Download QIBA Profile. FDG-PET/CT as an Imaging - QIBA Wiki

Document related concepts
no text concepts found
Transcript
1
2
4
QIBAProfile.FDG-PET/CTasanImagingBiomarker
MeasuringResponsetoCancerTherapy
5
Version1.13
6
TechnicallyConfirmedVersion
7
November18,2016
8
9
Copyright©2016:RSNA
3
Notetousers–whenreferencingthisQIBAProfiledocument,pleaseusethefollowingformat:
FDG-PET/CTTechnicalCommittee.FDG-PET/CTasanImagingBiomarkerMeasuringResponseto
CancerTherapy,QuantitativeImagingBiomarkersAlliance,Version1.13,TechnicallyConfirmed
Version.QIBA,November18,2016.Availablefrom:RSNA.ORG/QIBA.
Page:1
10
11
12
13
TableofContents
1.ExecutiveSummary.......................................................................................................................................3
14
SummaryforClinicalTrialUse......................................................................................................................4
15
2.ClinicalContextandClaims...........................................................................................................................5
16
ApplicationsandEndpointsforClinicalTrials...............................................................................................5
17
Claim:MeasureChangeinSUV.....................................................................................................................6
18
3.ProfileDetails................................................................................................................................................7
19
3.1.SubjectHandling....................................................................................................................................8
20
3.2.ImageDataAcquisition........................................................................................................................15
21
3.3.ImagingDataReconstructionandPost-Processing..............................................................................21
22
3.4.ImageAnalysis(UPICTSection9).........................................................................................................24
23
3.5.ImageInterpretationandReporting(UPICTSection10)......................................................................24
24
3.6.QualityControl.....................................................................................................................................25
25
4.Conformance...............................................................................................................................................35
26
4.1.ImageAcquisitionSite..........................................................................................................................35
27
4.2.PET/CTAcquisitionDevice....................................................................................................................36
28
4.3.ReconstructionSoftware......................................................................................................................42
29
4.4.ImageAnalysisWorkstation.................................................................................................................44
30
4.5.SoftwareVersionTracking...................................................................................................................47
31
References.......................................................................................................................................................48
32
Appendices......................................................................................................................................................51
33
AppendixA:AcknowledgementsandAttributions.....................................................................................51
34
AppendixB:BackgroundInformationforClaim.........................................................................................54
35
AppendixC:ConventionsandDefinitions...................................................................................................57
36
AppendixD:Model-specificInstructionsandParameters..........................................................................62
37
AppendixE:DataFieldstobeRecordedintheCommonDataFormatMechanism...................................66
38
AppendixF:TestingPET/CTDisplayandAnalysisSystemswiththeFDG-PET/CTDRO..............................67
39
AppendixG:Vendor-neutralPseudo-codesforSUVCalculation................................................................71
40
AppendixH:ConsensusFormulaforComputingLean-Body-MassNormalizationforSUVs.......................73
41
AppendixI:QIBAFDGPET/CTImagingSiteandScannerChecklists...........................................................76
Copyright©2016:RSNA
Page:2
42
43
1.ExecutiveSummary
44
45
46
47
ThisQIBAProfiledocumentsspecificationsandrequirementstoprovidecomparabilityandconsistencyfor
quantitative FDG-PET across scanners in oncology. It can be applied to both clinical trial use as well as
individualpatientmanagement.Thisdocumentorganizesacquisition,reconstructionandpost-processing,
analysisandinterpretationasstepsinapipelinethattransformsdatatoinformationtoknowledge.
48
49
50
The document, developed through the efforts of the QIBA FDG-PET Biomarker Committee, has shared
content with the FDG-PET UPICT protocol, as well as additional material focused on the devices used to
acquireandanalyzetheFDG-PETdata.
QIBA Profile for FDG-PET imaging
Part 1: Executive Summary
Part 2: Claim: The specific statement on measurement ability
Part 3: QIBA Acquisition Protocol: Based on UPICT protocol
Part 4: Conformance Specifications
51
52
Figure1:IllustrationoftheProfilecomponents
53
54
55
56
57
58
TheProfilePart3islargelyderivedfromtheFDG-PETUPICTprotocolforFDG-PETimaginginclinicaltrials.
In the UPICT protocol, there is a carefully developed hierarchy with tiered levels of protocol compliance.
This reflects the recognition that there are valid reasons to perform trials using different levels of rigor,
even for the same disease/intervention combination. For example, a high level of image measurement
precision may be needed in small, early-phase trials whereas a less rigorous level of precision may be
acceptableinlarge,late-phasetrialsofthesamedruginthesamediseasesetting.
59
ThethreelevelsofcomplianceforUPICTprotocolsaredefinedas:
60
61
ACCEPTABLE:failingtomeetthisspecificationwillresultindatathatislikelyunacceptablefortheintended
useofthisprotocol.
62
63
TARGET: meeting this specification is considered to be achievable with reasonable effort and equipment
andisexpectedtoprovidebetterresultsthanmeetingtheACCEPTABLEspecification.
64
65
IDEAL: meeting this specification may require unusual effort or equipment, but is expected to provide
betterresultsthanmeetingtheTARGET.
66
67
68
ACCEPTABLEvaluesarealwaysprovidedforeachparameterinaUPICTProtocol.Whenthereisnoreason
to expect better results (e.g. in terms of higher image quality, greater consistency, lower radiation dose,
etc.),TARGETandIDEALvaluesarenotprovided.
69
ThisProfiledrawsontheACCEPTABLEcomponentsoftheUPICTProtocol.LaterrevisionsofthisProfileare
Copyright©2016:RSNA
Page:3
70
71
72
expected to draw on the Target and then Ideal categories of the UPICT Protocol. The Target and Ideal
categories are intended toProtocol
account for advances
in therelationship
field and the evolving state-of-the-art of FDG- Profile
PET/CTimaging.TheseconceptsareillustratedinFigure2below.
UPICT Protocol for FDGPET imaging
QIBA Profile for FDG-PET imaging
Protocol sections
• Acceptable
...
• Target
...
• Ideal
...
• Acceptable
...
• Target
...
• Ideal
...
Part 1: Executive Summary
Part 2: Claim: The specific statement on measurement ability
Part 3: QIBA Acquisition Protocol: Based on UPICT protocol
Part 4: Conformance Specifications
• Acceptable
...
• Target
...
• Ideal
...
73
74
Figure2.RelationshipbetweentheUPICTProtocolandtheProfile.
75
SummaryforClinicalTrialUse
76
77
78
79
TheQIBAFDG-PET/CTProfiledefinesthebehavioralperformancelevelsandqualitycontrolspecifications
for whole-body FDG-PET/CT scans used in single- and multi-center clinical trials of oncologic therapies.
While the emphasis is on clinical trials, this process is also intended to apply for clinical practice. The
specificclaimsforaccuracyaredetailedbelowintheClaims.
80
81
82
83
84
85
86
87
The specifications that must be met to achieve conformance with this Profile correspond to acceptable
levels specified in the FDG-PET UPICT Protocol. The aim of the QIBA Profile specifications is to minimize
intra-andinter-subject,intra-andinter-platform,andinter-institutionalvariabilityofquantitativescandata
duetofactorsotherthantheinterventionunderinvestigation.FDG-PET/CTstudiesperformedaccordingto
thetechnicalspecificationsofthisQIBAProfileinclinicaltrialscanprovidequalitativeand/orquantitative
data for single time-point assessments (e.g., diagnosis, staging, eligibility assessment, investigation of
predictive and/or prognostic biomarker(s)) and/or for multi-time-point comparative assessments (e.g.,
responseassessment,investigationofpredictiveand/orprognosticbiomarkersoftreatmentefficacy).
88
89
90
91
A motivation for the development of this Profile is that while a typical PET/CT scanner measurement
system (including all supporting devices) may be stable over days or weeks, this stability cannot be
expected over the time that it takes to complete a clinical trial. In addition, there are well known
differencesbetweenscannersandortheoperationofthesametypeofscanneratdifferentimagingsites.
92
Theintendedaudiencesofthisdocumentinclude:
93
94
95
96
•
•
•
Technicalstaffofsoftwareanddevicemanufacturerswhocreateproductsforthispurpose.
Biopharmaceutical companies, oncologists, and clinical trial scientists designing trials with imaging
endpoints.
Clinicalresearchprofessionals.
Copyright©2016:RSNA
Page:4
97
98
99
100
101
102
103
104
•
•
•
•
Radiologists, nuclear medicine physicians, technologists, physicists and administrators at healthcare
institutionsconsideringspecificationsforprocuringnewPET/CTequipment.
Radiologists, nuclear medicine physicians, technologists, and physicists designing PET/CT acquisition
protocols.
Radiologists, nuclear medicine physicians, and other physicians making quantitative measurements
fromPET/CTimages.
Regulators, nuclear medicine physicians, oncologists, and others making decisions based on
quantitativeimagemeasurements.
105
106
107
Note that specifications stated as 'requirements' in this document are only requirements to achieve the
claim,not'requirementsonstandardofcare.'Specifically,meetingthegoalsofthisProfileissecondaryto
properlycaringforthepatient.
108
109
110
111
Asummaryofthespecificationsrequiredtoachievetheclaim,andformattedasachecklist,areprovidedin
Appendix I. The corresponding specifications are indicated as bold text in the tables of normative
statementsbelowasdescribedinAppendixC.ThischecklistmaybeusedtoascertainaPETimagingsite’s
qualificationforquantitativeimagingaccordingtotheQIBAFDGPET/CTprofile.
112
2.ClinicalContextandClaims
113
114
115
116
117
118
119
FDGisaglucoseanalogue.Therationaleforitsuseinoncologyisbasedonthetypicallyincreasedrateof
glycolysisintumorscomparedtonormaltissue.FDGistransportedintotumorcellsviaglucosetransport
proteins,usuallyup-regulatedintumorcells.OnceinternalizedFDGisphosphorylatedtoFDG-6-phosphate;
it does not progress any further along the glycolytic pathway and becomes substantially metabolically
trapped.FDGuptakeisnotspecificfortumorcellsandtherearesomenormaltissuesandotherprocesses
with increased glucose turnover, e.g. infection and inflammation, that show elevated uptake or
accumulationofFDG.
120
ApplicationsandEndpointsforClinicalTrials
121
122
123
124
FDG-PET/CTimagingcanbeusedforawiderangeofclinicalindicationsandresearchquestions.Theseare
addressed more completely in the FDG-PET/CT UPICT Protocol (UPICT section 1.1). This QIBA Profile
specificallyaddressestherequirementsformeasurementoftumorFDGuptakewithPET/CTasanimaging
biomarkerforevaluatingtherapeuticresponse.
125
126
127
128
Biomarkersusefulinclinicalresearchforpatientstratificationorevaluationoftherapeuticresponsewould
beusefulsubsequentlyinclinicalpracticefortheanalogouspurposesofinitialchoiceoftherapyandthen
individualizationoftherapeuticregimenbasedontheextentanddegreeofresponseasquantifiedbyFDGPET/CT.
129
130
131
ThetechnicalspecificationsdescribedintheProfileareappropriateforquantificationoftumorFDGuptake
and measuring longitudinal changes within subjects. However, many of the Profile details are generally
applicabletoquantitativeFDG-PET/CTimaginginotherapplications.
132
133
134
135
FDG-PETscansaresensitiveandspecificfordetectionofmostmalignanttumors[Fletcher2008].Coverage
foroncologyimagingproceduresintheUSbytheCentersforMedicareandMedicaidServicesareexplicitly
listedintheNationalCoverageDetermination(NCD)forPositronEmissionTomography(PET)Scans(220.6).
FDG-PET scans reliably reflect glucose metabolic activity of cancers and this metabolic activity can be
Copyright©2016:RSNA
Page:5
136
137
138
139
140
141
142
143
measuredwithhighreproducibilityovertime.Longitudinalchangesintumor18F-FDGaccumulationduring
therapy often can predict clinical outcomes earlier than changes in standard anatomic measurements
[Weber 2009]. Therefore, tumor metabolic response or progression as determined by tumor FDG uptake
can serve as a pharmacodynamic endpoint in well-controlled Phase I and Phase IIA studies as well as an
efficacyendpointinPhaseIIandIIIstudies.Intumor/drugsettingswheretheprecedingphaseIItrialshave
shown a statistically significant relationship between FDG-PET response and an independent measure of
outcome, changes in tumor FDG activity may serve as the primary efficacy endpoint for regulatory drug
approvalinregistrationtrials.
144
Claim:MeasureChangeinSUV
145
ConformancetothisProfilebyallrelevantstaffandequipmentsupportsthefollowingclaims:
146
147
Claim 1: Tumor glycolytic activity as reflected by the maximum standardized uptake value (SUVmax) is
measurablefromFDG-PET/CTwithawithin-subjectcoefficientofvariationof10-12%.
148
149
Claim2:AmeasuredincreaseinSUVmaxof39%ormore,oradecreaseof-28%ormore,indicatesthata
truechangehasoccurredwith95%confidence.
150
Thefollowingimportantconsiderationsarenoted:
151
152
153
1.ThisClaimappliesonlytotumorsthatareconsideredevaluablewithPET.Inpracticethismeanstumors
of a minimum size of 2 cm and a baseline SUVmax of 4 g/ml (e.g. [Wahl 2009, de Langen 2012]). More
detailsonwhattumorsareevaluablearedescribedinsection3.6.5.3.
154
2.DetailsoftheclaimwerederivedfromareviewoftheliteratureandaresummarizedinAppendixB.
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
3.Thepublishedasymmetriclimitsofrepeatabilityarebasedonobservationsthatthetest-retestSUVmax
differencesdonotfollowaNormaldistribution,butthatthedifferences(d)ofthelogarithmsofthetestretestSUVmaxvaluesdofollowaNormaldistributionwithastandarddeviationofSD(d)[Velasquez2009,
Weber et al. 2015]. The 95% repeatability coefficient (RC) in the log-Normal distribution (i.e. ±1.96SD(d))
are symmetric about the mean. This suggests that when these limits are converted back to SUV units by
exponentiation using RC = 100(exp(±1.96SD(d)) -1), the SUV RC limits are necessarily asymmetric. In
addition,notethatifthestandarddeviationisnotlargecomparedwiththelevelofthemeasurement,then
it can be shown that 100(exp(SD(d)/sqrt(2))-1) is approximately equal to the within-subject coefficient of
variation,expressedasapercent[BlandandAltman1996,Velasquez2009].IfweassumeawCVof12%for
SUVmax,thentherepeatabilitycoefficientsare(-28%,+39%),consistentwiththefindingsbyVelasquezet
al.foradvancedgastrointestinalmalignancies,andthoseofWeberetalfornon-smallcelllungcancer.Asa
possiblymoreintuitivemotivationthatasymmetriclimitscanbeexpected,wesupposetwomeasurements
SUVmax1=7.0andSUVmax2=9.75,then
(SUVmax2-SUVmax1)/SUVmax1=+39%
(SUVmax1-SUVmax2)/SUVmax2=-28%
In other words, there is net change in SUVmax of 2.75 in either direction representing a physiological
differencebetweentwodiseasestates:Asanincreaseitis+39%,orasadecreaseitis-28%
172
173
174
4.ThisClaimisapplicableforsingle-centerstudiesusingthesamescanner.Formulti-centerstudies,ifFDGPET/CTimagingisperformedusingthesamescannerandprotocolforeachpatientateachtimepoint(as
describedintheProfile),thenitisanticipatedthatthisClaimwillbemet.
175
176
5.ThisClaimisbasedonSUVmaxduetotheevidenceprovidedinthescientificliterature.However,theuse
ofSUVmetricsderivedfromlargerregions-of-interest(e.g.SUVpeak)aretobeencouraged,astheymay
Copyright©2016:RSNA
Page:6
177
178
179
180
provideimprovedrepeatability.Inaddition,theuseofautomatedand/orcentralizedanalysismethodswill
further improve SUV repeatability. Note that while relative limits appear to be appropriate for SUVmax
measures, it may be that absolute limits may be more appropriate for SUVs based on mean values for
volumetricROIs[NahmiasandWahl2008].
181
182
183
184
185
186
187
6.WhiletheClaimhasbeeninformedbyanextensivereviewoftheliterature,itiscurrentlyaconsensus
Claimthathasnotyetbeensubstantiatedbystudiesthatstrictlyconformtothespecificationsgivenhere.
In addition, we note that this Claim should be re-assessed for technology changes, such as PSF (point
spread function) based reconstruction or TOF (time of flight) imaging that were not utilized in published
test-retest studies. A standard utilized by a sufficient number of studies does not exist to date. The
expectationisthatfromfuturestudiesand/orfieldtesting,datawillbecollectedandchangesmadetothis
ClaimortheProfilespecificationsaccordingly.
188
189
3.ProfileDetails
190
Thefollowingfigureprovidesagraphicaldepictionthatdescribesthemarkeratatechnicallevel.
191
192
193
194
195
Figure3:TheassaymethodforcomputingandinterpretingglycolyticmetabolicactivityusingPET/CTmay
beviewedasapipelineusingeitheroneortwoormorescansequences.ThemeasureSUVxreferstooneof
severalpossibleSUVmeasures,suchasSUVmax,SUVmeanorSUVpeak,withnormalizationbybodyweight
orleanbodymass.
196
197
198
PatientsmaybeselectedorreferredforFDG-PET/CTimagingthoughavarietyofmechanisms.Inaddition,
patientsareoftenrequiredtoundergoscreeningaccordingtopre-scanrequirementssuchasfastinglevels
and/orserumglucoselevelsasdescribedbelow.
199
TheimagingstepscorrespondingtoFigure1are:
200
201
1) Patientsorsubjectsarepreparedforscanning(e.g.6hrfasting).FDGisadministered.Patientwaits
quietlyforbio-distributionanduptakeofFDG(typically60min)
Copyright©2016:RSNA
Page:7
202
2) ScandatafromthePETandCTexamsisacquired.
203
3) DatacorrectiontermsareestimatedandPET(andCT)imagesarereconstructed.
204
4) Quantitativemeasurementsareperformed.
205
5) Imagesarereviewedforqualitativeinterpretation.
206
207
Notethatsteps4and5mayoccurineitherorderoratthesametime.Moredetailsontherequirements
aregivenbelow.
208
209
210
Images may be obtained at multiple time points over days or weeks, notably at a minimum of two time
points before and after therapeutic intervention for a response assessment as is considered by this
document.ThechangeinFDGuptakeistypicallyassessedasapercentageaccordingtotheformula:
211
212
213
[(post-treatmentmetabolicactivity–pre-treatmentmetabolicactivity)/pre-treatmentmetabolicactivity]
x100%.Responsecriteriaarethenappliedtocategorizetheresponseassessment.Theseresponsecriteria
arebeyondthescopeofthisdocument,butarediscussedinthePERCISTproposal[Wahl2009].
214
ThefollowingsectionsdescribethemajorcomponentsillustratedinFigure3:
Section Title
Performedby
3.1
Subject
Handling
Personnel,(includingTechnologistsandSchedulers)atanImageAcquisition
Facility
3.2
ImageData
Acquisition
Technologist,atanImageAcquisitionFacilityusinganAcquisitionDevice
3.3
ImageData
Technologist,atanImageAcquisitionFacilityusingReconstructionSoftware
Reconstruction
3.4
ImageAnalysis ImagingPhysicianorImageAnalystusingoneormoreAnalysisSoftwaretools
3.5
Image
Interpretation
ImagingPhysicianbeforeorafterinformationobtainedbyImageAnalysisusing
apre-definedResponseAssessmentCriteria
215
216
217
218
Image data acquisition, reconstruction and post-processing are considered to address the collection and
structuringofnewdatafromthesubject.Imageanalysisisprimarilyconsideredtobeacomputationalstep
that transforms the data into information, extracting important values. Interpretation is primarily
consideredtobejudgmentthattransformstheinformationintoknowledge.
219
3.1.SubjectHandling
220
221
ThisProfilewillreferprimarilyto'subjects',keepinginmindthattherecommendationsapplytopatientsin
general,andthatsubjectsareoftenpatientstoo.
222
3.1.1SubjectSelection,Timing,andBloodGlucoseLevels
223
224
225
226
227
228
The study protocol should include specific directions as to the management of subjects with abnormal
fasting blood glucose measurements whether known to be diabetic or not. While it is known that high
levels of circulating blood glucose reduce FDG uptake, there is a paucity of scientific data to suggest a
specific cutoff for abnormally high blood glucose measurements or if these subjects should be excluded
fromclinicaltrialsthatuseFDG-PET/CTscandata.Itisimportanttodefinehowsuchsubjectsandthedata
from their imaging studies will be managed to ensure comparability of imaging data within and among
Copyright©2016:RSNA
Page:8
229
230
231
232
233
clinicaltrials.Specifically,considerationshouldbegiventotheexclusionofsubjectswithabnormalfasting
bloodglucosewhenquantitativeFDG-PET/CTisbeingusedasthestudy’sprimaryendpoint.Refertothe
FDG-PET/CTUPICTProtocolforDiabeticSchedulingandManagementdiscussion(UPICTSection4.2.2).Itis
alsorecommendedthatthestudyspecifieswhatlevelofwithinsubjectvariabilityinserumglucoselevelsis
acceptableacrosstimepointsandhowsubjectsthatfalloutsidethatrangewillbeinterpreted.
234
3.1.1.1TimingofImagingTestRelativetoInterventionActivity(UPICTSection1.2)
235
236
237
238
239
240
241
242
243
244
245
246
The study protocol should specifically define an acceptable time interval that should separate the
performanceoftheFDG-PET/CTscanfromboth(1)theindexinterventionand(2)otherinterventions(e.g.
chemotherapy, radiotherapy or prior treatment). This initial scan (or time point) is referred to as the
“baseline”scan(ortimepoint).Thetimeintervalbetweenthebaselinescanandtheinitiationoftreatment
should be specified as well as the time intervals between subsequent FDG-PET studies and cycles of
treatment. Additionally, the study protocol should specifically define an acceptable timing variance for
performance of FDG-PET/CT around each time point at which imaging is specified (i.e., the acceptable
windowoftimeduringwhichtheimagingmaybeobtained“onschedule”).Thetimingintervalandwindow
are dependent upon 1) the utility for the FDG-PET/CT imaging within the clinical trial, 2) the clinical
question that is being investigated and 3) the specific intervention under investigation. Suggested
parameters for timing of FDG-PET/CT within oncologic trials are more completely addressed in the FDGPET/CTUPICTProtocolsection1.2.
247
3.1.1.2.TimingRelativetoConfoundingActivities(UPICTSection3.2)
248
249
250
251
252
253
254
255
256
Activities, tests and interventions that might increase the chance for false positive and/or false negative
FDG-PET/CT studies should be avoided prior to scanning. The allowable interval between the potentially
confoundingeventandtheFDG-PET/CTexamwillbedependentonthenatureoftheconfoundingvariable.
