝ 25 ⎠ 625 625 Since cos θ < 0, sin 2θ < 0 because sin 2θ = 2 sin θ cos θ < 0 and sin θ > 0. 336 336 4 21 =− =− 625 25 25 12 , sin θ > 0 13 2 ( 2) 2 tan x 4 4 = = =− 2 2 1− 4 3 1 − tan x 1 − 2 Since both tan x and cos x are positive, x must be in quadrant I. Since 0° < x < 90°, then 0° < 2 x < 180°. Thus, 2x must be in either quadrant I or quadrant II. However, tan 2 x < 0 , so 2x is in quadrant II, and sec 2 x is negative. tan 2 x = 2 16 25 ⎛ 4⎞ sec2 2 x = 1 + tan 2 2 x = 1 + ⎜ − ⎟ = 1 + = ⎝ 3⎠ 9 9 5 1 3 =− sec 2 x = − ⇒ cos 2 x = 3 sec 2 x 5 2 2 2 cos 2 x + sin 2 x = 1 ⇒ sin 2 x = 1 − cos 2 2 x ⇒ 2 9 16 ⎛ 3⎞ sin 2 2 x = 1 − ⎜ − ⎟ ⇒ sin 2 2 x = 1 − = ⎝ 5⎠ 25 25 In quadrants I and II, sin 2 x > 0. Thus, we have sin 2 x = 16 4 = . 25 5 5 , sin x < 0 3 25 34 ⎛5⎞ sec2 x = 1 + tan 2 x = 1 + ⎜ ⎟ = 1 + = ⎝3⎠ 9 9 Since sin x < 0, and tan x > 0, x is in quadrant III, so cos x and sec x are negative. 34 sec x = − 3 3 3 34 3 34 cos x = − =− ⋅ =− 34 34 34 34 ⎛ 3 34 ⎞ sin x = − 1 − cos 2 θ = − 1 − ⎜ − ⎟ ⎝ 34 ⎠ sin θ = 1 − cos 2 θ ⇒ 2 9. tan x = 2, cos x > 0 2 2 8. cos θ = − 2 ⎛ 12 ⎞ cos 2θ = 2 cos θ − 1 = 2 ⎜ − ⎟ − 1 ⎝ 13 ⎠ 144 288 119 = 2⋅ −1 = −1 = 169 169 169 2 10. tan x = cos 2 2θ + sin 2 2θ = 1 ⇒ sin 2 2θ = 1 − cos 2 2θ ⇒ sin 2θ = − 120 ⎛ 5 ⎞ ⎛ 12 ⎞ sin 2θ = 2 sin θ cos θ = 2 ⎜ ⎟ ⎜ − ⎟ = − ⎝ 13 ⎠ ⎝ 13 ⎠ 169 144 25 5 ⎛ 12 ⎞ sin θ = 1 − ⎜ − ⎟ = 1 − = = ⎝ 13 ⎠ 169 169 13 = − 1− 2 306 850 5 34 =− =− 1156 1156 34 (continued on next page) Copyright © 2013 Pearson Education, Inc.