Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Digital Image Processing and Digital Subtraction Angiography วัตถุประสงค์ 1. 2. 3. 4. อธิบายขบวนการประมวลผลภาพดิจิตอลได้ อธิบายวิธีการปรับคอนทราสของภาพดิจิตอลได้ อธิบายการทางานและควบคุม window ของภาพรังสี ดิจิตอลได้ อธิบายวิธีการทา Subtraction ภาพด้วยวิธีต่างๆ ได้ 1 2 LUT Curve Selection of Curve Enhancing Visibility of Detail Digital Subtraction Angiography DSA Computed radiography The need for subtraction Subtraction for improvement in conspicuity Mask image Live image (original) (original + contrast media) Mask-Live Mask image Live image Live-Mask Image processing with Java ให้นกั ศึกษาใช้ โปรแกรมนี้ในการทา Digital Subtraction ftp://rsbweb.nih.gov/pub/image-j/win32/ Subtraction methods 1. Depth 2. Energy 3. Time 1. Temporal subtraction (Time-dependent) Temporal subtraction 1. Pre-contrast images (mask images) 2. Post-contrast images (live images) 3. Subtraction of mask from live images 2. Energy subtraction Energy dependence of x-ray attenuation of difference tissue Dual energy subtraction Dual energy subtraction Compton/Photoelectric decomposition Advantage / Disadvantage 1. Provide selective cancellation 2. Fast , in millisecond, minimized motion interference 1. More complex 2. More sensitive to scatter radiation 3.Impossible to remove soft-tissue and bone simultaneously Dual energy subtraction images Soft-tissue removed Bone removed 3. Hybrid subtraction Temporal subtraction + Energy subtraction Image processing 1. Spatial filtering 2. Pixel shifting operation 3. Temporal filtering 4. Intensity transformations 5. Window/Level techniques 6. Parametric imaging 1. Spatial filtering Spatial filtering is a method of selectively enhancing or diminishing specific spatial frequency components in an image Diagram of two-dimensional digital spatial filtering Digital filtering(Convolution) Each pixel in the processed images is derived from a set of pixels in the original image as determined by the mask. • Methods Low-pass filtering High-pass filtering Median filtering Low-pass digital spatial filtering(Smoothing) 1 9 High-pass digital spatial filtering (Edge enhancement) Filtered images Original Low-pass High-pass Smoothing (Edge enhancement) Median filtering Mask = Median value of the appropriate 9 pixels in the original image Median filtering images Digital chest radiograph with unwanted dot artifacts After application of 3x1 medial filter to remove dots 2. Pixel shifting operation • Rotation • Translation • Magnification • Minification Pixel registration to reduce motion artifacts 3. Temporal filtering 1. Time interval difference(TID) 2. Integration 3. Blurred mask temporal subtraction Generalized temporal filtering diagram 4. Recursive filtering (real time methods) 3.1. Time -interval difference subtraction 3.2. Integration Pre-contrast and post-contrast images are summated(integrated) to reduce noise Image integration Single pre-contrast image Single post-contrast images 8 pre-contrast image 8 post-contrast image 3.3. Blurred mask temporal subtraction For cardiac study : increase s/n for mask image and the edge of cardiac will blurred 3.4. Recursive filtering (real time methods) 1. Reduce radiation dose 2. Reduce motion artifacts 4. Intensity transformation Use of image processing to correct the non linearity of film Gamma correction curve Gamma correction curves can be use to enhance or reduce contrast Contrast enhancement Contrast reduction Original image Histogram equalization Original arterial DSA image of the kidney After histogram equalization 255 255 Display } 0 0 0 Histogram equalization 255 255 Display } 0 0 0 5. Windows / Level Techniques Gray scale display 1024 White Window width W Window center C Black 0 Windowing Double windows techniques 1024 Gray scale display White Window 1 Black Window 2 0 Windowing 6. Parametric imaging • The algorithms for image processing that provide a final displayed image in which the value of each pixel is related to the attenuation or attenuation change at the particular point in the patient Parametric(functional) imaging Acute Tubular Necrosis Example of parametric imaging 1. Time to peak enhancement 2. Mean transit time 3. Maximum pixel attenuation 4. Integrated attenuation change 5. Local volume distribution 6.Quantitative imaging : Temporal processing An idealized contrast enhancement curve or Indicator dilution curve Quantitative imaging Example of calculation 1. Peak or Maximum enhancement 2. Time to maximum enhancement 3.Time to half maximum enhancement 4. Integrated enhancement(area under the curve) 5. Mean transit time 6. etc Application A. Cardiac output B. Regional blood flow C. Cardiac ventricular ejection fraction D. Quantitation of left to right shut E. etc Gamma variate parameters of typical timeconcentration curve A comparison between cardiac output estimations using DR and standard thermodilution methods DSA quantitation of vessel stenosis DSA of right coronary artery stenosis Identifies the region of stenosis, and normal portion, then calculate the degree of narrowing Boundary detection 1.After location of aortic valve plane and apex, the computer constructs a ray passing through the center(x) of the LV 2. A s e r i e s o f rays emanating from the center are drawn by the c o m p u t e r 3. The density of pixel values is measured , the e d g e i s d e te r m in e d a t 50% o f t h e maximum values End-diastolic ED contours are shown for different thresholds values(50% and 75%) End-systolic ES contours are shown for different thresholds values(50% and 75%) The ejection fraction is computed using the 50% thresholds silhouettes EDV ESV EF EDV แบบฝึ กหัด 1. ให้ใช้ โปรแกรม ImageJ ซึ่งสามารถทา Image processing ได้ หลากหลายวิธี นามาใช้เป็ นเครื่ องมือในการทา subtraction โดยให้ นักศึกษาเลือกภาพต้นฉบับของตนเอง(*.jpg)ขนาดไม่เกิน 500k ส่ งให้ อาจารย์ที่ web ของรายวิชา 437401 Medical imaging https://bme.kmitnb.ac.th/mmi1_elearning/ จากนั้นอาจารย์จะสร้างวัตถุ แปลกปลอมในภาพนั้นและส่ งกลับให้นกั ศึกษาเพื่อให้ นักศึกษาใช้ โปรแกรม ในการสร้างภาพสิ่ งแปลกปลอมนั้นและส่ งกลับที่ web เดิม บรรณานุกรม 1. 2. Image processing program with Java http://rsb.info.nih.gov/ij/ Digital Subtraction Angiography. USA,