For example, inflammation may cause focally increased FDG-PET activity (e.g. from a percutaneous or
excisional biopsy of a suspicious mass) or might lead to the appearance of a non-malignant mass (e.g.,
hematoma)ontheCTportionofthestudy.Apercutaneousablationprocedureofaknownmalignantfocus
maycausefocallyincreasedFDG-PETactivityand/oranimmediatepost-ablationincreaseintheapparent
volumeoftheablatedtargetlesion.ThetimeofonsetandthedurationoftheincreasedFDG-PETactivity
and/orthechangeinlesionvolumemightbedifferentforthesetwoconfoundingfactors.
257
258
If iodinated contrast is to be used for the CT portion of the PET/CT study, conflict with other tests and
treatmentsshouldbeavoidedcongruentwithcommunitystandardsofcare(e.g.,thyroidscan).
259
3.1.1.3.TimingRelativetoAncillaryTesting(UPICTSection3.3)
260
261
262
263
264
265
266
AvoidschedulingteststhatmightconfoundthequalitativeorquantitativeresultsoftheFDG-PET/CTstudy
within the time period prior to the scan. For example, a glucose tolerance test should not be scheduled
during the 24 hours prior to the performance of FDG-PET/CT. Similarly, other tests that might involve
increasing plasma glucose, insulin, or corticosteroid levels should also be avoided. Exercise cardiac stress
testing should be avoided during the twenty-four (24) hours prior to the performance of FDG-PET/CT.
Similarly,otherteststhatmightinvolvevigorousexerciseandtherebyincreasemusclemetabolicfunction
shouldalsobeavoided.
267
3.1.2SubjectPreparation(UPICTSection4)
268
269
Management of the subject can be considered in terms of three distinct time intervals (1) prior to the
imaging session (prior to arrival and upon arrival), (2) during the imaging session and (3) post imaging
Copyright©2016:RSNA
Page:9
270
271
session completion. The pre-imaging session issues are contained in this section while the intra-imaging
issuesarecontainedinsection3.2.1onimagedataacquisition.
272
3.1.2.1.PriortoArrival(UPICTSection4.1)
273
274
275
276
The main purpose of subject preparation is to reduce tracer uptake in normal tissue (kidneys, bladder,
skeletal muscle, myocardium, brown fat) while maintaining and optimizing tracer uptake in the target
structures(tumortissue).Formoredetail,refertotheFDGPETUPICTProtocol(Section4.1)thataddresses
(1)Dietary,(2)FluidIntake,and(3)OtheractivitiesthatmayaffecttissueFDGuptake.
277
(1) Dietary
278
a. Diabeticmanagement–RefertoFDG-PET/CTUPICTProtocolsections1.7.2and4.2.2
279
280
b. Fasting status - Subjects should not eat any food (either oral or parenteral) for at least six
hourspriortotheanticipatedtimeofFDGadministration.
281
282
283
284
285
286
287
(2) FluidIntake:Adequatehydration(beforeandafterFDGadministration)isimportantbothtoensure
asufficientlylowFDGconcentrationinurine(fewerartifacts)andtoreduceradiationexposureto
the bladder. Adequate hydration is especially important when contrast CT imaging will be used.
Whicheverhydrationstrategyisused(howmuchandwhentoadminister),theprotocolshouldbe
uniformamongsitesduringatrial.SpecifichydrationrecommendationsarepresentedintheFDGPET/CTUPICTProtocol(referenceSection4.2.1).Thefluidadministeredshouldnotcontainglucose
orcaffeine.
288
289
(3) OtherActivities:TominimizeFDGuptakeinmuscle,thesubjectshouldavoidstrenuousorextreme
exercisebeforethePETexamforatleast6hours(preferablyforatimeperiodof24hours).
290
291
292
The conformance issues around these parameters are dependent upon adequate communication and
oversight of the Scheduler or Technologist at the Image Acquisition Facility with the subject.
Communicationwiththesubjectandconfirmationofconformanceshouldbedocumented.
293
3.1.2.2.UponArrival(UPICTSection4.2)
294
295
296
Uponarrival1)confirmationofsubjectcompliancewithpre-procedureinstructionsand2)theoccurrence
of potentially confounding events (see listing in Section 4.2.1 of FDG-PET/CT UPICT Protocol) should be
documentedontheappropriatecasereportforms.
297
298
There should be documentation of subject-specific risk factors including, but not limited to, previous
contrastreactions(ifiodinatedcontrastistobeused).
299
3.1.2.3PreparationforExam(UPICTSection4.2.3)
300
301
302
InordertoavoidheterogeneousphysiologicaldistributionoftheFDG,itiscriticalthatsubjectpreparation
afterarrivalandpriortoimagingisstandardizedamongallsitesandsubjectsthroughouttheconductofthe
clinicaltrial.
303
304
305
•
Thewaitingandpreparationroomsshouldberelaxingandwarm(>75°For22°C)duringtheentire
uptake period (and for as long as reasonably practicable prior to injection, at least 15 minutes is
suggestedasacceptable).Blanketsshouldbeprovidedifnecessary.
306
307
308
•
The subject should remain recumbent or may be comfortably seated; activity and conversation
shouldbekepttoanabsoluteminimum.Forexample,thesubjectshouldbeaskedtorefrainfrom
speaking,chewing,orreadingduringtheuptakeperiod.Forbrainimagingthesubjectshouldbeina
Copyright©2016:RSNA
Page:10
309
roomthatisdimlylitandquietforFDGadministrationandsubsequentuptakeperiod.
310
311
312
313
•
After FDG injection, the subject may use the toilet, preferably not for the initial 30 minutes
immediately after injection of FDG, primarily to avoid muscular uptake during the biodistribution
phaseofFDG-uptake.Thesubjectshouldvoidimmediately(within5–10minutes)priortotheFDGPET/CTimageacquisitionphaseoftheexamination.
314
315
316
317
318
•
Bladdercatheterizationisnotroutinelynecessary;butifdeemednecessary(e.g.,fortheevaluation
ofasubjectwithapelvictumorsuchascervicalorprostatecancer),thecathetershouldbeplaced
prior to injection of FDG. If bladder catheterization is performed, additional strategies to avoid
trappinghighactivitypocketsofactivitywithinthebladdershouldbeconsideredsuchasretrograde
fillingofthebladdertodilutetheresidualactivity.
319
320
321
•
Following the administration of FDG, the subject should drink 500 ml of water (or receive by
intravenousadministration250-500mlofnon-glucosecontainingfluid).Fluidintakemayneedto
bemodifiedforthosesubjectsonfluidrestriction.
322
323
324
325
326
•
Forspecificareasofanatomicinterest(e.g.,tumorslocatedinthelowerabdomen,pelvisorkidney)
intravenousdiureticagentsmaybeused(e.g.,20–40mgoffurosemidegiven15minutesafterthe
administrationofFDG).Ifbladdercatheterizationisperformed,IVdiureticsshouldbeadministered
asdescribedheresoastoensurethattheconcentrationofactivityintherenalcollectingsystems
andbladderisrelativelydilute.
327
328
329
330
331
•
Sedationisnotroutinelyrequired,butisnotcontraindicatedprovidedthatthesedativeuseddoes
not interfere with the uptake of FDG. Sedation may have utility in specific clinical circumstances
suchasinsubjectswithbrain,headandnecktumorsorbreastcancer,claustrophobicsubjects,or
children.Thesedativeeffectshouldlastforthedurationofimageacquisition;detailedspecifications
aredependentuponthemedicationusedandtherouteofadministration.
332
333
•
Theamountoffluidintakeanduseofallmedications(e.g.,diuretic,sedative)mustbedocumented
ontheappropriatecasereportform.
334
335
336
•
Subjects undergoing a CT scan should empty their pockets and remove any clothing containing
metalandanymetallicjewelryfromthebodypartstobescanned,changingintoahospitalgownif
necessary.
Parameter
Entity/Actor
Specification
HeightandWeight
Imaging
Technologist
TheTechnologistshallmeasureanddocumentsubjectheight
andweightandenterthisinformationintothescanner
duringthePET/CTacquisition.
Subjectbodyweightshallbemeasuredatthetimeofeach
PET/CTscanwithstandardizedmeasurementdevicesandwith
thesubjectinanexaminationgownorlightclothing.Subject
heightshallbemeasuredanddocumentedatthetimeof
baselineFDG-PETscanwithstandardizedmeasurement
device.Measurementofsubjectheightisnotrequiredateach
subsequenttimepointunlessothersubject-centricfactors
(e.g.growthinpediatricpopulationorshrinkageinelderly
population)arerelevantincombinationwithaprolonged
Copyright©2016:RSNA
Page:11
Parameter
Entity/Actor
Specification
intervalbetweenimagingtimepointssuchthatachangein
heightmightbesignificant.
Ifsubjectcannotbemovedfromthebed,thedateandsource
ofinformationshouldbedocumented.
TheTechnologistshallmeasuresubjectheightandweightand
enterthisinformationintoacommondataformatmechanism
usedforrecordingallneededinformation(AppendixE).
•
337
338
339
340
DiabeticMonitoringandManagement(UPICTSection4.2.2)
The subject’s blood glucose level should be measured [using CLIA-approved, CLIA cleared, or equivalent
(outside US) glucose measurement device or laboratory] within the preceding 2 hours (ideally within 1
hour,especiallyinsubjectswithdiabetes)ofFDGadministrationanddocumented.
Parameter
Entity/Actor
Specification
Bloodglucoselevel
measurement
Imaging
Technologist
orLab
Technologist
Within2hoursprecedingFDGadministration,shallmeasure
anddocumenttimeofsubjectbloodglucosecollection.
GlucosemeasurementshouldbeperformedusingaCLIA
approved,CLIAcleared,orequivalent(outsideUS)glucose
measurementdevice.Ifthemeasurementisalways
performedatinjectiontimeorotherwiseaccordingtoa
protocolrelativetoinjectiontime,thismaybedocumentedin
theprotocol.
Deviationsfromthisprocessshallbedocumented.
Bloodglucoselevel
documentation
Imaging
Technologist
orLab
Technologist
Shallentertheresultsofthebloodglucoseassayandthetime
ofblooddrawonacasereportformorsimilarsubject
informationsheet.
Bloodglucoselevel
Threshold
Imaging
Technologist
Shallenforcetheglucosethresholdsforimagingasdefinedin
theProtocol;ifnot,thenreasonfornon-conformanceshall
beprovidedanddocumentedoncasereportformorsimilar
subjectinformationsheet.
Shallentertheresultsofthebloodglucoseassayintoa
commonformatmechanismusedforrecordingallneeded
information(AppendixE).
Shalldocumentanyinformationonnon-conformancewiththe
protocolintoacommonformatmechanismusedforrecording
allneededinformation(AppendixE).
Copyright©2016:RSNA
Page:12
341
3.1.3.Imaging-relatedSubstancePreparationandAdministration(UPICTSection5)
342
3.1.3.1.RadiotracerPreparationandAdministration
343
3.1.3.1.1RadiotracerDescriptionandPurpose
344
345
346
347
348
349
FDG should be of high quality and purity. For example, the FDG radiopharmaceutical must be produced
underCurrentGoodManufacturingPracticeasspecifiedbytheFDA,EU,EuropeanPharmacopeaorother
appropriate national regulatory agency. U.S. regulations such as 21CFR212 or USP<823>
Radiopharmaceuticals for Positron Emission Tomography must be followed in the U.S. or for trials
submitted to US Regulatory. For example, in the US, for clinical practice, FDG production under NDA or
ANDAorunderINDforresearchpurposesismandatory.
350
3.1.3.1.2RadiotracerActivityCalculationand/orSchedule(UPICTSection5.2)
351
352
353
354
355
356
357
358
359
360
The 18F-FDG activity administered ranges between about 185 – 740MBq (5 – 20 mCi). The administered
activitytypicallydependsuponthelocalimagingprotocol.Thelocalprotocolmayrequirefixedactivity,or
theactivitymayvaryasafunctionofvariousparametersincludingbutnotlimitedtosubjectsizeorage,
scanner model, scanning mode, or percentage of scan bed (slice) overlap. To date there are no data
providing evidence of superiority of parameter-dependent administered activity protocols. The exact
activityandthetimeatwhichactivityiscalibratedshouldberecorded.Residualactivityremaininginthe
tubing, syringe or automated administration system or any activity spilled during injection should be
recorded.TheobjectiveistorecordthenetamountofFDGradiotracerinjectedintothesubjecttoprovide
accuratefactorsforthecalculationoftheSUV.Theuseofautomatedactivitymeasurementandinjection
devicesisallowedifaccuracyisverified.
Parameter
Entity/Actor
Administered
Imaging
FDGRadiotracer Technologist
Activity
Specification
TheTechnologistshall
1. Assaythepre-injectionFDGactivity(i.e.radioactivity)and
timeofmeasurement,
2. InjecttheFDGasprescribedintheprotocol,withinthe
rangedefinedintheprotocol.
3. RecordthetimethatFDGwasinjectedintothesubject,
4. Assaytheresidualactivityinthesyringe(andreadily
availabletubingandcomponents)afterinjectionand
recordthetimeofmeasurement.
ThesevaluesshallbeenteredintothescannerduringthePET/CT
acquisition.
Forscannersthatdonotprovideforentryofresidualactivity
information,thenetinjectedradioactivityshouldbemanually
calculatedbydecaycorrectingallmeasurementstothetimeof
injectionandthensubtractingtheresidualradioactivityfromthe
pre-injectionradioactivity.Thenetinjectedradioactivityisthen
enteredintothescannerduringthePET/CTacquisition.
Alldatadescribedhereinonactivityadministrationshallbe
Copyright©2016:RSNA
Page:13
Parameter
Entity/Actor
Specification
documented.
Alldatashouldbeenteredintothecommondataformat
mechanism(AppendixE).
361
3.1.3.1.3RadiotracerAdministrationRoute(UPICTSection5.4)
362
363
364
365
366
367
368
369
370
371
372
373
FDG should be administered intravenously through a large bore (24 gauge or larger) indwelling catheter
placedanatomicallyremote(e.g.,contralateralextremitytositeofdiseaseifatallpossible)toanysite(s)of
suspected pathology, preferably in an antecubital vein. Intravenous ports should not be used, unless no
other venous access is available. If a port is used, an additional flush volume should be used. As
reproducible and correct administration of FDG is required for quantification purposes, extravasation or
paravenous administration should be avoided. If an infiltration or extraneous leakage is suspected, the
event and expected quantity should be recorded and the infiltration site should be imaged. The
approximateamountofinfiltrationshouldbeestimatedfromtheimageswherepossible.Iftheinfiltration
isgreaterthan5%oftheadministeredactivityandthequantitativeresultfromtheFDG-PET/CTstudyisa
primaryorsecondaryendpoint,thedatapointmightbecensoredfromrevieworthesubjectmightnotbe
included in the study. The anatomical location of the injection site should be documented on the
appropriatecasereportformorintheCommonDataFormatMechanism(AppendixE).
374
375
Presuming that the IV access is properly functioning, the same route of administration may be used for
iodinatedcontrastasisusedforFDG.
Parameter
Entity/Actor
Specification
FDG
Technologist
TechnologistshalladministerFDGintravenouslythroughalarge
Administration
bore(24gaugeorlarger)indwellingcatheterplacedanatomically
remotetoanysitesofsuspectedpathology,preferablyinan
antecubitalvein.Intravenousportsshouldnotbeused,unlessno
othervenousaccessisavailable.
Inthecaseofmanualadministration,athree-wayvalvesystem
shouldbeattachedtotheintravenouscannulasoastoallowatleast
a10ccnormal(0.9%NaCl)salineflushfollowingFDGinjection.For
automatedinjectiondevicesalternateflushingmechanismsare
allowed.
Suspected
infiltrationor
extraneous
leakage
Technologist
and/or
Physicianor
Physicist
Technologistshalldocumentanysuspectedinfiltration,leakage,or
externalcontaminationandconsiderscanningtheinjectionsite
and/orcontaminatedmaterials.
RecordtheeventandexpectedamountofFDGintothecommondata
formatmechanism(AppendixE).
376
3.1.3.2CTContrastMaterialPreparationandAdministration
377
TheuseofCTcontrastmaterialduringFDG-PET/CTimagingiscomplexandanalyzedindetailintheUPICT
Copyright©2016:RSNA
Page:14
378
379
380
381
FDG-PETProtocol(Section3.2).Insummary,thepresenceofIVand/ororalcontrastmaterialimprovesthe
detectionoflesionswithCTandmayimprovetheanatomiclocalization,interpretation,andanalysisofthe
FDG-PET/CTexam.However,thepresenceofcontrastmaterialmayaffecttheattenuationcorrectionofthe
PETscanwithconsequentbiasinmeasuredSUVs.
Parameter
Entity/Actor
Specification
CTContrast
Agent
Technologist
TechnologistshallrecordthetypeandamountofCTContrastAgent.
1.Wasoralcontrastused:Type[Positive,Negative],amount(volume
incc).
2.WasIVcontrastuse:Amount(volumeincc),timeofinjection.
RecordtheeventandexpectedamountofCTContrastAgentintothe
commondataformatmechanism(AppendixE).
382
3.2.ImageDataAcquisition
383
384
ThissectionsummarizestheimagingprotocolsandproceduresthatshallbeperformedforanFDG-PET/CT
exam.DetaileddescriptionsareincludedinthereferencedFDG-PET/CTUPICTprotocolsections.
385
386
387
Themotivationforcontrollingtheimageacquisitionastightlyasdescribedhereisthatoverthecourseofa
trial,hardwareandsoftwareupdateswilloccur.TheintentoftheProfileistoensurethattheinstrument
givesthesameresultsoverthedurationofthetrial.
388
389
390
391
392
For consistency, clinical trial subjects should be imaged on the same device over the entire course of a
study.Iftheimagingrequirementsarequalitativei.e.forrelativequantitation,forexamplethepresenceor
absenceofalesionoralesionSUVrelativetoareferenceregion,thenareplacementscannermaybeused
ifitisproperlyqualified.Itisimperative,however,thatthetrialsponsorbenotifiedofscannersubstitution
ifitoccurs.
393
394
395
396
Forclinicaltrialswithquantitativeimagingrequirements,asubjectshouldhaveallscansperformedononly
one scanner unless quantitative equivalence with a replacement scanner can be clearly demonstrated.
However,itshouldbenotedthattherearecurrentlynoacceptedcriteriafordemonstratingquantitative
equivalencebetweenscanners.ItisanticipatedthatfutureversionofthisProfilewillprovidesuchcriteria.
397
398
The follow up scans should be performed with identical acquisition parameters as the first (baseline),
inclusiveofalltheparametersrequiredforboththeCTandPETacquisitions.
399
400
401
402
403
404
405
TheFDG-PET/CTUPICTProtocol(Section7.1.1)describesscanningstrategiesthatcanbeusedinaclinical
trial. For strategy 1, there is no intent to obtain a diagnostic CT scan at the FDG-PET imaging session,
however a low-dose CT scan is needed for attenuation correction. For strategy 2, a diagnostic CT scan is
obtained. There are further considerations that must be followed for each of the two strategies. The
workflow chosen for a given protocol should be described in the protocol and should be tailored
commensurate to the level of expectation of the obtained data (e.g. qualitative or quantitative SUV
analysis).
406
407
Strategy 1: For FDG-PET/CT in which the CT is used for attenuation correction and localization only (not
intendedasaclinicallydiagnosticCT):
408
•
CTScout(i.e.topogramorscanogrametc.),followedby
409
•
CTforanatomiclocalizationandattenuationcorrection,followedby
Copyright©2016:RSNA
Page:15
410
•
PETEmissionscanacquisition
411
412
413
Strategy 2: For FDG-PET/CT in which a clinically diagnostic CECT is also required, ONE of the following
optionsshouldbeused.Strategy2aispreferablesinceitavoidsany,allbeitpossiblyminimal,impactofIV
contrastenhancementonattenuationcorrectionandthereforeSUVdetermination.
414
Strategy2a
415
•
FollowStrategy1(above)
416
•
AcquireanadditionalIVcontrast-enhanceddiagnosticCTscan
417
Strategy2b
418
•
PerformanIVcontrast-enhanceddiagnosticCTscan
419
•
FollowStrategy1(above)
420
Parameter
Entity/Actor
Specification
Scanning
Strategy
(Workflow)
Technologist
TechnologistshallfollowProfilecompliantworkflowstrategy,which
willbecompatiblewithAcquisitionDevicecapability.Thesame
workflowusedatbaselineshallbeusedatallsubsequenttime
points.
421
422
423
424
425
426
Forbothstrategies,thereareseveralcommonissuesspecifictotheCTexamthatmayhaveanimpacton
quantitative FDG-PET output, which need attention and protocol specification. These include (1) contrast
material administration, (2) respiratory motion management instructions and (3) CT scanning technique
(kVp,mAsandpitch).Belowisasummaryoftheacceptablelevelofbehavior/procedureforeachofthese
threeissues.
427
428
429
430
431
At a minimum, all these issues should be addressed in the clinical trial protocol, ideally with consistency
across all sites and all subjects (both inter-subject, and intra- and inter-facility) with the target of
consistencyacrossalltimepointsforeachgivensubject.Theactualdetailsofimagingforeachsubjectat
each time point should always be recorded. Any particular clinical trial should NOT allow some sites to
implementonestrategyandothersitestoimplementthealternative.
432
CTExamVariablesandSpecifications:
433
434
435
436
437
438
439
Contrast Agents - The presence of a positive contrast agent (IV or oral), by affecting the CT attenuation
map,mayaffectSUVquantitation[Mawlawi2006].Ifthisweretheonlyconsideration,thenidealwouldbe
toprohibitCTcontrastadministration.However,insomeclinicalsituations(dependentupontumortype,
tumor behavior or level of anatomic interest), the benefit of CT contrast agents may outweigh the small
errors induced in SUV measurement that may include increased SUV variability. Each protocol should
specifythedesiredapproachforthegivenstudy.Mostimportantly,foreachsubject,thesameapproach
shouldbefollowedforallimagingtimepoints.
440
IncaseswhereCTcontrastagentsareused,therearetwomainstrategies:
441
Strategy1:NoIV;dilutepositiveoralcontrastallowed
442
Strategy2:Usenegativeordilutepositiveoralcontrastforthenon-attenuationCTscan.Ensurethat
Copyright©2016:RSNA
Page:16
443
444
thediagnosticCTacquisition(whichmaybeperformedwithIVcontrast)isperformedconsistently
foragivensubjectacrossalltimepoints.
Parameter
Entity/Actor
Specification
CTContrast
agent
Technologist
CTcontrastagentsshallbegivencommensuratewiththe
workflowstrategyasselectedfromabove.
445
3.2.1ImagingProcedure
446
447
448
449
450
ThePET/CTexamconsistsoftwocomponents,thePETemissionscanandtheCTtransmissionscan(which
mayhavemultiplecomponents).Fromthesedatasets,thenon-attenuation-correctedPETimagesmaybe
reconstructed for quality control purposes and attenuation-corrected PET images are reconstructed for
qualitative interpretation and quantitative analysis. Instrument specifications relevant to the Acquisition
DeviceareincludedinSection4Conformance–AcquisitionDevice.
451
3.2.1.1TimingofImageDataAcquisition
452
453
454
455
456
FDGuptakeintobothtumorsandotherbodytissuesisadynamicprocessthatmayincreaseatdifferent
rates and peak at various time points dependent upon multiple variables. Therefore, it is extremely
importantthat(1)ingeneral,thetimeintervalbetweenFDGadministrationandthestartofemissionscan
acquisitionisconsistentand(2)whenrepeatingascanonthesamesubject,itisessentialtousethesame
intervalbetweeninjectionandacquisitioninscansperformedacrossdifferenttimepoints.
457
458
459
460
461
462
463
Whilethe“target”traceruptaketimeis60minutes,the“acceptable”windowisfrom55to75minutesto
ensure that imaging does not begin prematurely so as to allow adequate tumor uptake of FDG and to
accountforthepracticalityofworkflowthatcanresultindelaysinimaginglaterthan60minutesafterFDG
injection.Theexacttimeofinjectionmustberecorded;thetimeofinjectioninitiationshouldbeusedas
the time to be recorded as the radiotracer injection time. The injection and flush should be completed
within one minute with the rate of injection appropriate to the quality of the vein accessed for FDG
administrationsoastoavoidcompromisingtheintegrityoftheinjectionvein
464
465
466
467
468
469
470
471
When performing a follow-up scan on the same subject, especially in the context of therapy response
assessment,itisessentialtoapplythesametimeintervalwithtargetwindowof±10minutesprovidedthat
thescanmustnotbeginpriorto55minutesaftertheinjectionofFDG.Whilethereismajorityviewofthe
committee that a tighter (narrower) time window, e.g. +/- 5 minutes, is better, the current performance
specification is written to balance practical and ideal. If a limited anatomy scan is obtained at follow-up
afterawholebodyscanwasperformedatbaseline,oneshouldconsideradjustingthetimingofthefollow
up scan to be congruent with the timing for the same anatomic region as achieved during the baseline
study.
472
473
474
If, for scientific reasons, an alternate time (between activity administration and scan acquisition) is
specified in a specific protocol, then the rationale for this deviation should be stated; inter-time point
consistencymuststillbefollowed.
Parameter
Entity/Actor
Specification
TracerInjection
Time
Technologist ThetimeofFDGinjectionshallbeenteredintoPET/CTscanner
consoleduringtheacquisition.
TracerUptake
Technologist TheTechnologistshallensurethatthetraceruptaketimeforthe
Copyright©2016:RSNA
Page:17
Parameter
Entity/Actor
Time:
Specification
baselinescanis60minutes,withanacceptablerangeof55to75
minutes.
Whenrepeatingascanonthesamesubject,especiallyinthe
contextoftherapyresponseassessment,theTechnologistshall
applythesametimeinterval±10minutesprovidedthatthescan
mustnotbeginpriorto55minutesaftertheinjectionofFDG.
475
Thefollowingsectionsdescribetheimagingprocedure.
476
3.2.1.2SubjectPositioning(UPICTSection7.2.1)
477
478
479
480
481
482
483
484
485
Consistent positioning avoids unnecessary variance in attenuation, changes in gravity-induced shape and
fluiddistribution,orchangesinanatomicalshapeduetoposture,contortion,etc.DuringPET-CT,subjects
shouldbepositionedinthecenterofthefieldofview(FOV),preferablywiththesubjects’armspositioned
overheadforwhole-bodyimaging(tominimizebeamhardeningandFOVtruncationartifacts).Inthecase
ofdedicatedbrainorhead/neckscans,thearmsshouldbepositioneddownalongthebody.Ifthesubjectis
physicallyunabletomaintainarmsaboveheadfortheentirewhole-bodyexaminationthenthearmscan
be positioned along the side before the start of the scan, unless the protocol specifically excludes such
subjects. Arm positioning in a particular subject should be consistent between the PET emission and CT
transmissionscansateachtimepointandshouldbeasconsistentaspossibleacrossalltimepoints.
486
487
488
489
490
491
492
493
494
Respiratory motion causes SUV errors by two mechanisms: motion blurring and errors in attenuation
correction due to mismatches between CT-based attenuation map and emission data [Liu 2009]. Various
strategiescouldbeusedtominimize,documentandcompensateforrespiratorymotion.Shallowbreathing
shallbeperformedduringCTACacquisition(seeUPICTProtocolsection7.1.1).Thesubjectshould(a)be
monitored and if breathing pattern is not consistent with shallow breathing expectation, coached in the
breathingprotocoland(b)remainmotionlessthroughoutthescan.AlternateCTstrategiesforachieving
PET/CTmatchmaybeconsideredifitcanbeverifiedthatPETACartifactsinthevicinityofthediaphragm
areroutinelyminimal.Itisofutmostimportancethatthepatientnotbeinend-inspirationphaseduringCT
forPET/CT.
495
496
TheTechnologistshalldocumentfactorsthatadverselyinfluencesubjectpositioningorlimittheabilityto
complywithinstructions(e.g.breath-hold,shallowbreathing,remainingmotionless,etc.).
497
498
Parameter
Entity/Actor
Specification
Subject
Positioning
Technologist
TheTechnologistshallpositionthesubjectaccordingtotheUPICT
specificationsand/orspecificprotocolspecificationsconsistently
forallscans.
Parameter
Entity/Actor
Specification
Technologist
TheTechnologistshalldocumentissuesregardingsubjectnonconformancewithpositioning.
Positioning
Nonconformance
TheTechnologistshalldocumentissuesregardingsubjectnon-
Copyright©2016:RSNA
Page:18
499
500
conformancewithbreathingandpositioningusingthecommon
dataformatmechanism(AppendixE).
Parameter
Entity/Actor
Specification
Respiratory
motion
minimization
Technologist
IfthepatientisobservedtotakeadeepbreathduringtheCTscan
itshouldbedocumentedandarepeatCTstudyshouldbe
considered.
Respiratory
motion
minimization
PET/CT
Scanner
ThePET/CTscannershallprovidemethodstominimizethePET
imageerrorsintroducedbyrespiratorymotion.
Parameter
Entity/Actor
Specification
Breathingand
motionnonconformance
TheTechnologistshalldocumentissuesregardingsubjectnonconformancewithbreathingandmotion.
Technologist TheTechnologistshalldocumentissuesregardingsubjectnonconformancewithbreathingandmotionusingthecommondata
formatmechanism(AppendixE).
501
502
3.2.1.3ScanningCoverageandDirection(UPICTSection7.1.1)
503
504
505
506
507
508
509
510
511
For most Oncology indications, anatomic coverage should include from the skull base (external auditory
meatus)tothemid-thigh.Ifotherrangesareused,whichmaybeappropriateforspecificclinicaltrials,then
theclinicaltrialprotocolshouldprovidespecificinstructionswithjustification.Multiplefactorsaffectthe
decision regarding the scan direction. For example, scanning caudocranial minimizes effects from
increasing bladder activity during the scan, important for image quality in the pelvis. For some tumors
locatedinthehead,neck,orupperthoraxitmaybemoreimportanttostartattheheadtominimizehead
andarmmotionbetweenPETandCT.Scanningdirectionshouldbespecifiedintheclinicaltrialprotocol.It
is critical that for a given subject, scanning direction on baseline scans be duplicated at follow-up time
points.
Parameter
Entity/Actor
Specification
Scanning
Direction
Technologist
TheTechnologistshallscanthesubjectcaudocranialforwholebody
examinationunlessotherwisespecifiedbytheprotocol.Each
patientshouldbescannedconsistently(inthesamedirection)
overalltimepoints.
ThescanningdirectionshallbeenteredintothePET/CTconsole
duringtheacquisitionandwillberecordedbythescannerintothe
appropriateDICOMfield.
Copyright©2016:RSNA
Page:19
Parameter
Entity/Actor
Specification
Anatomic
Coverage
Technologist
TheTechnologistshallperformthescansuchthattheanatomic
coverageisacquiredaccordingtotheprotocolspecificationsand
thesameforalltimepoints.
512
513
3.2.1.4ScannerAcquisitionModeParameters
514
515
516
517
518
WedefineacquisitionmodeparametersasthosethatarespecifiedbytheTechnologistatthestartofthe
actual PET/CT scan. These include the acquisition time per bed position, the bed overlap, the acquisition
mode(2Dor3D),withorwithoutcardiacand/orrespiratorygatingandCTtechnique.Theseparametersdo
not include aspects of the acquisition that occur earlier (e.g. injected amount of 18F-FDG or uptake
duration,CTcontrastagentinjection)orlater(e.g.reconstructionparameters)intheoverallscanprocess.
519
PETAcquisition
520
Parameter
Entity/Actor
PETacquisition
StudySponsor
mode
Specification
ThekeyPETacquisitionmodeparameters(e.g.,timeperbed
position,acquisitionmode,withorwithoutgating)shallbe
specifiedinamannerthatisexpectedtoproduceacceptablylow
imagenoiseregardlessofthescannermakeandmodel.
Thekeyacquisitionmodeparametersshallbespecified
accordingtopre-determinedharmonizationparameters.
PETacquisition
Technologist
mode
ThekeyPETacquisitionmodeparameters(e.g.,timeperbed
position,acquisitionmode,withorwithoutgating)shallbesetas
specifiedbystudyprotocolandusedconsistentlyforallpatient
scans.
521
522
CTAcquisition
523
524
525
526
527
528
529
530
531
532
FortheCTacquisitioncomponentofthePET/CTscan,thisProfileonlyaddressestheaspectsrelatedtothe
quantitativeaccuracyofthePETimage.InotherwordsaspectsofCTdiagnosticaccuracyarenotaddressed
in this Profile. In principle any CT technique (parameters include kVp, mAs, pitch, and collimation) will
sufficeforaccuratecorrectionsforattenuationandscatter.However,ithasbeenshownthatforestimating
PETtraceruptakeinbone,lowerkVpCTacquisitionscanbemorebiased.ThushigherkVpCTacquisitions
arerecommendedingeneral.InadditionifthereisthepotentialforartifactsintheCTimageduetothe
choiceofacquisitionparameters(e.g.truncationoftheCTfieldofview),thentheseparametersshouldbe
selected appropriately to minimize propagation of artifacts into the PET image through CT-based
attenuation and scatter correction. Finally, extremely low x-ray flux can lead to a bias in CT images.
ProtocolsshouldallowhighenoughmAstoavoidthisartifact.
533
Parameter
Entity/Actor
Specification
Copyright©2016:RSNA
Page:20
Parameter
CTacquisition
mode
Entity/Actor
StudySponsor
Specification
ThekeyCTacquisitionmodeparameters(kVp,mAs,pitch,and
collimation)shallbespecifiedinamannerthatisexpectedto
producecomparableresultsregardlessofthescannermakeand
modelandwithappropriateradiationdosesconsistentforthe
roleoftheCTscan:diagnosticCTscan,anatomicallocalization,
oraccuratecorrectionsforattenuationandscatter.
CTdosereductiontechniquesmaybeusedifdemonstratedto
retainquantitativeaccuracy.
534
535
536
CTacquisition
mode
Technologist
Parameter
Entity/Actor
ThekeyCTacquisitionmodeparameters(kVp,mAs,pitch,and
collimation)shallbesetasspecifiedbystudyprotocolandused
consistentlyforallsubjectscans.
Specification
537
538
539
540
541
542
543
544
545
RegardingCTradiationexposure,thelowestradiationdosenecessarytoachievethediagnosticobjective
shouldbeused.Foragivenprotocol,thepurposeofperformingtheCTscan(withtheintentofattenuation
correctiononlyorattenuationcorrectionandanatomiclocalizationversusoneintendedfordiagnosticCT
purposeswithcontrastandbreath-hold)shouldbedetermined.TheCTtechnique(tubecurrent,rotation
speed, pitch, collimation, kVp, and slice thickness) used should result in as low as reasonably achievable
exposureneededtoachievethenecessaryPETimagequality.Thetechniqueusedforanimagingsession
shouldberepeatedforthatsubjectforallsubsequenttimepointsassumingitwasproperlyperformedon
thefirststudy.
546
3.3.ImagingDataReconstructionandPost-Processing
547
3.3.1ImagingDataReconstruction(UPICTSection7.3)
548
549
550
551
552
Reconstructed image data is the PET image exactly as produced by the reconstruction process on the
PET/CT scanner, i.e. a PET image volume with no processing other than that occurring during image
reconstruction. This is always a stack of DICOM slices/files constituting a PET image volume that can be
analyzed on one or more of the following: PET scanner console, PET image display workstation, PACS
system,etc.SeeSection4Conformance–ImageReconstructionSoftwareforspecifications.
553
554
555
556
557
558
559
The PET reconstruction parameters include the choice of reconstruction algorithm, number of iterations
andsubsets(foriterativealgorithms),thetypeandamountofsmoothing,thefieldofviewandvoxelsize.
The quantitative accuracy of the PET image should be independent of the choice of CT reconstruction
parameters,althoughthishasnotbeenuniformlyvalidated.Inaddition,ifthereisthepotentialforartifacts
in the CT image due to the choice of processing parameters (e.g. compensation for truncation of the CT
fieldofview),thentheseparametersshouldbeselectedappropriatelytominimizepropagationofartifacts
intothePETimagethroughCT-basedattenuationandscattercorrection.
Copyright©2016:RSNA
Page:21
560
Parameter
PETimage
reconstruction
Entity/Actor
Specification
StudySponsor
ThekeyPETreconstructionparameters(algorithm,
iterations,smoothing,fieldofview,voxelsize)shallbe
specified.Theimagevoxelsizeshouldbe<5mm
(stronglyprefer3–4mm),with<3mmvoxelsfor
headandneckimaging.
ThekeyPETimagereconstructionparametersshallbe
specifiedaccordingtopre-determinedharmonization
parameters.
PETimage
reconstruction
Technologist
ThekeyPETreconstructionparameters(algorithm,
iterations,smoothing,fieldofview,voxelsize)shallbe
followedandsetasspecified.
Correction
factors
Technologist
Allquantitativecorrectionsshallbeappliedduringthe
imagereconstructionprocess.Theseinclude
attenuation,scatter,randoms,dead-time,and
efficiencynormalizations.
Calibration
factors
Scanner
AllnecessarycalibrationfactorsneededtooutputPET
imagesinunitsofBq/mlshallbeautomaticallyapplied
duringtheimagereconstructionprocess.
561
562
563
564
565
566
567
568
569
570
As part of the image reconstruction and analysis, correction factors for known deviations from the
acquisitionprotocolcanpotentiallybeapplied.Thesecorrectionscaninclude,forexample,compensation
formistakesindataentry[Kinahan2010],variationsinFDGuptakeperiod[Beaulieu2003],anderrorsin
scannercalibrationfactors[Lockhart2011].Correctionsforknowndataentryerrorsanderrorsinscanner
calibrationfactorsshouldbecorrectedpriortothegenerationofthereconstructedimages,orimmediately
afterwards.Correctionsthataremoread-hocinnature,e.g.correctionsforvariationsinFDGuptakeperiod
orplasmaglucoselevelsorpartialvolumecorrection,shouldonlybeappliedaspartoftheimageanalysis
step.Thatis,notusedtomodifythereconstructedPETimage.
571
3.3.2ImageDataPost-processing(UPICTSection8)
572
573
574
575
576
577
Processedimagedataareimagesthathavebeentransformedinsomemanner,includingbutnotlimitedto:
smoothing, image zoom, rotation/translation, resampling, interpolation, slice averaging, MIP, etc. This is
typically a stack of DICOM slices/files constituting a PET image volume. If image registration or
interpolation is required, then where applicable, perform the ROI analysis on the original PET image set
usingappropriatelymodifiedROIs.TheintentistopreservethenumericalaccuracyofthetruePETimage
values.
578
579
Standard whole-body FDG-PET oncology studies typically include all necessary data corrections and
processingwithinthereconstructionprocessanddonotrequireadditionalprocessingotherthan(e.g.)data
Copyright©2016:RSNA
Page:22
580
581
de-identification.Moreadvancedstudiessuchasthoseincludingdynamicimagingmayrequireadditional
processingasspecifiedintheindividualprotocol.
582
583
584
585
586
587
588
589
590
Briefly described here are concepts presented in UPICT Section 8.2.3 regarding difference between
‘visualized data’ and ‘data used for quantification’. At the acceptable level, for visual
inspection/interpretationofPET/CTdatausingthedisplayworkstation,bi-linearortri-linearinterpolation
andzoomingmaybeusedtodisplaytheimagesinadifferentmatrixsizethantheoriginaldata.Inaddition,
so-called maximum intensity projections (MIP) may be generated as they may facilitate localization and
detectionoflesions.Additionalprocessing,suchaszooming,re-binning,reorientationandfilteringmaybe
applieduponuserrequestonly.Usershouldbeabletomanipulatecolorscalesettings(window/leveland
colortable).Itshouldalwaysbepossibletoreverttothedefaultorientation,zoomandbinsize(preferably
a‘reverttodefault’buttonisavailable).
591
592
3.3.3ImagingDataStorageandTransfer
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
DiscussionsofarchivingPETdataoftenmention'rawdata'.Thisisanambiguoustermasitcanreferto:
scannerrawdata(i.e.,sinogramsorlist-mode)orimagerawdata.Toavoidconfusion,thetermrawdata
shouldnotbeusedwithoutmakingitclearwhichformisunderdiscussion.
ImagerawdataistheimagedataexactlyasproducedbythereconstructionprocessonthePETorPET/CT
scanner,i.e.,astackofDICOMslices/filesconstitutingaPETimagevolumewithnoprocessingotherthan
thatoccurringduringimagereconstruction.ThisisalwaysastackofDICOMslices/filesconstitutingaPET
imagevolumethatcanbeanalyzedononeormoreofthefollowing:PETscannerconsole,PETimage
displayworkstation,PACSsystem,etc.
Post-processedimagedataareimagesthathavebeentransformedafterreconstructioninsomemanner,
includingbutnotlimitedto:smoothing,imagezoom,rotation/translation,resampling,interpolation,slice
averaging,MIP,etc.Suchimagesmaybeonlyproducedfortemporaryanalysisanddisplay,ortheymaybe
savedasDICOMslices/files,andcanstillbeanalyzedononeormoreofthefollowing:PETscannerconsole,
PETimagedisplayworkstation,PACSsystem,etc.
Forarchivingatthelocalsiteorimagingcorelab(ifrelevant),themostimportantdataaretheoriginal
images,i.e.,theimagerawdata.Intheunlikelyeventthatthescannerrawdata(whichshouldbearchived
bythelocalsite)isrequiredforlaterreprocessing;thisshouldbemadeclearintheprotocol.
610
Parameter
Entity/Actor
Specification
Dataarchiving
Technologist
TheoriginallyreconstructedPETimages(imageraw
data),withandwithoutattenuationcorrection,andCT
imagesshallalwaysbearchivedatthelocalsite.
IfprocessedPETimagesarerequired,theyshallbe
archivedasseparatesecondarydatasets.
Ifscannerrawdataneedtobearchivedforfuture
reprocessing,thisshouldbedefinedprospectivelyinthe
Protocol.
611
Copyright©2016:RSNA
Page:23
612
3.4.ImageAnalysis(UPICTSection9)
613
614
615
616
The Image Analyst, through interaction with the Workstation Analysis tools, shall be able to perform
specified measurements. Image Analysis has qualitative and quantitative tasks. Both require consistency
andimagesofsufficientquality.Quantitativeimagingrequiresadditionalsystemcharacteristicsdescribed
furtherinthisProfile.
617
3.4.1InputData
618
619
620
TheoutputimagesofReconstruction,butnotPostprocessing,areconsideredtheinputforImageAnalysis.
IftheImageAnalystaltersinputdata(e.g.zoom),theoriginalinputdatawillbemaintainedasaseparate
file,bothtobestored.(SeeSection3.2)
621
3.4.2MethodstoBeUsed
622
623
624
625
Eachtissue/organtobeinvestigatedquantitatively(eithertumorlesionornormaltissue)ischaracterized
bydefiningaregion-of-interest(ROI)andcalculatingaparametersuchasthemaximumSUVwithintheROI.
Theimageanalystwillusetools(asdefinedinSection4.4Conformance–ImageAnalysisWorkstation)to
defineROIsandmeasureSUVs.
626
3.4.3RequiredCharacteristicsofResultingData(UPICTSection9.3)
627
628
629
630
631
ThespecifictrialprotocolshallprospectivelydefinetheSUVparameterthatisrequiredforeachlesion,or
normal tissue, which will be used for the imaging endpoint. Some studies may also compare different
metrics and will require recording multiple parameters. SUV measures (and the analysis tools used to
obtainthem,includingsoftwareversion)shallbespecifiedforeachprotocolandshallbeusedconsistently
acrossallsubjectsandacrossallsequentiallesionmeasurements.
632
633
634
635
636
637
638
639
640
641
642
643
SUV’sareintendedasameasureofrelativeuptakeandinthatsense,canberegardedasdimensionless
(unitless);however,usingstrictinterpretationoftheunitsforthecommoncalculationofbodyweight
normalization,thisyieldsunitsofg/ml.Undertheassumptionthatonaverage1mloftissueweighs1gm
(e.g.,water),adimensionlessSUVwouldbeobtained.Displaysystemmanufacturestypically,butnot
always,indicateunitsofg/mlifimagesarescaledtoSUVswithabodyweightnormalization.Thisis
presumablytodifferentiatebetweenbodyweight(orlean-body-mass)andbody-surface-area
normalizations,whichwouldshowdifferentunits(andvalues).Basedonthelackofconsensusandthat
manydisplaysystemsalreadyuseunits,therecommendationbelowistouseunitsofg/ml.
Itshouldbeclearwhichvaluesbelongtowhichlesion.ThiscanbedonebycapturingDICOMcoordinates
alongwiththeSUVorsecondaryscreencapturesoftheROIforidentification.Itshouldbereportedwhich
SUVmeasureisused,i.e.statisticandtypeofnormalization.
644
645
Ifareferencetissue(e.g.liver)SUVismeasured,then,thatSUVshouldbereportedalongwithlesionSUV
data.
646
Theanalysissoftwareshouldgenerateareport.
647
3.5.ImageInterpretationandReporting(UPICTSection10)
648
649
650
NoQIBAProfilespecificationcanbeprovidedforimageinterpretationatthistime.ImageInterpretationis
consideredtobebeyondthescopeofthisdocument.RefertoFDG-PET/CTUPICTProtocol(Section10).In
addition, further interpretation of the quantitative results (e.g. PERCIST [Wahl 2009]) and/or normalizing
Copyright©2016:RSNA
Page:24
651
652
SUV to reference tissue values (e.g. liver or blood pool) can also be specified as part of a specific trial
protocol.
653
654
655
656
Typicallythetrialprotocolwillstatehowquantitativeresponseismeasured.Forexample,responsecanbe
basedonthehottestlesion,butsometimesthechangeofthesumofSUVsisused.Inotherwords,how
quantitativeresponseismeasureshouldbespecifiedaprioribythetrialitself.Thisalsoappliestotarget
lesionselection.
657
Parameter
Entity/Actor
Specification
Image
Reporting
ImagingFacility ImagingreportsshallbepopulatedfromDICOMheaderinformation
usingstructuredreporting.
658
659
3.6.QualityControl
660
661
662
663
664
665
ThefollowingsectiondealswithmultipleaspectsofqualitycontrolinFDG-PET/CTstudies.(SeeFDG-PET/CT
UPICT Protocol Section 12 for additional information). This includes selecting and qualifying a PET/CT
imaging facility, imaging personnel and PET/CT scanners and ancillary equipment. In addition, the use of
phantomimaging(priortostudyinitiationandongoing)isdiscussedaswellasidentifyingsubjectswhose
data may need to be censored due to lack of data integrity. Finally, post-image-acquisition quality
assessmentisdetailed.
666
3.6.1ImagingFacility
667
668
669
670
671
It is essential to implement quality processes that ensure reliable performance of the scanner and
consistentimageacquisitionmethodology.Theseprocessesmustbeinplacepriortosubjectimagingand
be followed for the duration of the trial. A facility “imaging capability assessment” is a prerequisite to
facility selection for participation in any clinical trial involving the use of FDG-PET/CT as an imaging
biomarker.Thisimagingcapabilityassessmentwillinclude:
672
•
Identificationofappropriateimagingequipmentintendedforuseinthetrial
673
674
•
Documented performance of required quality control procedures of the scanner and ancillary
equipment(e.g.dosecalibrator,glucosemeter,etc.)
675
•
Radiotracerqualitycontrolprocedures
676
•
Experienceofkeypersonnel(technologists,radiologists,physicistsand/orotherimagingexperts)
677
•
Procedurestoensureimagingprotocolconformanceduringthetrial
678
3.6.1.1
679
680
681
682
683
Whilst imaging facility accreditation is generally considered to be adequate for routine clinical practice
purposes (e.g., ACR, IAC, and TJC), facility qualification (e.g., SNM-CTN, ACRIN, and imaging core labs) is
requiredforclinicalresearch/clinicaltrialparticipation.Inordertobeconsideredtobecompliantwiththis
Profile, an imaging scanner/facility must provide documentation of current qualified status. Appropriate
forms,checklistsorotherprocessdocumentsshouldbemaintainedandpresenteduponrequesttoverify
SiteAccreditation/QualificationMaintenance
Copyright©2016:RSNA
Page:25
684
685
686
687
688
689
that ongoing quality control procedures are being performed in a timely manner as dictated by specific
clinical study requirements. If exceptions to any of the performance standards stated below occur and
cannotberemediatedonsite,thesiteshouldpromptlycommunicatetheissuetotheappropriateinternal
overseerforadviceastohowtheirregularityshouldbemanaged.Inadditiontodocumentingthelevelof
performance required for this Profile (and the level of performance achieved), the frequency of facility
accreditation/qualificationalsoneedstobedescribed.
690
691
692
ItisimportanttonotethatthatimagingfacilityAccreditationand/orQualification,asdefinedinthisProfile,
are considered necessary, but are not sufficient for conformance with this Profile. For conformance with
theProfile,andthustosupporttheclaimsoftheProfile,allnormativerequirementsmustbemet.
Parameter
Entity/Actor
Specification
Accreditation/
Qualification
ImagingSite&
ImageAcquisition
Device
ShallmaintainanddocumentAccreditedstatusforclinical
practice(ACR,IAC,TJC,etc.)orQualifiedstatusforclinical
trials(e.g.ACRIN,SNM-CTN,CALGB,CROs,etc.).
693
3.6.2ImagingFacilityPersonnel
694
695
696
Foreachofthepersonnelcategoriesdescribedbelow,thereshouldbetraining,credentialing,continuing
education and peer review standards defined. Guidelines for training/credentialing for each resource
categoryaresummarizedbelow(UPICTProtocolSection2.1).
Parameter
Personnel
Roster
Technologist
Medical
Physicist
Entity/Actor
Specification
ImagingFacility
Coordinator
Eachsiteshall,atthetimeoftrialactivationandpriorto
subjectaccrual,havethesupportofcertifiedtechnologists,
physicists,andphysicians(asdefinedbelow),experiencedin
theuseofFDG-PET/CTintheconductofoncologicalclinical
trials.
ImagingFacility
Coordinator
Technologistcertificationshallbeequivalenttothe
recommendationspublishedbytherepresentativesfromthe
SocietyofNuclearMedicineTechnologistsSection(SNMTS)
andtheAmericanSocietyofRadiologicTechnologists(ASRT)
andshouldalsomeetalllocal,regional,andnational
regulatoryrequirementsfortheadministrationofionizing
radiationtopatients.
ImagingFacility
Coordinator
MedicalphysicistsshallbecertifiedinMedicalNuclearPhysics
orRadiologicalPhysicsbytheAmericanBoardofRadiology
(ABR);inNuclearMedicinePhysicsbytheAmericanBoardof
ScienceinNuclearMedicine(ABSNM);inNuclearMedicine
PhysicsbytheCanadianCollegeofPhysicistsinMedicine;or
equivalentcertificationinothercountries;orhave3yearsof
PETexperience.Regardlessofcertification,thephysicist
shouldhavespecificexperienceinPETanditsquantitative
use.
Copyright©2016:RSNA
Page:26
Parameter
Physician
Entity/Actor
Specification
ImagingFacility
Coordinator
PhysiciansoverseeingandinterpretingPET/CTscansshallbe
qualifiedbytheABR(Diagnosticand/orNuclearRadiology)or
AmericanBoardofNuclearMedicine(ABNM)orequivalent
withintheUnitedStatesoranequivalententityappropriate
forthegeographiclocationinwhichtheimagingstudy(ies)will
beperformedand/orinterpreted.
697
698
3.6.3FDG-PET/CTAcquisitionScanner
699
700
701
702
FDG-PET/CTstudiesasdescribedinthisProfilerequireadedicatedPET/CTscanner.PET/CTscannersshould
be identified based on manufacturer, name and model. Hardware specifications should be documented.
Scannersoftwarenameandversionshouldbedocumentedatthetimeoftrialinitiationandatthetimeof
anyandallupdatesorupgrades.
703
704
705
706
The PET/CT scanner must undergo routine quality assurance and quality control processes (including
preventivemaintenanceschedules)appropriateforclinicalPET/CTapplications,asdefinedbyprofessional
and/or regulatory agencies. In order to assure adequate quantitative accuracy and precision of PET/CT
imagingresults,additionalqualityassurancemeasuresarerequired,asdiscussedbelow.
Parameter
Entity/Actor
Specification
Physical
Inspection
Technologist
Shall,onadailybasis,checkgantrycoversintunnelandsubject
handlingsystem.
QA/QCChecks
Technologist
AllQA/QCproceduresrecommendedbythemanufacturer
shallbeperformedatthefrequencyrecommendedbythe
manufactureranddocumented.AtableofQA/QCprocedures
forasubsetofspecificPET/CTscannersfromeachvendoris
includedinAppendixG.2.
DailyQAproceduresshallbeperformedpriortoanysubject
scan.
707
3.6.3.1AncillaryEquipment
708
3.6.3.1.1DoseCalibrator
709
710
711
ThefollowingguidelinesarecollectedfromANSIstandardN42.13,2004andIAEATechnicalReportSeries
TRS-454.AllrequirementsassumemeasurementsonunitdosesofFDGandthatcalibrationsourcesarein
the'syringe'geometry(i.e.,nobulkdoses).
712
713
The Constancy test ensures reproducibility of an activity measurement over a long period of time by
measuringalong-livedsourceofknownactivity.
714
715
The Accuracy test ensures that the activity values determined by the dose calibrator are correct and
traceabletonationalorinternationalstandardswithinreporteduncertainties.
716
717
TheLinearitytestconfirmsthat,foranindividualradionuclide,thesamecalibrationsettingcanbeapplied
toobtainthecorrectactivityreadoutovertherangeofuseforthatdosecalibrator.
Copyright©2016:RSNA
Page:27
718
Parameter
Entity/Actor
Specification
Constancy
Technologist
Shallbeevaluateddaily(orafteranydosecalibratorevent)
usingaNIST-traceable(orequivalent)simulatedF-18,Cs-137,
orCo-57dosecalibratorstandardandconfirmedthatnet
measuredactivityontheF-18settingdiffersbynogreater
than±2.5%fromdaytoday.
Accuracy
Technologist
Shallbeevaluatedmonthly(orafteranydosecalibrator
event)withaNIST-traceable(orequivalent)Cs-137,Co-57,or
simulatedF-18dosecalibratorstandard.Shallconfirmthat
netmeasuredactivitiesdiffernogreaterthan±2.5%from
expectedvalue.
ThescannercalibrationshallbetestedusingaNIST-traceable
(orequivalent)simulatedF-18sourceobject,e.g.auniform
cylinder,largeenoughtoavoidpartialvolumeeffectsorother
resolutionlosses.
Shallbeevaluatedmonthly(orafteranydosecalibratorevent)
withaNIST-traceable(orequivalent)simulatedF-18dose
calibratorstandard.Shallconfirmthatnetmeasuredactivities
differnogreaterthan±2.5%fromexpectedvalue.
Linearity
Technologistor
Shallbeevaluatedatleastannually(orafteranydose
Radiationsafety
calibratorevent)andshouldbewithin±2.5%ofthetrue
officerorQualified valueoveranoperatingrangeof37-1110MBq(1to30mCi).
MedicalPhysicist
PETRadiation
Dose
DoseCalibrator
Shallrecordtheradiationdosefromtheadministeredactivity
andaccompanyinginformationinaDICOM
RadiopharmaceuticalAdministrationRadiationDoseStructured
Report.
719
720
3.6.3.1.2Scalesandstadiometers
721
Scalesandstadiometersshouldbeinspectedandcalibratedatinstallationandannually.
722
Parameter
Entity/Actor
Specification
Scalesand
stadiometers
Approved
personnel
Shallbeevaluatedannuallyorafteranyrepairbyqualified
personnel.
Shallbeconfirmedthaterrorislessthan+/-2.5%from
expectedvaluesusingNIST-traceableorequivalentstandards.
Copyright©2016:RSNA
Page:28
723
3.6.3.1.3Bloodglucoselevelmeasurementdevice
724
725
GlucosemeasurementsshouldbemadeusingaCLIA-approved,CLIA-cleared,orequivalent(outsidetheUS)
glucosemeasurementtechnique.
Parameter
Entity/Actor
Specification
Bloodglucose
level
measurement
device
Approved
personnel
ShallhaveQA/QCtestingandcalibrationperformedusinga
CLIA-approved,CLIA-cleared,orequivalent(outsideUS)
procedure.
726
727
3.6.3.1.4Clocksandtimingdevices
728
729
730
731
732
733
734
735
736
PET/CT scanner computer and all clocks in an imaging facility used to record activity/injection
measurementsshouldbesynchronizedtostandardtimereferencewithin+/-1minute.Theseincludeany
clocks or timekeeping systems that are connected with a subject’s FDG-PET/CT study, in particular those
associatedwiththedosecalibrator,theinjectionroom,thescanner,andtheacquisitioncomputer(s).The
synchronization of all clocks (to date, time of day and to time zone) should be monitored periodically as
partofongoingQAprogram.Inparticular,clocksshouldbeinspectedimmediatelyafterpoweroutagesor
civilchangesforDaylightSavings(NA)orSummerTime(Eur).Correctsynchronizationcouldbeachieved
usingtheConsistentTimeIntegrationProfileasdefinedintheIHEITInfrastructureTechnicalFramework.
TheConsistentTimeProfilerequirestheuseoftheNetworkTimeProtocol(NTP)(www.NTP.org).
Parameter
Entity/Actor
Specification
Scannerandsite
clocks
Approved
personnel
PET/CTscannercomputerandallclocksinanImagingfacility
usedtorecordactivity/injectionmeasurementsshallbe
synchronizedtostandardtimereferencewithin+/-1minute.
SynchronizationofallclocksusedintheconductoftheFDGPET/CTstudyshallbecheckedweeklyandafterpower
outagesorcivilchangesforDaylightSavings(NA)orSummer
Time(Eur)
Scannerandsite
clocks
SpecificDevice
ProvidetimesynchronizationaspertheIHEConsistentTime
IntegrationProfile.
Dosecalibrator
clock
DoseCalibrator
Electronicrecordofoutputfromadosecalibratorshallbe
synchronizedwithothertimekeepingdevices.
737
738
3.6.4PhantomImaging
739
740
741
742
743
744
To qualify the PET/CT scanner for clinical practice or for a clinical trial, a phantom imaging procedure is
required.Inadditiontocertaingenerallyavailable,commonlyusedphantoms,purpose-specificphantoms
maybeprovidedtosimulatecertaintypesofcancersoranatomiclocationsandthereforemightvaryfrom
trial to trial based on the need to evaluate particular diagnostic, staging and/or treatment response
performanceand/oranatomiclocation.Optionsthatmightbeconsideredonaper-protocolbasisinclude,
butarenotlimitedto:
Copyright©2016:RSNA
Page:29
745
746
1. eachsiteusesasinglephantomforthedurationofthetrialbutnotnecessarilythesamemodelof
phantomusedatothersites
747
2. allsitesusephantomsofthesamemodelforthedurationofthetrial
748
3. allsitesusephantomsbuilttoprecisespecificationsforthedurationofthetrial
749
4. allsitesshareasinglephantomforthedurationofthetrial.
750
751
752
753
754
755
The phantom scans and performance evaluation should be performed prior to the start of a trial and
repeated during the course of the trial as specified by the individual protocol. Any changes to scanner
equipment, either hardware or software, should be immediately reported to the trial sponsor and/or
imaging CRO and may result in the need for re-qualification prior to imaging additional trial subjects. In
particular,itisstronglyrecommendedthatsubjectsinalongitudinalstudybescannedonthesamePET/CT
systemwiththesamesoftwareversionwheneverpossible.
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
Imagenoiselevelsaremeasuredusingananthropomorphicphantom(e.g.NEMA,ACR,SNM,EANM)witha
uniform area to assess image ‘noise’ by means of the coefficient of variation (COV), also known as the
relativestandarddeviation(%RSD),whichisexpressedasapercentageandisdefinedasCOV=(SD/Mean)
x100,forthevoxelvalueswithinaspecifiedvolumeofinterest(VOI).Thephantomshouldbefilledsuch
that the activity concentration in the uniform area is approximately 3.7 – 7.4 kBq/ml (0.1 to 0.2 uCi/ml),
similartotheexpectedaveragenormaltissueconcentrationatthetimeofimaginginanaverageweight
(70-80kg)subjectincombinationwiththeintendedFDGdosage.Thephantomshouldbescannedusingthe
minimaltimeperbedspecifiedinthetrialprotocolorusingtheroutinelyappliedtimeperbedinthelocal
clinicalsetting.Moreover,imagereconstructionmethodsandsettingsshouldequalthosespecifiedinthe
trialprotocolorequalthoseroutinelyappliedinthelocalclinicalsetting.Aregionofinterest(ROI)should
bepositionedentirelywithinthephantom’suniformareaandasmuchaspossiblecentrallylocatedwithin
thephantom.TheROIshouldbeacubicalorrectangularvolume,withthelengthofeachsideascloseas
possibleto,butnolessthan,3cm.Aspheremeasuringnolessthan3cm.indiametermayalsobeusedas
theROIonsystemsthathavethecapabilitytoaccommodatethisstrategy.TheCOVofthevoxelvaluesthus
determinedshouldberecordedandshouldbebelow15%.IftheCOVofthevoxelvaluesthusdeterminedis
above15%,theacquisitiontimeshouldbeincreasedaccordingly.
772
773
The normative list below is based on the NEMA Image Quality, ACR, and uniform cylinder phantoms as
appropriate.
Parameter
Entity/Actor
Specification
Phantomtests:
Frequency
ImagingSite
Shallperformanddocumentresultsofthefollowingtestsnoless
thanquarterly.
Phantomtests: ImagingSite
crosscalibration
withdose
calibrator
Shallperformquarterlyandafterscannerupgrades,maintenance
orrepairs,newsetupsandmodificationstothedosecalibrator.
Phantomtests:
SUV
measurements
UsingACRoruniformcylinderphantomorequivalentshall
obtainanSUVforalargecentralROIof1.0withanacceptable
rangeof0.9to1.1.
ImagingSite
UsingACRoruniformcylinderphantomorequivalentshallobtain
anSUVforalargecentralROIof1.0withanacceptablerangeof
Copyright©2016:RSNA
Page:30
Parameter
Entity/Actor
Specification
0.95to1.05.
Phantomtests:
axialuniformity
measurements
ImagingSite
Usinguniformcylinderphantomorequivalentshallobtaina
slice-to-slicevariabilityoflessthan10%forthesliceswithinthe
central80%oftheaxialFOV
Usinguniformcylinderphantomorequivalentshallobtainasliceto-slicevariabilityoflessthan5%forthesliceswithinthecentral
80%oftheaxialFOV
Phantomtests:
resolution
measurements
ImagingSite
Shallperformandsuccessfullyobtainphantomimagingresults
forcoldandhotobjectimagingasdescribed.Forcoldobject
imaging,thetestphantomwillbetheACRPETphantomorthe
DeluxeJasczakphantom(orequivalent)withsixsetsofacrylic
rodsarrangedinapie-shapedpatternwiththefollowing
diameters:4.8,6.4,7.9,9.5,11.1,and12.7mm.The9.5,11.1,
and12.7mmdiameterrodsmustbevisible;ifnecessaryupto1
cmsliceaveragingcanbeused.
Forhotobjectresolution,thefillable12mmdiameter‘hot’
cylinderfortheACRphantommustbevisible;forCTNphantom,
allhotobjectsgreaterthan10mmmustbevisibleandforNEMA
phantom,13mmspheremustbevisible.AlsoseeSection
3.6.4.2."
Harmonizedimagereconstructionprotocolsareavailable.(i.e.,known
recoverycoefficientsversussizeforagiventestobjectsuchasthe
modifiedNEMANU-2ImageQualityphantom
Phantomtests:
noise
measurements
ImagingSite
ThephantomshallbefilledwithanFDGconcentrationofactivity
concentrationintheuniformareais(approximately0.1to0.2
µC/ml)andscannedusingtheintendedacquisitionprotocol.
Usingarectangularorsphericalregionascloseaspossibleto,but
nosmallerthan,3cmtoaside,theCOVofthevoxelvalues
withintheregionshouldbebelow15%,forthesliceswithinthe
central80%oftheaxialFOV.
774
775
3.6.4.1UniformityandCalibration
776
777
778
779
780
781
782
Verificationofscannernormalizationwithauniformphantomisaminimumrequirementforallscanners
usedinclinicaltrialsincludingthosethatonlyhavequalitativeendpoints.FortrialswithquantitativePET
measurements, this assessment should also include a comparison against a dose calibrator to ensure
quantitativeaccuracy;thatis,acomparisonoftheabsoluteactivitymeasuredversusthemeasuredamount
injected should be performed. This comparison is particularly important after software or hardware
upgrades.Ifthetrialrequiresabsolutequantificationinbaselineimagesorabsolutechangesinlongitudinal
studies,itshouldbeconsideredtoincludeanimagequalityand/orcontrastrecoveryQCassessmentaspart
Copyright©2016:RSNA
Page:31
783
784
785
786
of the routine QC procedures and/or scanner validation process, see Appendix E of the UPICT Protocol.
Clinical trials using only relative changes in longitudinal studies may not require contrast recovery
assessmentsprovidedthereisappropriateconsiderationfortheminimumsizeoftargetlesionsbasedon
thepartialvolumeeffect.
787
788
789
790
Anessentialrequirementforextractingquantitativedatafromimagesisthattherebeknowncalibration
accuracy and precision and/or cross calibration of the PET/CT system against the (locally) used dose
calibrator (within 10%). The QC procedures should utilize the same acquisition/reconstruction protocol,
softwareandsettingsthatareusedforthesubjectscans.
Parameter
Entity/Actor
Specification
UniformityQC
Technologistor
Physicist
Atleastquarterlyandfollowingsoftwareupgrades,shall
assesstransverseandaxialuniformityacrossthecentral80%
ofimageplanesbyimagingauniformcylinderphantom.
1. Thestandarddeviationofalargecentral2DROIshallbe
comparedwithsimilarpreviousscanstocheckfor
measurabledifferences.
2. Themeanvaluesofalargecentral2DROIfortheseimage
slicesshallbecomparedwithsimilarpreviousscansto
checkformeasurabledifferences.
CrossCalibration
Technologistor
physicist
Atleastquarterlyandfollowingsoftwareupgradesor
changestothedosecalibrator,shallperformchecksto
monitorandidentifydiscrepanciesbetweenthePETscanner
anddosecalibrator.
791
792
3.6.4.2Resolution(UPICTSection12.1.1.11)
793
794
795
Theassessmentofadequateresolutionshouldincludebothaqualitativeevaluation(usingclinicalimages)
and quantitative assessment (using phantom-defined criteria). The phantom-defined requirements are
morecompletelydescribedinUPICTprotocolSection12.1.1.11.
Parameter
Entity/Actor
Specification
Resolution
NuclearMedicine
Physician
Shallperform,onatleastanannualbasis,anddocumenta
qualitativeresolutionQCtestbyusingtheroutineimage
processingprotocolsanddemonstratingresolutionofnormal
grossanatomicfeatureswithinclinicalimagesofthebrain,
heartandabdomen.
Resolution
MedicalPhysicist
Shallperform(onatleastanannualbasis)anddocument
performanceofaquantitativeassessment(usingaphantom
withdifferingsizedefinedtargetssuchastheACRorNEMA
IQphantomsprocessedwithroutineimagereconstruction
protocols)forlesionresolution.
Copyright©2016:RSNA
Page:32
796
3.6.4.3Noise(UPICTSection12.1.1.12)
Parameter
Entity/Actor
Specification
Noise
MedicalPhysicist
Shallperformqualitativeorquantitativeassessmentof
imagenoiseinphantomimagestobeofconsistentand
acceptablequality.
797
798
3.6.4.4Phantomimagingdataanalysis
799
800
801
802
803
804
805
ForPETimageanalysis,therearemanycombinationsofhardwareandsoftwarethatareused.Thesoftware
alonecomprisesmultiplelayersincludingtheoperatingsystem,severalbasemodulesforinputanddisplay,
and the components that draw/calculate ROIs and calculate SUVs. It has been demonstrated that even
changesintheunderlyingoperatingsystemcanproducechangesinthequantitativeoutputproducedby
the display and analysis system [Gronenschild 2012]. Surprisingly little effort (outside manufacturer's
internal processes) has been applied to testing or validating the quantitative accuracy of SUV
measurementsproducedbydisplayandanalysismethods.
806
807
808
809
810
811
812
813
814
815
To provide a method for testing and validating quantitative accuracy of SUV measurements produced by
the display and analysis methods, the QIBA FDG-PET/CT Biomarker Committee has developed an FDGPET/CTdigitalreferenceobject(DRO),whichisasynthetictestobjectcomprisedofstackedDICOMimages
representinganFDG-PETimagevolumeandanalignedCTimagevolume.ThePETandCTimagesarebased
on the NEMA/MITA NU-2 Image Quality phantom. The DRO has pre-determined test objects to evaluate
ROIfunctionalityandpre-determinedDICOMheaderinformationtotestSUVcalculations.SincetheDROis
created synthetically, any image display software is expected to reproduce the known values exactly,
except for the insignificant machine precision errors. Further details are given in Appendix F.
Recommendedversionsofvendor-neutralpseudo-codesforSUVcalculationaregiveninAppendixG.All
softwareusedforimageanalysisshouldbeverifiedbytheproceduresin4.4.3.
Parameter
Entity/Actor
Specification
ImageAnalysis
Software
Imagingsite.
All software used for image analysis shall be verified by the
proceduresin4.4.3.
816
3.6.5QualityControlofFDG-PET/CTstudies
817
3.6.5.1
818
819
820
821
822
The integrity of DICOM image headers should be reviewed and confirmed for DICOM standard
conformance,regulatoryconformance(includingprivacyprotection,suchasmayberequiredbysuchrules
astheHIPAAPrivacyRuleifapplicable),protocolconformance,sufficiencyfortheintendedanalysis(e.g.,to
computeSUV)andconsistencywithsourcedatasuchasCRFs.Insomecases,internalreferencessuchas
thelivercanbeusedforqualitycontroltoconfirmacceptablerangesofSUVs.
823
3.6.5.2
824
825
826
827
CT images should be reviewed by the Image Analyst for assessment of image quality and for potential
artifacts such as beam hardening, metal objects, and motion. PET images should be compared to the CT
imagesforproperimageregistrationandpotentialattenuationcorrectionartifacts.Bothuncorrectedand
attenuationcorrectedimagesmayneedtobeassessedtoidentifyanyartifactscausedbycontrastagents,
DataIntegrity
DeterminationofImageQuality
Copyright©2016:RSNA
Page:33
828
829
830
831
metalimplantsand/orsubjectmotion.Forexample,movementormis-registrationcanleadtopoorquality
quantitative data and invalid numbers. Some images may be too poor in quality to quantify. Statistical
quality of images is important to report, but not a full substitute for quality. Liver noise assessment as
definedperPERCIST[Wahl2009]isconsideredareasonablestart.
832
3.6.5.3
833
834
835
836
Thedefinitionofspecifictumorsthatareevaluableshouldbeaddressedprospectivelyintheclinicaltrial
protocol. Protocol-specific guidelines should document whether or not minimum size criteria and/or
minimumbaselineSUVcriteriafortargetlesionqualificationsareused,andifso,howsuchcriteriawillbe
used.
837
838
Thecriteriabelowrepresentthebestknownpracticesbasedonpublisheddata,andcanprovideaguideline
fordeterminingevaluability.
839
SelectionofTargetLesions(UPICTSection10.2.1.1)
840
841
The lesion to be measured should be free of artifacts, for example, from nearby intense FDG containing
structures(likethebladder)orduetomotionorattenuationcorrectionartifacts.
842
MinimumBaselineSUV(UPICTSection10.2.1.1.1)
843
844
845
846
847
From the SNM Global Harmonization Summit (2010) and in the meta-analysis by de Langen et al (2012),
therewasconsensusthattoreliablymeasureachangeintheFDGuptakeofalesion,ahighbaselineFDG
uptakeisnecessary.Forillustration,a30%decreaseinlesionuptakemaybemorereliablymeasured,and
potentiallymoremeaningful,iftheinitiallesionuptakehadanSUVof5g/mlasopposedtoanSUVof2
g/ml.
848
849
850
851
852
UPICT Acceptable level: A minimum FDG-avidity is required and should be specified in the clinical trial
protocol. This can be determined by either a subject-specific threshold as proposed with PERCIST [Wahl
2009]orasageneralcutoff.Forageneralcutoff,aSUVmaxof4issuggestedforalltargetlesions,although
insomesettingsalowerminimumSUVmaxmaybeacceptable,suchasinthelungorbreast.Alternative
methodshavebeenproposed[LodgeandWahl2013].
853
854
855
856
857
858
859
860
861
ThemeasurementformeanliverSUVismadeusinga3-cmdiametersphericalROIplacedintherightlobe
of the liver at the level of main portal vein and equidistant between the porta hepatis and lateral liver
margin.CareshouldbetakentoavoidplacingtheROIclosetotheedgeoftheliver[Subramaniam2012].
FurtherdetailsaregiveninUPICTSection10.2.1.1.1.Iftheliverisnotinthefieldofvieworisabnormaltoa
degreethatnormallivercannotbeassessed,thenthealternatecomparatoristouseaminimumthreshold
levelof2.0xmeanSUVofbloodpoolina3DROIdefinedasa1cmdiametercylinderinthedescending
thoracicaortaextendingover2cm,trackingthelongaxisoftheaorticlumen,avoidingthewalloftheaorta
orareasofplaqueorcalcification.IfthedescendingaortaisnotevaluableaVOIofthesamevolumeshould
bemeasuredfromelsewhereinthethoracicaorta.
862
MinimumLesionSize
863
864
865
TheSNMGlobalHarmonizationSummitsuggeststhattumorsshouldtypicallybeover2cmindiameterfor
targetlesioninclusionatbaseline.Lesionssmallerthan2cm(orotherwisenoteasilymeasurable)witha
highenoughFDGuptake,maystillbeevaluable.
866
867
868
Evaluation of lesion size (e.g., longest diameter) may be difficult. This may be due to intrinsic lesion
characteristics (e.g., infiltrative or CT lesion isodensity to surrounding tissue) or due to the anatomic
locationoftumor(e.g.,bonemarrowsite).LesionssubjecttopartialvolumeeffectofSUVmeasurement,
DeterminationofEvaluableTumorLesions
Copyright©2016:RSNA
Page:34
869
870
notably due to anatomic location and attenuation correction errors (e.g., peri-diaghragmatic lesions at
eitherlungbaseorhepaticdome)potentiallyshouldbeexcluded.
871
3.6.5.4
872
ReferenceSection3.1.1"SubjectSelection,Timing,andBloodGlucoseLevels"
873
3.6.6QualityControlofInterpretation
874
875
876
877
Topromotequantifiableperformancestandardsforthequalitycontrolofinterpretationthereisaneedfor
intra-readervariabilitystudies.Ina2-Readerparadigm,theninter-readervariabilityisneededaswell.Itis
currently unclear what statistics to evaluate and how these performance metrics should be used in the
analysis.
878
4.Conformance
879
RelationofthisProfiletoExpectationsforQIBAProfileCompliance
880
Definitions(fromAppendixC):
881
882
Qualified: The imaging site is formally approved by an appropriate body (i.e. ACRIN, CQIE, SNMMI-CTN,
EANM-EARL,NCRI,animaginglaboratoryorCRO)foraspecificclinicalresearchstudy.
883
884
Accredited:Approvalbyanindependentbodyorgroupforbroadclinicalusage(requiresongoingQA/QC)
e.g.ACR,IAC,TJC.
885
886
Compliant: The imaging site and equipment meet all the requirements described herein, which are
necessarytomeettheQIBAProfileclaim.
887
888
889
890
Therequirementsincludedhereareintendedtoestablishabaselinelevelofcapabilities.Providinghigher
levels of performance or advanced capabilities is both allowed and encouraged. Furthermore the QIBA
Profile is not intended to limit equipment suppliers in any way with respect to how they meet these
requirements.InstitutionsmeetingthestatedcriteriaareconsideredtobeQIBACompliant.
891
4.1.ImageAcquisitionSite
892
893
Typicallyclinicalsitesareselectedduetotheircompetenceinoncologyandaccesstoasufficientlylarge
subjectpopulationunderconsideration.Forimagingitisimportanttohaveavailabilityof:
894
•
Appropriateimagingequipmentandqualitycontrolprocesses,
895
•
Appropriateancillaryequipmentandaccesstoradiotracerandcontrastmaterial,
896
•
ExperiencedTechnologists(CTandPETtrained)forthesubjecthandlingandimagingprocedure,
897
898
•
Appropriately trained Radiologists/Nuclear Medicine Physicians for image analysis and diagnostic
interpretation,
899
•
Appropriatelytrainedimageanalysts,withoversightbyaRadiologistorNuclearMedicinePhysician,
900
•
MedicalPhysicssupporttoensureappropriatescannerandequipmentcalibration,
901
•
ProcessesthatassureimagingQIBAProfile-compliantimagegenerationinappropriatetimewindow
902
903
DeterminationofsubjectsunsuitableforFDG-PET/CTanalysis
AQA/QCprogramforPET/CTscannersandancillarydevicesmustbeinplacetoachievethegoalsofthe
clinicaltrial.Theminimumrequirementsarespecifiedabove.Thisprogramshallinclude(a)elementsto
Copyright©2016:RSNA
Page:35
904
905
906
907
908
909
910
911
912
913
914
verifythatimagingfacilitiesareperformingimagingstudiescorrectlyand(b)elementstoverifythat
facility'sPET/CTscannersareperformingwithinspecifiedcalibrationvalues.Thesemayinvolve
additionalPETandCTphantomtestingthataddressissuesrelatingtobothradiationdoseandimage
quality(whichmayincludeissuesrelatingtowatercalibration,uniformity,noise,spatialresolution–in
theaxialplane-,reconstructedslicethicknessz-axisresolution,contrastscale,andothers)and
constancy.Thereisagreementthatsomeperformancetesting(e.g.,constancyphantom)addsvalue;
however,acceptableperformancelevels,frequencyofperformance,triggersforactionandmitigation
strategiesneedfurtherdefinitionbeforethesecanberequired.Thisphantomtestingmaybedonein
additiontotheQAprogramdefinedbythedevicemanufacturerasitevaluatesperformancethatis
specifictothegoalsoftheclinicaltrial.
Parameter
Entity/Actor
Specification
PET/CT
Scanner
Acquisition
Facility
ThisProfileshallonlyaddressfullringPET/CTscanners.
CTScanner
Calibration
Technologist
Shallperformdailywaterequivalentphantomanalysis;ensurethat
outputisacceptableandmanuallyenteronform/electronic
database.
PETScanner Technologist
Calibration
Shallperformdaily/weekly/monthlyscannerQAasrecommended
bymanufacturer;ensurethatoutputvaluesareacceptableand
manuallyenteronform/electronicdatabase
PETScanner Technologist
Calibration
Constancy
Check
Shallperformconstancyphantom(e.g.,Ge-68cylinder)scan
(preferablyNISTtraceableorequivalenttogatherinformation
regardinguniformityaswell)atleastweeklyandaftereach
calibration.
Dose
calibrator
CalibratedtoF-18usingNISTtraceablesourceorequivalenteitherby
siteorcalibratormanufacturer.
Imagingsiteor
Manufacturer
915
916
4.2.PET/CTAcquisitionDevice
917
918
919
920
921
922
DistinctfromtheperformancespecificationsandfrequencyoftestingdescribedinSection4.1whichapply
to quality control of the Acquisition Device at the imaging facility, this Section defines performance
specifications of the Acquisition Device to be met upon leaving the manufacturing facility. In order to be
compliantwiththisProfile,theAcquisitionDeviceshouldbeheldtothesamestandardwhetheramobile
utility or a fixed installation; a mobile scanner may require additional calibration to achieve this
performance.
923
924
925
926
ThePET/CTscannershoulduseDICOMattributestofollowversionnumbersofsoftwarefor:1Acquisition,
2Reconstruction,3Post-processing,4DisplayandROIanalysis,5DynamicAnalysis.NotethatthisProfile
does not specify dynamic imaging performance requirements. Performance requirements regarding
softwareversionidentification,documentationandtrackingacrosstimearedescribedinSection4.5.
927
928
The PET scan acquisition start time should be used for the decay reference time and the integral model
should be used for decay correction. The scanner should perform all decay corrections (i.e. not the
Copyright©2016:RSNA
Page:36
929
930
operator).ImagedataaretobegiveninunitsBq/ml.“Derived”images(distinctfrom“Original”)shouldbe
flaggedfollowingtheDICOMstandardandshouldretainthescanacquisitiondateandtimefields.
931
932
933
All needed information for fully corrected administered activity (e.g. residual activity, injection time,
calibrationtime)isrequired.Notethatuseofthetermadministeredactivitybelowreferstofullycorrected
netradioactivity.
934
935
936
937
938
939
Baseline level (i.e. equivalent to the UPICT protocol level of 'Acceptable') compliance requires that the
DICOMimagesetfromthesubject’sPET/CTscanandnecessarymetadata(thatisnotcurrentlycapturedby
all PET scanner acquisition processes) is captured in trial documentation, e.g. case report forms. The
metadataisrequiredtoperformthequantitativeanalysisandperformqualitycontrolonSUVcovariates.
Thisincludesforexample,post-injectionresidualactivityandsubjectheight.Thisdatashouldbecaptured
inthe'CommonDataFormatMechanism'asdescribedinAppendixE.
940
941
942
943
944
945
946
The DICOM format used by the PET/CT scanner should meet the Conformance Statement written by
manufacturerofthePET/CTsystem.PETdatashallbeencodedintheDICOMPETorEnhancedPETImage
StorageSOPClass,andinactivity-concentrationunits(Bq/ml)withadditionalparametersinpublicDICOM
fieldstocalculateSUVs(e.g.height,weight,scalefactors).CTdatashouldbeencodedinCTorEnhancedCT
ImageStorageSOPClass.DICOMdatashallbetransferredusingtheDICOMPart8networkprotocoloras
offlineDICOMPart10filesformediastorageincludingCDsandDVDs.Theyshallbetransferredwithoutany
formoflossycompression.
947
948
949
950
951
952
953
954
955
956
The meta-information is the information that is separate, or in addition to, the image values (in units of
Bq/ml) that is deemed necessary for quantitatively accurate representation of PET SUVs. The metainformationmayalsoincludeotherinformationbeyondthatneedforcalculationofSUVs,i.e.thetypeand
or sequencing of therapy, the blood glucose levels, the scanner SUV stability history, etc. The actual
mechanism of capturing the information is not specified in this Profile. The intent here is to list what
information should be captured rather than the mechanism itself. The mechanism can range from paper
notes,toscannedformsorelectronicdatarecords,todirectentryfromthemeasurementequipmentinto
pre-specifiedDICOMfields(i.e.fromthePET/CTscannerorauxiliarymeasurementdevicessuchasthedose
calibrator).Ideallyallofthespecifiedmeta-datawillbecapturedbydirectelectronicentrytoDICOMfields,
aftersuitablemodificationoftheDICOMformatforPETimaging.
957
958
959
Insomefacilityworkflows,theAcquisitionDevicemayalsoprovideworkstation/analysistoolfunctionality.
Forexample,thedisplayofanSUVstatistic(consideredinSection4.4.1)ordisplayofTracerUptakeTime
(consideredinSection4.4),mayalsoapplytotheAcquisitionDevice,ifusedinthismanner.
960
961
962
Theconceptendorsedhereisthattheneededmeta-dataisidentified.ThroughrevisionsofthisProfile,the
DICOM standard, and technology the meta-data is inserted into the analysis stream (Figure 3) in a more
directmannerandtechnologyandacceptedstandardsevolve.
963
Parameter
Entity/Actor
Specification
CTcalibration
tracking
Acquisition
Device
Dailywaterequivalentphantomvaluesshallbetrackedinthe
DICOMheader.
PETcalibration
factor
Acquisition
Device
ThecurrentSUVcalibrationfactorshallbeincludedintheDICOM
header.
PETQAstatus
Acquisition
Date/timeandstatusofsystem-wideQAchecksshouldbe
Copyright©2016:RSNA
Page:37
Parameter
Entity/Actor
Specification
Device
capturedseparately.
Dosecalibrator
calibration
Acquisition
Device
CalibrationfactorforanF-18NIST-traceable(orequivalent)
sourcewithidentifyinginformationshallbetrackedintheDICOM
headerwithDate/Time.
PETScanner
calibration
Acquisition
Device
Shallbeabletobecalibratedaccordingtothefollowing
specifications:UsingauniformcylindercontainingF-18inwater
(ideallythesameusedfordosecalibratorcross-calibration)
Slice-to-slicevariabilityshallbenomorethan±5%(notincluding
endslices,asperACRPETCoreLab).
In-planeuniformityforabovephantomshallbelessthan5%.
Immediatelyaftercalibration,usingthesamefilledphantomand
scannedsufficientlylongtominimizestatisticalnoise,andanACRtypeROIanalysis
TheaveragemeasuredSUVshallbeintherangeof0.98to1.02.
(Notethisisnottheperformanceexpectedduringclinicalimaging
operationasdiscussedinpreambletothisSection).This
techniqueremovesthevariabilityduetoradionclide
measurement.
Weight
Acquisition
Device
Shallbeabletorecordpatientweightinlbsorkgassuppliedfrom
themodalityworklistoroperatorentryintoscannerinterface.
ShallbestoredinPatientWeightfield(0010,1030)intheDICOM
imageheader,asperDICOMstandard.
Patientweightshallbespecifiablewith4significantdigits.
Patientweightshallbetransferrabledirectlyfrommeasurement
deviceintoscannerbyelectronic,HIS/RIS,orothermeans,
bypassingalloperatorentry,butstillpermittingoperator
correction.
Height
Acquisition
Device
Shallbeabletorecordpatientheightinfeet/inchesorcm/mas
suppliedfromthemodalityworklistoroperatorentryinto
scannerinterface.ShallbestoredinPatientSizefield(0010,1020)
intheDICOMimageheader,asperDICOMstandard.
Patientheightshallbespecifiablewith3significantdigits.
Patientheightshallbetransferrabledirectlyfrommeasurement
deviceintoscannerbyelectronic,HIS/RIS,orothermeans,
bypassingalloperatorentry,butstillpermittingoperator
correction.
Copyright©2016:RSNA
Page:38
Parameter
Entity/Actor
Bloodglucoselevel Acquisition
Device
Specification
ShallbeabletoRecordpatientbloodglucoselevel,inunitsof
mg/dl,ormMol/l,timeofmeasurement,assuppliedbyoperator
entryintothescannerinterface.ShallberecordedintheDICOM
imageheaderintheAcquisitionContextSequenceusingDICOM
PS3.16TID3471PETCovariatesAcquisitionContext.
Patientbloodglucoselevelshallbetransferrabledirectlyfrom
measurementdeviceintothescannerusingtheModalityWorklist
NM/PETProtocolContextTID15101,bypassingalloperatorentry,
butdisplayingittotheoperatorandstillpermittingoperator
correction.
Administered
Radionuclide
Acquisition
Device
Shallbeabletoentertheradionuclidetype(i.e.F-18)byoperator
entryintothescannerinterfaceandthroughpredefinedprotocol
ShallberecordedinRadionuclideCodeSequence(0054,0300)in
theDICOMimageheader[e.g.(C-111A1,SRT,“18Fluorine”)].
Shallbeabletoaccepttheradionuclidetype(i.e.F-18)directly
fromthemeasurementdevice(dosecalibrator)ormanagement
system,usingtheSup159RadiopharmaceuticalAdministration
RadiationDoseReportbypassingalloperatorentry,butstill
permittingoperatorcorrection.
Shallbeabletoaccepttheradionuclidetype(i.e.F-18)fromthe
DICOMModalityWorklisteitherfromtheNM/PETProtocol
Context,ifpresent,orbyderivingiffromtheRequested
ProcedureCodeviaalocallyconfigurabletableofvalues.
Administered
Radiotracer
Acquisition
Device
Shallbeabletorecordtheradiotracer(i.e.FDG),assuppliedby
operatorentryintothescannerinterface.Shallberecordedin
RadionuclideCodeSequencefield(0054,0300)intheDICOM
imageheader,e.g.(C-B1031,SRT,“FluorodeoxyglucoseF18”).
Administered
Radiotracer
radioactivity
Acquisition
Device
Shallbeabletoentertheadministeredradioactivity,inbothMBq
andmCi,assuppliedbyoperatorentryintothescannerinterface.
ShallberecordedinRadionuclideTotalDosefield(0018,1074)in
theDICOMimageheaderinBq.
Shallbeabletorecordwithseparateentryfieldsonscanner
interface:
(1) thepre-injectionFDGradioactivity
(2) timeofmeasurementofpre-injectionFDGradioactivity
(3) theresidualactivityafterinjection
(4) timeofmeasurementtheresidualradioactivityafter
injection
Shallautomaticallycalculatetheadministeredradioactivityand
Copyright©2016:RSNA
Page:39
Parameter
Entity/Actor
Specification
storeintheRadionuclideTotalDosefield(0018,1074)inthe
DICOMimageheader.
Alternatively,shallbeabletoreceivethisinformationasper
DICOMSupplement159.
PatientAdministeredRadiotracerradioactivityinformationshall
betransferreddirectlyfrommeasurementdeviceintoscannerby
electronic,HIS/RIS,orothermeans,bypassingalloperatorentry,
butstillpermittingoperatorcorrection.
Administered
RadiotracerTime
Acquisition
Device
Shallbeabletorecordthetimeofthestartofactivityinjectionas
suppliedbyoperatorentryintothescannerinterface.Shallbe
recordedinRadiopharmaceuticalStartDateTimefield
(0018,1078)(preferred)orRadiopharmaceuticalStartTimefield
(0018,1072).
Shallbeabletorecordthetimeofthestartofactivityinjectionas
suppliedbyoperatorentryintothescannerinterface.Shallbe
recordedinRadiopharmaceuticalStartDateTimefield
(0018,1078).I.e.,notRadiopharmaceuticalStartTimefield
(0018,1072).
Shallbeabletorecordthetimeofthestopofactivityinjectionas
suppliedbyoperatorentryintothescannerinterface.Shallbe
recordedinRadiopharmaceuticalStopDateTimefield
(0018,1079).
DecayCorrection
Methodology
Acquisition
Device
EncodedvoxelvalueswithRescaleSlopefield(0028,1053)applied
shallbedecaycorrectedbythescannersoftware(notthe
operator)toasinglereferencetime(regardlessofbedposition),
whichisthestarttimeofthefirstacquisition,whichshallbe
encodedintheSeriesTimefield(0008,0031)fororiginalimages.
CorrectedImagefield(0028,0051)shallincludethevalue“DECY”
andDecayCorrectionfield(0054,1102)shallbe“START”,which
meansthattheimagesaredecaycorrectedtotheearliest
AcquisitionTime(0008,0032).
ScanningWorkflow Acquisition
Device
ShallbeabletosupportProfileProtocol(Section3)PETandCT
order(s)ofacquisition.
Shallbeabletopre-defineandsave(byimagingsite)aProfile
acquisitionProtocolforpatientacquisition.
Shallbeabletointerpretpreviously-reconstructedpatientimages
toregenerateacquisitionprotocol.
Shallbeconfigurabletostore(orreceive)acquisitionparameters
aspre-definedprotocols(inaproprietaryorstandardformat),to
allowre-useofsuchstoredprotocolstomeetmulti-center
Copyright©2016:RSNA
Page:40
Parameter
Entity/Actor
Specification
specificationsandtoachieverepeatableperformanceacrosstime
pointsforthesamesubject.
CTAcquisition
Parameters
Acquisition
Device
Shallrecordallkeyacquisitionparameters(technique)intheCT
imageheader,usingstandardDICOMfields.
CTbased
attenuation
correction
Acquisition
Device
ShallrecordinformationinPETDICOMimageheaderwhichCT
imageswereusedforcorrections(attenuation,scatter,etc.).
PET-CTAlignment
Acquisition
Device
ShallbeabletoalignPETandCTimageswithin±2mminany
direction.
ShallbeabletoalignPETandCTimageswithin±2mminany
directionwithaloadupto150kgovertheco-scanlength.
Activity
Concentrationin
theReconstructed
Images
Acquisition
Device
Shallbeabletostoreandrecord(rescaled)imagedatainunitsof
Bq/mlanduseavalueofBQMLforUnitsfield(0054,1001).
TracerUptake
Time
Acquisition
Device
Shallbederivablefromthedifferencebetweenthe
RadiopharmaceuticalDateTimefield(0018,1078)(preferred)or
RadiopharmaceuticalStartTimefield(0018,1072)andtheSeries
Timefield(0008,0031)orearliestAcquisitionTimefield
(0008,0032)intheseries(i.e.,thestartofacquisitionatthefirst
bedposition),whichshouldbereportedasseriestimefield
(0008,0031).
PETVoxelsize
Acquisition
Device
SeeSection4.3(PETVoxelsize)undertheReconstruction
Softwarespecificationrequirements.
CTVoxelsize
Acquisition
Device
ShallbenogreaterthanthereconstructedPETvoxelsize.
Voxelsshallbesquare,althougharenotrequiredtobeisotropic
intheZ(head-foot)axis.
NotrequiredtobethesameasthereconstructedPETvoxelsize.
SubjectPositioning Acquisition
Device
ShallbeabletorecordthesubjectpositioninthePatient
OrientationCodeSequencefield(0054,0410)(whetherproneor
supine)andPatientGantryRelationshipCodefieldSequence
(0054,0414)(whetherheadorfeetfirst).
ScanningDirection Acquisition
Device
Shallbeabletorecordthescanningdirection(craniocaudalv.
caudocranial)intoanappropriateDICOMfield.
Copyright©2016:RSNA
Page:41
Parameter
Entity/Actor
Documentationof Acquisition
ExamSpecification Device
Specification
Shallbeabletodefinetheextentofanatomiccoveragebasedon
distancefromdefinedlandmarksite(e.g.vertex,EAM).(boththe
landmarklocation(anatomically)andthedistancescannedfrom
landmark)wouldrequireDICOMtags).
Shallbeabletobereportableforfuturescanningsessions.
TheAcquisitionDeviceshallrecordthez-axisFOVwhich
representstheactualdistanceofscananatomiccoverage(cms).
Differential
AcquisitionTime
Acquisition
Device
Shallbeabletoacquireandrecordnonuniformscantimes
dependentuponareasofclinicalconcern.Recordingcanbedone
throughtheuseofActualFrameDuration(0018,1242)andFrame
ReferenceTime(0054,1300).
DICOM
Conformance
Acquisition
Device
Allimagedataandscanparametersshallbetransferableusing
appropriateDICOMfieldsaccordingtotheDICOMconformance
statementforthePET/CTscanner.
DICOMData
transferand
storageformat
PET/CT
Scanneror
Display
Workstation
PETimagesshallbeencodedintheDICOMPETorEnhancedPET
ImageStorageSOPClass,usingactivity-concentrationunits
(Bq/ml)withadditionalparametersstoredinpublicDICOMfields
toenablecalculationofSUVs.
PETimagesshallbetransferredandstoredwithoutanyformof
lossycompression.
964
Parameter
Entity/Actor
DICOMEditing Acquisition
Device
Specification
ShallbeabletoeditallfieldsrelevantforSUVcalculationandblood
glucosebeforeimagedistributionfromscanner.
Shallprovideappropriatewarningsifoverridingofthecurrentvalues
isinitiated.
965
966
4.3.ReconstructionSoftware
967
968
ReconstructionSoftwareshallpropagatetheinformationcollectedatthepriorSubjectHandlingand
ImagingAcquisitionstagesandextenditwiththoseitemsnotedintheReconstructionsection.
969
970
Parameter
Entity/Actor
Specification
Metadata
Reconstruction Shallbeabletoaccuratelypropagatetheinformationcollectedatthe
Software
priorstagesandextenditwiththoseitemsnotedinthe
Reconstructionsection.
Datacanbereconstructedincludingallcorrectionsneededforquantificationaswellaswithoutscatterand
attenuationcorrection.Analyticaloriterativereconstructionmethodsshouldbeapplied.Ifthesystemis
Copyright©2016:RSNA
Page:42
971
972
973
capableofprovidingresolutionrecoveryand/ortimeofflight,thenthedecisionto‘turnon’or‘turnoff’
this/thesecapabilitiesshouldbemadeprospectively,asdictatedbythespecificprotocol,andshouldbe
consistentforagivensubjectacrossmultipletimepoints.
974
975
StandardizationofreconstructionsettingsisnecessarytoobtaincomparableresolutionandSUVrecoveries
acrossthesamesubjectandinter-subjectacrosssites.
Parameter
Entity/Actor
Specification
Data
Corrections
Reconstruction PETemissiondatamustbeabletobecorrectedforgeometrical
Software
responseanddetectorefficiency,systemdeadtime,random
coincidences,scatterandattenuation.
Reconstruction Reconstruction Shallbeabletoprovideimageswithoutresolutionrecovery.
Methodology Software
Shallbeabletoindicate,forbothTOFandResolutionrecovery,if
eitherarebeingusedforpurposesofimagereconstruction.
Reconstruction Reconstruction Shallbeabletoperformreconstructionswithandwithout
Methodology/ Software
attenuationcorrection.
Output
Data
Reconstruction Shallbeabletoperformreconstructionofdataacquiredin3Dmode
Reconstruction Software
usingfully3Dimagereconstructionalgorithms.
2D/3D
Shallbeabletoperformreconstructionofdataacquiredin2Dmode
Compatibility
using2Dimagereconstructionalgorithms.
Quantitative
calibration
Reconstruction Shallapplyappropriatequantitativecalibrationfactorssuchthatall
software
imageshaveunitsofactivityconcentration,e.g.kBq/mL.
Multi-beddata Reconstruction Shallcombinedatafrommultipleover-lappingbedpositions
software
(includingappropriatedecaycorrections)soastoproduceasingle
threedimensionalimagevolume.
Voxelsize
Reconstruction Shallallowtheusertodefinetheimagevoxelsizebyadjustingthe
software
matrixdimensionsand/ordiameterofthereconstructionfield-ofview.
ShallbeabletoreconstructPETvoxelswithasize4mmorlessinall
threedimensions(asrecordedinVoxelSpacingfield(0028,0030)and
computedfromthereconstructionintervalbetweenImagePosition
(Patient)(0020,0032)valuesofsuccessiveslices).
Pixelsshallbesquare,althoughvoxelsarenotrequiredtobe
isotropicinthez(head-foot)axis.
ShallbeabletoreconstructPETvoxelswithasizeof3mmorlessin
allthreedimensions(asrecordedinVoxelSpacingfield(0028,0030)
Copyright©2016:RSNA
Page:43
Parameter
Entity/Actor
Specification
andcomputedfromthereconstructionintervalbetweenImage
Position(Patient)(0020,0032)valuesofsuccessiveslices).
Voxelsshallbeisotropic.
Reconstruction Reconstruction Shallallowtheusertocontrolimagenoiseandspatialresolutionby
parameters
software
adjustingreconstructionparameters,e.g.numberofiterations,postreconstructionfilters.
Shallbeabletorecordreconstructionparametersusedinimage
DICOMheaderusingtheEnhancedPETIOD,developedbyDICOM
workinggroup.
Reconstruction Reconstruction Shallallowasetofreconstructionparameterstobesavedand
protocols
software
automaticallyapplied(withoutmanualintervention)tofuturestudies
asneeded.
976
977
4.4.ImageAnalysisWorkstation
978
979
980
981
982
Theimageanalysisworkstationshallhavetheabilitytoreceiveandpropagatethedataoutput(imagingand
metadata)collectedfromtheprioractivities(SubjectHandling,ImageAcquisition,ReconstructionandPostProcessing).Withtheinputdata,theanalysisworkstation(andsoftwareanalysistools)willbeabletomake
useofcertainattributevaluestoperformcertainmeasurementsandcomputationalanalysis.Theanalysis
workstationandsoftwaremaybecoupledtothePET/CTscannersystemorprovidedbya3rd-partyvendor.
Parameter
Entity/Actor
Specification
Metadata
ImageAnalysis
Workstation
Shallbeabletoaccuratelypropagatetheinformation
collectedatthepriorstagesandextenditwiththoseitems
notedintheImageAnalysisWorkstationsection.
ShallbeabletodisplayallinformationthataffectsSUVseither
directlyincalculation(e.g.patientweight,injectedactivity)or
indirectly(uptaketime,plasmaglucoseconcentration).
TracerUptake
Time:Display
ImageAnalysis
Workstation
Shallbecapabletodisplayorincludelinktodisplaythe
numberofminutesbetweeninjectionandinitiationofimaging
(asperderivationguidelinesdescribedinSection4.2).
983
984
985
986
987
InputforImageAnalysisisconsideredoutputofReconstructionandPostprocessingsoftwareactivity.Ifthe
ImageAnalystaltersinputdata(e.g.zoom)thisisconsideredpartofImageAnalysisactivity.Ifthisoccurs,
theoriginalinputdatawillbemaintainedasaseparatefile,bothtobestored,includingdescriptionof
manipulationinanaudittrailfileorinadedicatedDICOMtagsection(Section3.2).
988
Parameter
Entity/Actor
Specification
Referencetime
ImageAnalysis
ShalluseeithertheAcquisitionTimefield(0008,0032)or
Copyright©2016:RSNA
Page:44
Parameter
Entity/Actor
Specification
fordecay
correction
Workstation
RadiopharmaceuticalStartTime(0018,1072),ifnecessary.Ifa
series(derivedornot)isbasedonAcquisitionTimedecay
correction,theearliestAcquisitionTime(0008,0032)shallbe
usedasthereferencetimefordecaycorrection.
989
990
4.4.1RegionofInterest(ROI)definition
991
992
993
994
Thescanner-display-analysissystemshallprovideatoolfortheusertodefineboth2Dand3Dregionsof
interest(ROIs).WhiletheROIcanbedrawnonprocessedimages,theSUVcalculationshouldbeperformed
fromunprocessed(raw)imagedata(SeeSection3.3.2).TheseROIswillthenbeusedcalculateSUVvalues
asdescribedinthenextsection.
995
996
997
998
999
Thespecificationsbelowarefordefinedregionsforthecalculationof(1)averagevaluewithinanROI(i.e.
SUVmean) (2) maximum value within an ROI (i.e. SUVmax) (3) average value within a fixed-size ROI (i.e.
SUVpeak) (4) average value within a fixed-size ROI (i.e., SUVpeak), but with the location automatically
selectedtomaximizethemeanvalue.ForSUVpeakmeasures,theuseofpartialvoxelvaluestosecurea
1.2cmdiametersphere(or1ccvolume)ROIisappropriateanddesirable.
1000
Parameter
Entity/Actor
Specification
VoxelInclusion
Policy
AnalysisTool
Shalldescribevoxelinclusionmethodologyandweighting
policyincludingplacementcriteriaandtotalvolume.
Useamethodequivalenttoweightingforpartialvoxels;fully
includedvoxelsuseweightof1.0.Weightingshouldbe
proportionatetovolumesofvoxelsthatarepartlyincluded.
ROISpecifications
AnalysisTool
ShalldescribecapabilitiesandlimitsofROIspecificationand
placement.
DimensionsandcenterlocationofROI(box,ellipse,or
ellipsoid)shallbespecifiableto±1mm.
ForSUVpeakmeasures,thelocationwithinatargetsearch
regionthatyieldsthehighestmeanvalueofa1ccregionshall
befoundautomaticallyandreproducibly.
ROIDefinition
Tools
AnalysisTool
Shallprovideatoolanduserstrategytoallowtheplacement
ofanROItodeterminetheaveragevaluewithintheROI.
Shallprovideatoolanduserstrategytoallowtheplacement
ofanROItodeterminethevalueandlocationofthevoxelwith
themaximumvaluewithinanROI.
Shallprovideatoolanduserstrategytoallowtheplacement
ofa1cmdiameterROI(either2Dor3D)todeterminethe
averagevaluewithintheROI.
Copyright©2016:RSNA
Page:45
Parameter
Entity/Actor
Specification
Shallprovideatoolanduserstrategytoallowautomatic
placementofa1cmdiameterROI(either2Dor3D)suchthat
theaveragevaluewithintheROIismaximized.
Edge/Volume
Detection
AnalysisTool
ShallprovidethresholdmethodsfordefininganROIbasedon
imagevalues.
Shallclearlyspecifywhichthresholdmethodisusedand
relevantparametersvalues.
ThreeROIdefinitionmethodsshallbeprovided:Fixedvalue,%
ofmaximumvoxel,oredgedetection/segmentationmethods.
ROIsaving/retrieve Analysis/Archival Shallhavethecapabilitytolabel,save,recallandeditROIs.
Shallhavethecapabilitytotracktumorinformationacross
longitudinalscans.Inadditiontolesion(andnormalreference
region)identification,thismayincludecrosstimepoint
mappingoflesionstrackedonthebasisofconsistentanatomic
and/orfunctionalactivity.Otherlesioncharacteristics,suchas
lesionname(withconsistentanatomiclabeling),lesion
location,ROI/VOIsize,correspondinganatomic(CT)imageor
slicenumber,SUVmetric(s)andassessmentoftumor
heterogeneitymayalsobetrackedandcapturedusing
standardDICOMobjects.
ROIDisplay
Statistics
AnalysisTool
Shall have the capability to output to the screen display the
selectedstatisticsoftheROI.Theseinclude,butarenotlimited
to: Area, volume, mean, maximum, minimum, standard
deviation. Units can be selectable as activity concentration
[Bq/ml]orSUV[g/ml](SeeSection3.4.3).
Shall have the capability to display results with at least two
decimalplaces.
ShalloutputROIOutputStatisticstoStructuredDataReporting
DICOMfiles.
Shallcalculateresultsdirectlyfromtheoriginallyreconstructed
voxels(notfrominterpolatedand/orzoomedimages).
1001
1002
1003
Theworkstationandrepositoryshallbeabletocreate,storeandretrievemarkups(i.e.ROIs)usedforSUV
measurementsinaccordancewithastandarddefinitionforROIsthatprovidesaknownbalancebetween
precisionandaccuracy.
1004
4.4.2CalculationofStandardizedUptakeValue(SUV)
1005
1006
1007
TheROIdefinitionandanalysissoftwareisresponsibleforSUVcalculation,e.g.withdecaycorrectiontothe
appropriate reference time. Moreover, the manufacturer should implement both versions of SUV
normalizations (body weight or lean body mass). Recommended vendor-neutral pseudo-codes for SUV
Copyright©2016:RSNA
Page:46
1008
calculationaregiveninAppendixG.
1009
Parameter
Entity/Actor
Specification
SUVCalculation
AnalysisTool
ShallhavethecapabilitytocorrectlycalculateSUVsaccording
tothevendor-neutralpseudo-codesforSUVcalculationgiven
inAppendixG.
Volumeof
Distribution
Surrogate
AnalysisTool
ShallhavethecapabilitytocalculateSUVsusingasasurrogate
fortheVolumeofDistribution:bodyweight,leanbodymass,
andbodysurfacearea(BSA).
Leanbodymassshallbecalculatedaccordingtotheformulaof
James[James1976,Hallynck1981]:
Males:LBM=1.10(w)–128(w^2/h^2)
Females:LBM=1.07(w)–148(w^2/h^2)
BodysurfaceareashallbecalculatedaccordingtotheDuBois
formula:BSA(m^2)=(0.007184)((w)^(0.425))((h)^(0.725))
[Vu2002]
Wherew=weightinkgandh=heightincm.
1010
1011
4.4.3ImageAnalysisWorkstationPerformanceSpecifications
1012
1013
1014
1015
Thedigitalreferenceobject(DRO),whichisasyntheticPET(andCT)image,shallbeusedinorderto
evaluateconformancetothelevelofperformanceofanalysisstation/displaystation.Usersshouldusethe
DRO(aspertheDROuser'sguideinAppendixF)toverifycorrectimplementationofROIplacement,SUV
calculations,andPETandCTimagealignment.
1016
Parameter
Entity/Actor
Specification
Performance
Evaluation
Analysis
Workstation
ShallusetheDROtoverifyadequateperformanceas
describedinAppendixF.
AnalysisAccuracy
Analysis
Workstation
ForeachofthespecifiedROIsintheDRO(AppendixF)the
correctSUVvaluesshallbereplicatedbytheAnalysis
Workstation.
Alignment
Accuracy
Analysis
Workstation
ThePETandCTDROobjectshallappearperfectlyalignedin
thetransverse,coronal,andsagittalviews.
DICOM
Conformance
Analysis
Workstation
ShallbeabletoreadandapplyallmandatoryDICOMPETIOD
attributes,aswellasanyadditionaloptionalDICOMattributes
specifiedinthisprofile(includingthoseprivateattributes
definedinAnnexGforSUVcalculation).
4.5.SoftwareVersionTracking
Copyright©2016:RSNA
Page:47
1017
1018
1019
1020
1021
1022
1023
1024
Ideally,thePET/CTscannershouldbeabletobuildalistontheconsoleofthedatesofallsoftwareversions
(software changes that might impact quantitative accuracy would typically be inclusive of hardware
change). Furthermore, the scanner software version should be identified and tracked across time, with
updates and changes in scanner software noted during the course of the trial. At a minimum, Software
Versions should be manually recorded during the qualification along with the phantom imaging
performancedataandtherecordshouldbeupdatedforeverysoftware-upgradeoverthedurationofthe
trial.Thisincludestheflaggingoftheimpactonquantificationfornow;inthefuture,recordallsoftware
versionnumbersinDICOMheader.
1025
Parameter
Entity/Actor
Specification
SoftwareVersion
tracking
Acquisition
Device
Shallrecordthesoftwareversion(s)usedforacquisitionand
reconstructioninappropriateDICOMfield(s).
Softwareversion
back-testing
compatibility
Workstation
Shallprovidemechanismtoprovideanalysisoftheimagedata
usingupdatedaswellasprior(platform-specific)versionsof
analysissoftware.
1026
1027
References
1028
1029
International Atomic Energy Agency (IAEA), Technical Report Series No. 454: Quality Assurance for
RadioactivityMeasurementinNuclearMedicine,IAEA,Vienna(2006).
1030
1031
Medicare National Coverage Determinations Manual Chapter 1, Part 4 (Sections 200 – 310.1) Coverage
Determinations(Rev.142,02-03-12).
1032
1033
http://www.cms.gov/Regulations-and-Guidance/Guidance/Manuals/downloads//ncd103c1_part4.pdf
Referenced19April2012.
1034
QIBAUPICTProtocol:http://qibawiki.rsna.org/index.php?title=UPICT.
1035
1036
AdamsMC,TurkingtonTG,WilsonJM,WongTZ.Asystematicreviewofthefactorsaffectingaccuracyof
SUVmeasurements.AJRAmJRoentgenol195(2):310-320,2010.PMID:20651185.
1037
1038
1039
BeaulieuS,KinahanP,TsengJ,DunnwaldLK,SchubertEK,PhamP,LewellenB,MankoffDA.SUVvarieswith
time after injection in (18)F-FDG PET of breast cancer: characterization and method to adjust for time
differences.JNuclMed44(7):1044-1050,2003.PMID:12843218.
1040
Bland,JMandDGAltman.“MeasurementErrorProportionalTotheMean.”BMJ313,no.7049(1996):106.
1041
1042
BoellaardR.StandardsforPETimageacquisitionandquantitativedataanalysis.JNuclMed50Suppl1:11S20S,2009.PMID:19380405.
1043
1044
1045
1046
1047
BoellaardR,O’DohertyMJ,WeberWA,MottaghyFM,LonsdaleMN,StroobantsSG,OyenWJ,KotzerkeJ,
HoekstraOS,PruimJ,MarsdenPK,TatschK,HoekstraCJ,VisserEP,ArendsB,VerzijlbergenFJ,ZijlstraJM,
ComansEF,LammertsmaAA,PaansAM,WillemsenAT,BeyerT,BockischA,Schaefer-ProkopC,DelbekeD,
Baum RP, Chiti A, Krause BJ. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging:
version1.0.EurJNuclMedMolImaging37(1):181-200,2010.PMID:19915839.
1048
BoellaardR.Needforstandardizationof18F-FDGPET/CTfortreatmentresponseassessments.JNuclMed
Copyright©2016:RSNA
Page:48
1049
52Suppl2:93S-100S,2011.PMID:22144561.
1050
1051
1052
1053
1054
1055
BucklerAJ,BresolinL,DunnickNR,SullivanDC,AertsHJ,BendriemB,BendtsenC,BoellaardR,BooneJM,
ColePE,ConklinJJ,DorfmanGS,DouglasPS,EidsaunetW,ElsingerC,FrankRA,GatsonisC,GigerML,Gupta
SN,GustafsonD,HoekstraOS,JacksonEF,KaramL,KelloffGJ,KinahanPE,McLennanG,MillerCG,Mozley
PD, Muller KE, Patt R, Raunig D, Rosen M, Rupani H, Schwartz LH, Siegel BA, Sorensen AG, Wahl RL,
Waterton JC, Wolf W, Zahlmann G, Zimmerman B. Quantitative imaging test approval and biomarker
qualification:interrelatedbutdistinctactivities.Radiology259(3):875-884,2011.PMID:21325035.
1056
1057
1058
Buckler AJ, Bresolin L, Dunnick NR, Sullivan DC. A collaborative enterprise for multi-stakeholder
participation in the advancement of quantitative imaging. Radiology 258(3):906-914, 2011. PMID:
21339352.
1059
1060
Burger IA, Huser DM, Burger C, von Schulthess GK, Buck A. Repeatability of FDG quantification in tumor
imaging:averagedSUVsaresuperiortoSUVmax.NuclMedBiol39(5):666-670,2012.PMID:22381783.
1061
1062
1063
de Langen AJ, Vincent A, Velasquez LM, van Tinteren H, Boellaard R, Shankar LK, Boers M, Smit EF,
Stroobants S, Weber WA, Hoekstra OS. Repeatability of 18F-FDG uptake measurements in tumors: a
metaanalysis.JNuclMed53(5):701-708,2012.PMID:22496583.
1064
1065
1066
DelbekeD,ColemanRE,GuiberteauMJ,BrownML,RoyalHD,SiegelBA,TownsendDW,BerlandLL,Parker
JA, Hubner K, Stabin MG, Zubal G, Kachelriess M, Cronin V, Holbrook S. Procedure guideline for tumor
imagingwith18F-FDGPET/CT1.0.JNuclMed47(5):885-895,2006.PMID:16644760.
1067
1068
DootRK,ScheuermannJS,ChristianPE,KarpJS,KinahanPE.Instrumentationfactorsaffectingvarianceand
biasofquantifyingtraceruptakewithPET/CT.MedPhys37(11):6035-6046,2010.PMID:21158315.
1069
1070
DootRK,KurlandBF,KinahanPE,MankoffDA.DesignconsiderationsforusingPETasaresponsemeasure
insinglesiteandmulticenterclinicaltrials.AcadRadiol19(2):184-190,2012.PMID:22104290.
1071
1072
FaheyFH,KinahanPE,DootRK,KocakM,ThurstonH,PoussaintTY.VariabilityinPETquantitationwithina
multicenterconsortium.MedPhys37(7):3660-3666,2010.PMID:20831073.
1073
1074
1075
Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, Coleman RE, Wahl R, Paschold JC,
AvrilN,EinhornLH,SuhWW,SamsonD,DelbekeD,GormanM,ShieldsAF.Recommendationsontheuse
of18F-FDGPETinoncology.JNuclMed49(3):480-508,2008.PMID:18287273.
1076
1077
1078
FringsV,deLangenAJ,SmitEF,vanVeldenFH,HoekstraOS,vanTinterenH,BoellaardR.Repeatabilityof
metabolicallyactivevolumemeasurementswith18F-FDGand18F-FLTPETinnon-smallcelllungcancer.J
NuclMed51(12):1870-1877,2010.PMID:21078791.
1079
1080
1081
Gronenschild EH, Habets P, Jacobs HI, Mengelers R, Rozendaal N, van Os J, Marcelis M. The effects of
FreeSurferversion,workstationtype,andMacintoshoperatingsystemversiononanatomicalvolumeand
corticalthicknessmeasurements.PLoSOne7(6):e38234,2012.PMID:22675527.
1082
1083
Hallett WA, Maguire RP, McCarthy TJ, Schmidt ME, Young H. Considerations for generic oncology FDGPET/CTprotocolpreparationindrugdevelopment.IDrugs10(11):791-796,2007.PMID:17968761.
1084
1085
1086
Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, Albarghach NM, Metges JP,
Pradier O, Visvikis D. Reproducibility of 18F-FDG and 3’-deoxy-3’-18F-fluorothymidine PET tumor volume
measurements.JNuclMed51(9):1368-1376,2010.PMID:20720054.
1087
1088
JaceneHA,LeboulleuxS,BabaS,ChatzifotiadisD,GoudarziB,TeytelbaumO,HortonKM,KamelI,Macura
KJ, Tsai HL, Kowalski J, Wahl RL. Assessment of interobserver reproducibility in quantitative 18F-FDG PET
Copyright©2016:RSNA
Page:49
1089
andCTmeasurementsoftumorresponsetotherapy.JNuclMed50(11):1760-1769,2009.PMID:19837757.
1090
1091
1092
Jackson T, Chung MK, Mercier G, Ozonoff A, Subramaniam RM. FDG PET/CT interobserver agreement in
headandneckcancer:FDGandCTmeasurementsoftheprimarytumorsite.NuclMedCommun33(3):305312,2012.PMID:22227560.
1093
1094
1095
KamibayashiT,TsuchidaT,DemuraY,TsujikawaT,OkazawaH,KudohT,KimuraH.ReproducibilityofsemiquantitativeparametersinFDG-PETusingtwodifferentPETscanners:influenceofattenuationcorrection
methodandexaminationinterval.MolImagingBiol10(3):162-166,2008.PMID:18408977.
1096
1097
1098
Kinahan PE, Doot RK, Wanner-Roybal M, Bidaut LM, Armato SG, Meyer CR, McLennan G. PET/CT
Assessment of Response to Therapy: Tumor Change Measurement, Truth Data, and Error. Transl Oncol
2(4):223-230,2009.PMID:19956382.
1099
1100
1101
KinahanPE,FletcherJW.Positronemissiontomography-computedtomographystandardizeduptakevalues
inclinicalpracticeandassessingresponsetotherapy.SeminUltrasoundCTMR31(6):496-505,2010.PMID:
21147377.
1102
1103
1104
KrakNC,BoellaardR,HoekstraOS,TwiskJW,HoekstraCJ,LammertsmaAA.EffectsofROIdefinitionand
reconstructionmethodonquantitativeoutcomeandapplicabilityinaresponsemonitoringtrial.EurJNucl
MedMolImaging32(3):294-301,2005.PMID:15791438.
1105
1106
1107
KumarV,NathK,BermanCG,KimJ,TanvetyanonT,ChiapporiAA,GatenbyRA,GilliesRJ,EikmanEA.
VarianceofSUVsforFDG-PET/CTisgreaterinclinicalpracticethanunderidealstudysettings.ClinNucl
Med.2013Mar;38(3):175-82.doi:10.1097/RLU.0b013e318279ffdf.PMID23354032[PubMed-inprocess].
1108
1109
Liu C, Pierce LA, Alessio AM, Kinahan PE. The impact of respiratory motion on tumor quantification and
delineationinstaticPET/CTimaging.PhysMedBiol54(24):7345-7362,2009.PMID:19926910.
1110
1111
1112
LockhartCM,MacDonaldLR,AlessioAM,McDougaldWA,DootRK,KinahanPE.Quantifyingandreducing
theeffectofcalibrationerroronvariabilityofPET/CTstandardizeduptakevaluemeasurements.JNuclMed
52(2):218-224,2011.PMID:21233174.
1113
1114
LodgeM,Wahl,R.CharacterizingtherepeatabilityofoncologyPETstandardizeduptakevalues.JNuclMed
54(2):335,2013.
1115
1116
1117
MawlawiO,ErasmusJJ,MundenRF,PanT,KnightAE,MacapinlacHA,PodoloffDA,ChasenM.Quantifying
theeffectofIVcontrastmediaonintegratedPET/CT:clinicalevaluation.AJRAmJRoentgenol186(2):308319,2006.PMID:16423932.
1118
1119
1120
Minn H, Zasadny KR, Quint LE, Wahl RL. Lung cancer: reproducibility of quantitative measurements for
evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 196(1):167-173, 1995. PMID:
7784562.
1121
1122
NahmiasC,WahlLM.Reproducibilityofstandardizeduptakevaluemeasurementsdeterminedby18F-FDG
PETinmalignanttumors.JNuclMed49(11):1804-1808,2008.PMID:18927325.
1123
1124
1125
Nakamoto Y, Zasadny KR, MinnH, Wahl RL. Reproducibility ofcommonsemi-quantitative parameters for
evaluating lung cancer glucose metabolism with positron emission tomography using 2-deoxy-2[18F]fluoro-D-glucose.MolImagingBiol4(2):171-178,2002.PMID:14537140.
1126
1127
1128
NestleU,KrempS,Schaefer-SchulerA,Sebastian-WelschC,HellwigD,RubeC,KirschCM.Comparisonof
different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in
radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46(8):1342-1348, 2005. PMID:
Copyright©2016:RSNA
Page:50
1129
16085592.
1130
1131
Subramaniam R, et al. FDG PET/CT Liver SULmean: Inter-reader agreement and impact of placement of
volumeofinterest.Radiology2012(inpress).
1132
1133
VuTT.Standardizationofbodysurfaceareacalculations.JournalofOncologyPharmacyPractice8(2-3):4954,2002.
1134
1135
1136
VelasquezLM,BoellaardR,KolliaG,HayesW,HoekstraOS,LammertsmaAA,GalbraithSM.Repeatabilityof
18F-FDGPETinamulticenterphaseIstudyofpatientswithadvancedgastrointestinalmalignancies.JNucl
Med50(10):1646-1654,2009.PMID:19759105.
1137
1138
Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET
responsecriteriainsolidtumors.JNuclMed50Suppl1:122S-150S,2009.PMID:19403881.
1139
1140
Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic
measurementsinmalignanttumorsusingFDGPET.JNuclMed40(11):1771-1777,1999.PMID:10565769.
1141
WeberWA.Assessingtumorresponsetotherapy.JNuclMed50Suppl1:1S-10S,2009.PMID:19380403.
1142
1143
1144
1145
Weber,WA,CAGatsonis,PDMozley,LGHanna,AFShields,DRAberle,RGovindan,DATorigian,JSKarp,JQ
Yu,RMSubramaniam,RAHalvorsen,BASiegel,6678ResearchteamACRIN,andResearchteamMK-0646008.“Repeatabilityof18f-FdgPET/CTinAdvancedNon-SmallCellLungCancer:ProspectiveAssessmentin2
MulticenterTrials.”JNuclMed56,no.8(2015):1137–43.
1146
1147
1148
1149
YoungH,BaumR,CremeriusU,HerholzK,HoekstraO,LammertsmaAA,PruimJ,PriceP.Measurementof
clinicalandsubclinicaltumourresponseusing[18F]-fluorodeoxyglucoseandpositronemissiontomography:
reviewand1999EORTCrecommendations.EuropeanOrganizationforResearchandTreatmentofCancer
(EORTC)PETStudyGroup.EurJCancer35(13):1773-1782,1999.PMID:10673991.
1150
1151
Appendices
1152
AppendixA:AcknowledgementsandAttributions
1153
1154
1155
1156
1157
1158
1159
1160
This document is proffered by the Radiological Society of North America (RSNA) Quantitative Imaging
Biomarker Alliance (QIBA) FDG-PET/CT Biomarker Committee. The FDG-PET/CT Biomarker Committee is
composed of physicians, scientists, engineers and statisticians representing the imaging device
manufacturers, image analysis software developers, image analysis facilities and laboratories,
biopharmaceutical companies, academic institutions, government research organizations, professional
societies, and regulatory agencies, among others. A more detailed description of the QIBA FDG-PET/CT
groupanditsworkcanbefoundatthefollowingweblink:http://qibawiki.rsna.org/index.php?title=FDGPET_tech_ctte
1161
1162
ThefollowingweremembersoftheQIBAFDG-PET/CTBiomarkerCommitteeduringthewritingofthis
Profile(inalphabeticalorder):
1163
QIBAFDG-PETBiomarkerCommittee(inalphabeticalorder)
PaulE.Kinahan,PhD(Co-Chair)
UniversityofWashington
Copyright©2016:RSNA
Page:51
LingX.Shao,PhD(Co-Chair)
PhilipsHealthcare
RichardL.Wahl,MD,FACR(Co-Chair)
JohnsHopkinsUniversity
KeithAllberg
RadQual,LLC
RamseyD.Badawi,PhD
UniversityofCalifornia,Davis
StellaM.Batalles,MD
InstitutoCardiovasculardeRosario
RichardBaumgartner,PhD
MerckResearchLaboratories
BernardBendriem,PhD
SiemensMedicalSolutionsUSA
RonaldBoellaard,PhD
VUMedicalCenter,Amsterdam,NL
JohnBuatti,MD
UniversityofIowa
ChrisBuckle,MD
UniversityofChicago
AndrewJ.Buckler,MS
ElucidBioimagingInc.
JaniceCampbell,PhD
Wm.BeaumontHospital
PaulL.Carson,PhD
UniversityofMichiganHealthSystem
MichaelE.Casey,PhD
Siemens
SungChang,PhD
Amgen
SandraChica,MD
Novartis
PaulE.Christian
UniversityofUtah/SNMMIQIBARepresentative
DavidA.Clunie,MBBS
PixelMed
DanielCoiro
DelfinImagem
PatriciaE.Cole,MD,PhD
EliLillyandCompany
PeterDavidCorr,MD
UAEUniversity
BarbaraCroft,PhD
DukeUniversity
ShivaK.Das,PhD
DukeUniversity
SimonDeBruin,MSEE
SegamiCorporation
ToddDeckard,MSEE
VitalImages,Inc.
JonDeVries,MBA
MergeHealthcare
RobertK.Doot,PhD
UniversityofPennsylvania
GaryS.Dorfman,MD
WeillCornellMedicalCollege
VinayA.Duddalwar,MD,FRCR
USC/NorrisComprehensiveCancerCenter
RichardM.Eaton,JD
MedicalImaging&TechnologyAlliance(MITA)
EdwardA.Eikman,MD
MoffittCancerCenter
BrianElston
WashingtonUniversity
RichardA.Frank,MD,PhD,FFPM
GEHealthcare
KirkFrey,MD,PhD
UniversityofMichigan
DanielGagnon,PhD
Toshiba
SusanGalbraith,PhD
Astrazeneca
ConstantineGatsonis,PhD
BrownUniversity
IgorD.Grachev,MD,PhD
GEHealthcare
MichaelGraham,PhD,MD
UniversityofIowa
DonaldP.Harrington,MA,MD
StateUniversityofNewYork
MarkusT.Harz,PhD
FraunhoferMEVIS,InstforMedicalImageComputing
HowardHigley,PhD
CCSAssociates,Inc.
OttoHoekstra,MD
VUMedicalCenter,Amsterdam,NL
JohnM.Hoffman,MD
UniversityofUtah
BlaineC.Horvath,RT
BioClinica,Inc.
Copyright©2016:RSNA
Page:52
WilliamHowe,MD,PhD
SiemensMedicalSolutionsUSA
YuyingC.Hwang,PhD
Amgen
ToddJohnson,MS
VitalImages,Inc.
LisaR.Karam,PhD
NIST
GaryJ.Kelloff,MD
CancerImagingProgram,NCI
RobertKoeppe,PhD
UniversityofMichigan
SteveKohlmyer
GEHealthcare
Feng-Ming(Spring)Kong,MD,PhD
UniversityofMichigan
MartinA.Lodge,PhD
JohnsHopkinsUniversity
Lawrence(Larry)R.MacDonald,PhD
UniversityofWashington
MarianneMaffoni
TeraRecon,Inc.
PiotrManiawski
PhilipsHealthcare
PaulMarsden,MD
King'sCollegeLondon
TimothyJ.McCarthy,PhD
Pfizer
Alexander(Sandy)McEwan,MB
SNMMI
ColinG.Miller,PhD
BioClinica,Inc.
MatthewP.Miller,PhD
GEHealthcare
MichaelA.Miller,PhD
IndianaUniversity
NeruMunshi,PhD
PAREXELInternational
DennisNelson,PhD
MIMvistaCorp.
SarahJ.Nelson,PhD
UniversityofCalifornia,SanFrancisco
ChuckNortmann
PhilipsHealthcare
MiguelH.Pampaloni,MD
UniversityofCaliforniaSanFrancisco
AnshumanPanda,PhD
MayoClinic
Seong-HoonPark,MD
WonkwangUniversitySchoolofMedicine
SoniaH.Pearson-White,PhD
TheBiomarkersConsortium,FNIH
EricS.Perlman,MD
PerlmanAdvisoryGroup
LarryAlanPierce,PhD
UniversityofWashington
LucyPike,PhD
King'sCollegeLondon
WolfS.Richter
Pharmtrace
ChristinaL.Sammet,PhD
NorthwesternUniversity
SteffenSammet,MD,PhD
UniversityofChicago
SubhendraN.Sarkar,PhD,RT
BethIsraelDeaconessHospital
AnnetteSchmid,PhD
PAREXELInternational
LalithaShankar,MD,PhD
NIH
BarryA.Siegel,MD
WashingtonUniversityinSt.Louis
DebiSimone
GEHealthcare
AnandK.Singh,MD
Harvard-MassachusettsGeneralHospital
AnneM.Smith,PhD
SiemensMedicalSolutionsUSA,Inc.
JuergenSoldner
SiemensMedicalSolutionsUSA,Inc.
RathanSubramaniam,MD,PhD
JohnsHopkinsUniversity
DanielC.Sullivan,MD
DukeUniversity
JohnJ.Sunderland,PhD
UniversityofIowa
FukHayTang,PhD
HongKongPolytechnicUniversity
UkihideTateishi,MD,PhD
YokohamaCityUniversityGraduateSchoolofMedicine
Copyright©2016:RSNA
Page:53
ValerieTreyer,PhD
Consultant,Neuroscientist
TimothyG.Turkington,PhD
DukeUniversity
RonaldVanHeertum,MD
BioClinica,Inc.
MattVanderhoek,PhD
HenryFordHospital
RonaldVanHeertum,MD
BioClinica,Inc.
EtienneVonLavante,D.Phil
MiradaMedical
WenliWang,PhD
Toshiba
WolfgangWeber,MD
MemorialSloan-KetteringCancerCenter
RalphWickenhoefer,MD
CentralHospitalGermanArmedForces
ScottD.Wollenweber,PhD
GEHealthcare
JohnG.Wolodzko,PhD
BioClinica,Inc.
RoxanneYaghoubi
AcademyofRadiologyResearch
JeffreyT.Yap,PhD
Harvard-DanaFarberCancerInstitute
BrendaYe,MD
FDA
TerryS.Yoo,PhD
CDER
Kwon-HaYoon,MD,PhD
WonkwangUniversity
HelenYoung,PhD
AstraZeneca
T.C.Zhao,PhD
TeraRecon,Inc.
BrianE.Zimmerman,PhD
NIST
1164
1165
1166
TheFDG-PET/CTBiomarkerCommitteeisdeeplygratefulforthesupportandtechnicalassistanceprovided
bythestaffoftheRadiologicalSocietyofNorthAmerica.
1167
1168
AppendixB:BackgroundInformationforClaim
1169
1170
1171
1172
A number of publications report test-retest repeatability for tumor SUV measurements with FDG PET
[1,2,3,4,5,6,7,8,9]. Table 1 lists these publications and summarizes some of their results. Comparing
repeatability measurements from the various reports is complicated by the different methodologies
employedineachstudyandalsothedifferentmetricsusedtocharacterizerepeatability.
1173
1174
1175
1176
1177
Table 1. Selected repeatability parameters extracted from literature publications. Where multiple SUV
types were reported, preference was given to SUVmax as this SUV definition was more comparable
between studies. The column marked ‘Inferred wCV’ is an estimate of the within-subject coefficient of
variationbaseduponthereportedparametersandmaynotappearintheoriginalmanuscripts.Detailsof
howtheseInferredwCVvalueswerederivedaredescribedinthetextandinTable2.
Copyright©2016:RSNA
Page:54
1178
1179
1180
1181
1182
1183
1184
1185
Theregion-of-interest(ROI)orvolume-of-interest(VOI)methodologyvariedbetweenpublications.Minnet
al [1] report SUVmean derived from a fixed size 1.2 × 1.2 cm region-of-interest. Weber et al [2] report
SUVmean derived from a volume-of-interest defined by a 50% isocontour. The remaining papers report
SUVmax,althoughdataformultipleROIdefinitionsweresometimesreported.BecauseSUVmaxwasmore
commonlyreportedamongsttheserepeatabilitypapersandwasmorecomparablebetweenstudies,table
1focusedprimarilyonSUVmax.
1186
1187
1188
1189
1190
1191
1192
Nahmias and Wahl [5] report SUVmax but, unlike the other publications, they present their results in
absoluteSUVunits,asopposedtorelativeunits.Directcomparisonwiththeotherreportswastherefore
not possible. Kamibayashi et al [6] compared the repeatability of SUVs measured on different scanner
systems, whereas the other reports involve test-retest studies on the same scanner. For this reason the
Kamibayashi data were also not directly comparable with the other papers. The remaining publications
[3,4,7,8,10]areamenabletomoredirectcomparisonastheyallreporttherepeatabilityofSUVmax,with
testandreteststudiesbothperformedonthesamescannersystem.
1193
1194
1195
1196
Afurthercomplicationwhencomparingreportsisthedifferentmetricsusedtocharacterizerepeatability.
Intable1wetranslatethereportedrepeatabilitymeasurementstoawithin-subjectcoefficientofvariation
(wCOV)toallowamoredirectcomparison.Basedonthedatainthelast5rowsoftable1[3,4,7,8,10],it
canbeseenthatthewithinsubjectcoefficientofvariationforSUVmaxwasintherange10.0–12.0%.
1197
1198
Table 2 summarizes the relationships that were involved in converting the published repeatability
parameterstowithin-subjectcoefficientofvariation.
1199
1200
Table2.Relationshipsusedtocomparerepeatabilitymetricsfoundintheliterature.
Copyright©2016:RSNA
Page:55
1201
1202
1203
1204
1205
1206
1207
1208
Oneassumptionthatwasmadeduringtheseconversionswasthatthepercentagedifference(D)between
test-retestSUVmeasurementswasnormallydistributedwithzeromean.Whilethisassumptionmaynotbe
strictly applicable over a wide range of SUVs, it is an assumption that is implicitly being made whenever
95%limitsofrepeatabilityareemployed[7,8].Applyingthissameassumptiontothestudiesthatreportthe
mean absolute percentage difference (D_MAD) allows their results to be simply related to the other
publicationsthatreportthestandarddeviationbyD_MAD=sqrt(2/pi)D_SD,asshownbelow.
1
D_MAD =
σ 2π
=
let r =
2
σ 2π
∞
∫
x−µ e
−
( x− µ )2
2σ 2
dx
−∞
∞
∫ ( x − µ)e
−
x− µ 2
2σ 2
dx
0
( x − µ )2 , and dr = ( x − µ ) dx, and limits are unchanged x=∞
2σ 2
σ2
∫
x=0
r=∞
→
∫
r=0
then,
∞
D_MAD =
2
2 −r 0
2
2
σ ∫ e− r dr =
σe ∞=
σ [1− 0 ] =
σ ! 0.80σ
π 0
π
π
π
1209
1210
References
1211
1212
1 MinnH,ZasadnyKR,QuintLE,WahlRL.Lungcancer:reproducibilityofquantitativemeasurementsfor
evaluating2-[F-18]-fluoro-2-deoxy-D-glucoseuptakeatPET.Radiology,196,1(1995),167-173.
1213
1214
2 Weber WA, Ziegler SI, Thodtmann R, Hanauske A-R, Schwaiger M. Reproducibility of metabolic
measurementsinmalignanttumorsusingFDGPET.JNuclMed,40,11(1999),1771-1777.
1215
1216
1217
3 Nakamoto Y, Zasadny KR, Minn H, Wahl RL. Reproducibility of common semi-quantitative parameters
for evaluating lung cancer glucose metabolism with positron emission tomography using 2-deoxy-2[18F]fluoro-D-glucose.MolImagingBiol,4(2002),171-178.
Copyright©2016:RSNA
Page:56
1218
1219
1220
4 KrakNC,BoellaardR,HoekstraOS,TwiskJWR,HoekstraCJ,LammertsmaAA.EffectsofROIdefinition
and reconstruction method on quantitative outcome and applicability in a response monitoring trial.
EurJNuclMedMolImaging,32,3(2005),294-301.
1221
1222
5 NahmiasC,WahlLM.Reproducibilityofstandardizeduptakevaluemeasurementsdeterminedby18FFDGPETinmalignanttumors.JNuclMed,49,11(2008),1804-1808.
1223
1224
1225
6 KamibayashiT,TsuchidaT,DemuraY,etal.Reproducibilityofsemi-quantitativeparametersinFDG-PET
usingtwodifferentPETscanners:influenceofattenuationcorrectionmethodandexaminationinterval.
MolImagingBiol,10(2008),162-166.
1226
1227
7 VelasquezLM,BoellaardR,KolliaG,etal.Repeatabilityof18F-FDGPETinamulticenterphase1study
ofpatientswithadvancedgastrointestinalmalignancies.JNuclMed,50,10(2009),1646-1654.
1228
1229
1230
8 HattM,Cheze-LeRestC,AboagyeEO,KennyLM,RossoL,TurkheimerFE,AlbarghachNM,MetgesJP,
Pradier O, Visvikis D. Reproducibility of 18F-FDG and 3'-deoxy-3'-18F-fluorothymidine PET tumor
volumemeasurements.JNuclMed.,51(2010),1368-1376.
1231
1232
1233
9 Kumar V, Nath K, Berman CG, Kim J, Tanvetyanon T, Chiappori AA, Gatenby RA, Gillies RJ,EikmanEA.
VarianceofSUVsforFDG-PET/CTisgreaterinclinicalpracticethanunderidealstudysettings.ClinNucl
Med.2013Mar;38(3):175-82.PMID23354032
1234
1235
1236
1237
10 Weber,WA,CAGatsonis,PDMozley,LGHanna,AFShields,DRAberle,RGovindan,DATorigian,JSKarp,
JQYu,RMSubramaniam,RAHalvorsen,BASiegel,6678ResearchteamACRIN,andResearchteamMK0646-008. “Repeatability of 18f-Fdg PET/CT in Advanced Non-Small Cell Lung Cancer: Prospective
Assessmentin2MulticenterTrials.”JNuclMed56,no.8(2015):1137–43.
1238
1239
11.Bland,JMandDGAltman.“MeasurementErrorProportionaltotheMean.”BMJ313,no.7049(1996):
106.
1240
1241
AppendixC:ConventionsandDefinitions
1242
ConventionUsedtoRepresentProfilerequirements
1243
1244
1245
1246
Requirements for adhering to this Profile are presented in tables/boxes as shown in the example below.
Shaded boxes are intended future requirements, and are not at this time required for adhering to the
Profile.Boldtextisusedforrequirementsthatareformattedaschecklists,whichareprovidedinAppendix
I.Theformatusedisthefollowing:
Parameter
Entity/Actor Specification
Normativetext:Clearboxesarecurrentrequirements
Shadedboxesareintendedforfuturerequirements
Boldtextindicatesrequirementsincludedinchecklists(AppendixI)
1247
1248
1249
Itemswithintablesarenormative(i.e.arerequiredinordertobecompliantwiththeQIBAprotocol).The
intentofthenormativetextistobeprescriptiveanddetailedtofacilitateimplementation.Ingeneralthe
Copyright©2016:RSNA
Page:57
1250
intentistospecifythefinalstateoroutput,andnothowthatistobeachieved.
1251
Allothertextoutsideofthesetablesisconsideredinformativeonly.
1252
Acondensedtablefromsection3.2.1.2‘SubjectPositioning’isreproducedbelowasanillustrativeexample.
1253
Parameter
Entity/Actor
Specification
Respiratory
motion
minimization
Technologist
IfthepatientisobservedtotakeadeepbreathduringtheCTscan
itshouldbedocumentedandarepeatCTstudyshouldbe
considered.
Respiratory
motion
minimization
PET/CT
Scanner
ThePET/CTscannershallprovidemethodstominimizethePET
imageerrorsintroducedbyrespiratorymotion.
Breathingand
motionnonconformance
TheTechnologistshalldocumentissuesregardingsubjectnonconformancewithbreathingandmotion.
Technologist TheTechnologistshalldocumentissuesregardingsubjectnonconformancewithbreathingandmotionusingthecommondata
formatmechanism(AppendixE).
1254
1255
1256
Definitions
1257
1258
1259
18F-FDGorFDG:2-deoxy-2-(18F)fluoro-D-glucose,aglucoseanalog,withthepositron-emittingradioactive
isotopefluorine-18substitutedforthenormalhydroxylgroupatthe2'positionintheglucosemolecule.
FDGisthemostcommonlyused(>90%)radiotracerinPETimaging.
1260
1261
Accreditation: Approval by an independent body or group for broad clinical usage (requires ongoing
QA/QC)e.g.ACR,IAC,TJC(listedbelow).
1262
1263
1264
1265
1266
1267
AC:AttenuationCorrection.Attenuationisaaneffectthatoccurswhenphotonsemittedbytheradiotracer
insidethebodyareabsorbedbyinterveningtissue.Theresultisthatstructuresdeepinthebodyare
reconstructed as having falsely low (or even negative) tracer uptake. Contemporary PET/CT scanners
estimate attenuation using integrated x-ray CT equipment. While attenuation-corrected images are
generallyfaithfulrepresentationsofradiotracerdistribution,thecorrectionprocessisitselfsusceptible
tosignificantartifacts.
1268
1269
Conformance:Meetingthelistofrequirementsdescribedinthisdocument,whicharenecessarytomeet
themeasurementclaimsforthisQIBAProfile.
1270
1271
1272
1273
CRF:CaseReportForm(CRF)isapaperorelectronicquestionnairespecificallyusedinclinicaltrialresearch.
TheCRFisusedbythesponsoroftheclinicaltrial(ordesignatedCROetc.)tocollectdatafromeach
participatingsite.Alldataoneachpatientparticipatinginaclinicaltrialareheldand/ordocumentedin
theCRF,includingadverseevents.
1274
1275
CT: X-ray computed tomography (CT) is a medical imaging technique that utilizes X-rays to produce
tomographicimagesoftherelativex-rayabsorption,whichiscloselylinkedtotissuedensity.
Copyright©2016:RSNA
Page:58
1276
1277
1278
DICOM:DigitalImagingandCommunicationsinMedicine(DICOM)isasetofstandardsformedicalimages
andrelatedinformation.Itdefinesformatsformedicalimagesthatcanbeexchangedinamannerthat
preservesthedataandqualitynecessaryforclinicaluse.
1279
1280
Dose:Canrefertoeitherradiationdoseorasajargontermfor'totalradioactivity'.Forexample,10mCIof
18F-FDGisoftenreferredtoasa10mCidose.
1281
FDG:See18F-FDG.
1282
1283
1284
LBM:LeanBodyMassiscalculatedbysubtractingbodyfatweightfromtotalbodyweight.TheLeanbody
mass(LBM)hasbeendescribedasanindexsuperiortototalbodyweightforprescribingproperlevels
ofmedicationsandforassessingmetabolicdisorders.
1285
1286
mCi: millicuries. A non-SI unit of radioactivity, defined as 1 mCi = 3.7 × 10^7 decays per second. Clinical
FDG-PETstudiesinject(typically)5to15mCiof18F-FDG.
1287
MBq:megabequerel.AnSI-derivedunitofradioactivitydefinedas1.0×10^6decayspersecond.
1288
1289
1290
Metabolic Response / Metabolic Disease. A classification based on the visible level of FDG uptake
associated with malignant solid tumors. There are several specific classifications depending on the
criteriaused:
1291
1292
•
CMR: Complete Metabolic Response. A complete resolution of FDG-PET uptake within the tumor
volumesothatitisindistinguishablefromthesurroundingnormaltissue.
1293
1294
1295
•
PMR: Partial Metabolic Response. A reduction in FDG uptake. The thresholds used for this
determination depend on the criteria used. Two such criteria are the EORTC [Young, 1999] and
PERCIST[Wahl,2009]proposals.
1296
•
PMD:ProgressiveMetabolicDisease.AnincreaseinFDGuptakerelativetoapredefinedthreshold.
1297
•
SMD:StableMetabolicDisease.NochangeinFDGuptakerelativetopredefinedthresholds.
1298
1299
1300
PERCIST: PET Response Criteria for Solid Tumors [Wahl, 2009]. A framework proposed for using FDG-PET
imagingasacancertherapyresponsecriteriaforsolidtumors.Proposedasamoreaccuratealternative
toRECISTforseveraltypesofsolidtumors.
1301
1302
PET: Positron emission tomography (PET) is a tomographic imaging technique that produces an image of
theinvivodistributionofaradiotracer,typicallyFDG.
1303
1304
1305
1306
PET/CT:Positronemissiontomography/computedtomography(PET/CT)isamedicalimagingsystemthat
combinesinasinglegantrysystembothPositronEmissionTomography(PET)andanx-rayComputed
Tomography (CT) scanners, so that images acquired from both devices can be taken nearlysimultaneously.
1307
1308
Profile: A QIBA Profile is a document that describes a specific performance Claim and how it can be
achieved.AProfileconsistsofoneormoreClaimsandassociatedDetails.
1309
•
Claims:tellauserwhatcanbeaccomplishedbyfollowingtheProfile.
1310
1311
•
Details:tellavendorwhatmustbeimplementedintheirproduct;andtellauserwhatprocedures
arenecessary.
1312
1313
1314
QA: Quality Assurance. Proactive definition of the process or procedures for task performance. The
maintenanceofadesiredlevelofqualityinaserviceorproduct,esp.bymeansofattentiontoevery
stageoftheprocessofdeliveryorproduction.
Copyright©2016:RSNA
Page:59
1315
1316
QC: Quality Control. Specific tests performed to ensure target requirements of QA program are met.
Typicallybytestingasampleoftheoutputagainstthespecification.
1317
1318
1319
Qualification: Approved by an independent body or group for either general participation in clinical
research (ACRIN-CQIE , SNM-CTN others) or for a specific clinical trial (requires ongoing QA/QC). This
includesCROs,ACRIN,SNM-CTN,CALGBandothercorelaboratories.
1320
1321
1322
RECIST: Response Evaluation Criteria in Solid Tumors (RECIST). A set of published rules that define when
cancer patients improve ("respond"), stay the same ("stabilize"), or worsen ("progression") during
treatments.Basedonanatomicalsizechangesofsolidtumors.Commonlyusedbutalsocontroversial.
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
ROI:Regionofinterest.Aregioninanimagethatisspecifiedinsomemanner,typicallywithuser-controlled
graphicalelementsthatcanbeeither2Dareasor3Dvolumes.Theseelementsinclude,butnotlimited
to, ellipses, ellipsoids, rectangles, rectangular volumes, circles, cylinders, polygons, and free-form
shapes. An ROI can also be defined by a segmentation algorithm that operates on the image.
Segmentation algorithms include, but are not limited to, fixed-value thresholding, fixed-percentage
thresholding,gradientedgedetection,andBayesianmethods.WiththedefinitionofanROI,metricsare
then calculated for the portion of the image within the ROI. These metrics can include, but are not
limitedto,mean,maximum,standarddeviation,andvolumeorarea.NotethatthetermROIcanrefer
toa2Dareaonasingleimagesliceora3Dvolume.Insomecases,thetermROIisusedtoreferto2D
areaandthetermvolumeofinterest(VOI)isusedtorefertoa3Dvolume.InthisProfilethetermROIis
usedtorefertoboth2Dareasand3Dvolumesasneeded.
1334
1335
1336
1337
1338
SUV: Standardized uptake value. A measure of relative radiotracer uptake within the body. Typically
definedforatimepointtasSUV(t)=r(t)/(d’/V),wherer(t)isthemeasuredradioactivityconcentration
withintheROI(typicallyinunitsofkBq/ml),d’isthedecay-correctedinjectedradioactivity(or'dose'),
andVisasurrogateforthedistributionvolume.Typically,patientweightorleanbodymassareused
forV.
1339
Notes:
1340
1. TheSUVcanchangeovertime,someasuringr(t) ataconsistenttimepointisrecommended.
1341
1342
2. Eitherbodyweightorleanbodymassareusedforasurrogateforthedistributionvolume,sothe
SUVunitsareg/ml(Section3.4.3)
1343
3. Forauniformdistributionofradiotracer,theSUVeverywherewouldbeexactly1g/ml.
1344
4. ThemeasuredSUVstatisticistypicallyoneofthefollowing:
1345
i.
SUVmean:TheaverageSUVwithintheROI.
1346
ii. SUVmax:ThemaximumSUVwithintheROI.
1347
1348
iii. SUVpeak: The average SUV within a fixed-sized ROI, typically a 1 cm diameter sphere. The
sphereslocationisadjustedsuchthattheaverageSUVismaximized.
1349
iv. TLG:Totallesionglycolysis.ThesummedSUVwithintheROI.
1350
1351
TOF:TimeofFlight(TOF)isaPETimagingtechniqueutilizingdifferentialannihilationphotontraveltimes
tomoreaccuratelylocalizetheinvivodistributionofaradiotracer.
1352
1353
1354
UPICT:UniformProtocolsForImaginginClinicalTrials(UPICT).ARSNA-QIBAinitiativethatseekstoprovide
alibraryofannotatedprotocolsthatsupportclinicaltrialswithininstitutions,cooperativegroups,and
trials consortia. The UPICT protocols are based on consensus standards that meet a minimum set of
Copyright©2016:RSNA
Page:60
1355
criteriatoensureimagingdataquality.
1356
VOI:Volumeofinterest.SeedefinitionforROI.
1357
1358
Organizations
1359
1360
1361
AAPM:TheAmericanAssociationofPhysicistsinMedicineisamembersocietyconcernedwiththetopics
of medical physics, radiation oncology, imaging physics. The AAPM is a scientific, educational, and
professionalorganizationofover8,000medicalphysicists.
1362
1363
ACR:The36,000membersof|includeradiologists,radiationoncologists,medicalphysicists,interventional
radiologists,nuclearmedicinephysiciansandalliedhealthprofessionals.
1364
1365
1366
ACRIN:TheAmericanCollegeofRadiologyImagingNetwork(ACRIN)isaprogramoftheAmericanCollege
of Radiology and a National Cancer Institute cooperative group. Focused on cancer-related research in
clinicaltrials.
1367
1368
CLIA: Clinical Laboratory Improvement Amendments: Accreditation system for establishing quality
standardsforlaboratorytesting.
1369
1370
1371
1372
1373
CQIE:TheCentersofQuantitativeImagingExcellence(CQIE)programwasdevelopedbyACRINinresponse
toasolicitationforproposalsissuedinDecember2009bySAIC-FrederickonbehalfoftheNationalCancer
Institute (NCI). The primary objective of the CQIE Program is to establish a resource of ‘trial ready’ sites
within the NCI Cancer Centers Program that are capable of conducting clinical trials in which there is an
integralmolecularand/orfunctionaladvancedimagingendpoint.
1374
1375
1376
1377
1378
1379
1380
1381
1382
CRO:ContractResearchOrganizationAcommercialornot-for-profitorganizationdesignatedtoperforma
centralizedandstandardizedcollection,analysis,and/orreviewofthedatageneratedduringaclinicaltrial.
Additionalactivitieswhichmaybeperformedbyanimagingcorelabincludetrainingandqualificationof
imaging centers for the specific imaging required in a clinical trial, development of imaging acquisition
manuals, development of independent imaging review charters, centralized collection and archiving of
imagesreceivedfromstudysites,performingpre-specifiedqualitycontrolchecks/testsonincomingimages
and development and implementation of quality assurance processes and procedures to ensure that
imagessubmittedareinaccordwithimagingtimepointsspecifiedinthestudyprotocolandconsistentwith
thequalityrequiredtoallowtheprotocol-specifiedanalysis/assessments
1383
1384
CTN: The Clinical Trials Network (CTN) was formed by SNMMI in 2008 to facilitate the effective use of
molecularimagingbiomarkersinclinicaltrials.
1385
1386
EANM: The European Association of Nuclear Medicine (EANM) constitutes the European umbrella
organizationofnuclearmedicineinEurope
1387
1388
EARL:EANMResearchLtd(EARL)wasformedbyEANMin2006topromotemulticentrenuclearmedicine
andresearch.
1389
1390
ECOG-ACRIN:ANationalCancerInstitutecooperativegroupformedfromthe2012mergeroftheEastern
CooperativeOncologyGroup(ECOG)andtheAmericanCollegeofRadiologyImagingNetwork(ACRIN).
1391
1392
1393
EORTC:TheEuropeanOrganizationforResearchandTreatmentofCancerorEORTCisaninternationalnonprofit organization that develops, coordinates, and stimulates cancer laboratory and clinical research in
Europe.
1394
EMA: European Medicines Agency is a European Union agency for the evaluation of medicinal products.
Copyright©2016:RSNA
Page:61
1395
RoughlyparalleltotheU.S.FoodandDrugAdministration(FDA),butwithoutFDA-stylecentralization.
1396
1397
1398
1399
FDA: Food and Drug Administration is responsible for protecting and promoting public health in the U.S.
throughtheregulationandsupervisionoffoodsafety,tobaccoproducts,dietarysupplements,prescription
and over-the-counter pharmaceutical medications, vaccines, biopharmaceuticals, blood transfusions,
medicaldevices,electromagneticradiationemittingdevices,andveterinaryproducts.
1400
1401
IAC:TheIntersocietalAccreditationCommission(IAC)providesaccreditationprogramsforVascularTesting,
Echocardiography,Nuclear/PET,MRI,CT/Dental,CarotidStentingandVeinCenter.
1402
1403
1404
1405
MITA: The Medical Imaging & Technology Alliance is a division NEMA that develops and promotes
standardsformedicalimagingandradiationtherapyequipment.Thesestandardsarevoluntaryguidelines
thatestablishcommonlyacceptedmethodsofdesign,production,testingandcommunicationforimaging
andcancertreatmentproducts.
1406
1407
1408
1409
NCRI: National Cancer Research Institute. The National Cancer Research Institute (NCRI) is a UK-wide
partnership between the government, charity and industry which promotes co-operation in cancer
research among the 22 member organizations for the benefit of patients, the public and the scientific
community.
1410
1411
NEMA:NationalElectricalManufacturersAssociationisaforumforthedevelopmentoftechnicalstandards
byelectricalequipmentmanufacturers.
1412
1413
NIST: National Institute of Standards and Technology is a measurement standards laboratory which is a
non-regulatoryagencyoftheUnitedStatesDepartmentofCommerce.
1414
1415
1416
QIBA:QuantitativeImagingBiomarkersAlliance.TheQuantitativeImagingBiomarkersAlliance(QIBA)was
organizedbyRSNAin2007touniteresearchers,healthcareprofessionalsandindustrystakeholdersinthe
advancementofquantitativeimagingandtheuseofbiomarkersinclinicaltrialsandpractice.
1417
1418
1419
RSNA:RadiologicalSocietyofNorthAmerica(RSNA).Aprofessionalmedicalimagingsocietywithmorethan
47,000members,includingradiologists,radiationoncologists,medicalphysicistsandalliedscientists.The
RSNAhoststheworld’slargestannualmedicalmeeting.
1420
1421
1422
1423
1424
SNMMI: Society of Nuclear Medicine and Molecular Imaging (formerly called the Society of Nuclear
Medicine (SNM)). A nonprofit scientific and professional organization that promotes the science,
technologyandpracticalapplicationofnuclearmedicineandmolecularimaging.SNMMIrepresents18,000
nuclear and molecular imaging professionals worldwide. Members include physicians, technologists,
physicists,pharmacists,scientists,laboratoryprofessionalsandmore
1425
1426
TJC: The Joint Commission (TJC) accredits and certifies health care organizations and programs in the
UnitedStates.
1427
1428
USP: United States Pharmacopeial Convention establishes written and physical (reference) standards for
medicines,foodingredients,dietarysupplementproductsandingredientsintheU.S.
1429
1430
AppendixD:Model-specificInstructionsandParameters
1431
1432
1433
1434
Thepresenceofspecificproductmodels/versionsinthefollowingtablesshouldnotbetakentoimplythat
those products are fully compliant with the QIBA Profile. Conformance with a Profile involves meeting a
varietyofrequirementsofwhichoperatingbytheseparametersisjustone.Todetermineifaproduct(and
aspecificmodel/versionofthatproduct)iscompliant,pleaserefertotheQIBAConformanceDocumentfor
Copyright©2016:RSNA
Page:62
1435
thatproduct.
1436
D.1.ImageAcquisitionParameters
1437
1438
The following technique tables list acquisition parameter values for specific models/versions that can be
expectedtoproducedatameetingtherequirementsofSection3.6.4('PhantomImaging').
1439
1440
1441
Thesetechniquetablesmayhavebeenpreparedbythesubmitterofthisimagingprotocoldocument,the
clinical trial organizer, the vendor of the equipment, and/or some other source. (Consequently, a given
model/versionmayappearinmorethanonetable.)Thesourceislistedatthetopofeachtable.
1442
1443
1444
1445
1446
Sitesusingmodelslistedhereareencouragedtoconsiderusingtheseparametersforbothsimplicityand
consistency.Sitesusingmodelsnotlistedheremaybeabletodevisetheirownacquisitionparametersthat
resultindatameetingtherequirementsofSection3.6.4andconformtotheconsiderationsinSection4.In
somecases,parametersetsmaybeavailableasanelectronicfilefordirectimplementationontheimaging
platform.
1447
D.2.QualityAssuranceProcedures
1448
1449
Examples of recommend quality assurance procedures are shown for specific GE, Philips, and Siemens
PET/CTscannersinthetablesbelow.
Copyright©2016:RSNA
Page:63
1450
Copyright©2016:RSNA
PET
CT
SUV calibration
SUV validation
Uniformity check
AutoQC
Daily PET CT
Daily
Daily
Daily, prescheduled to shorten daily QC
Daily, prescheduled to shorten daily QC
Monthly
Every 6 months, after recalibration, when
SUV validation shows discrepancy
Every 2 months, when PM is performed
Daily
Energy test and analysis
Timing test
Emission sinogram collection and analysis
Automated System Initialization
Automated Baseline collection
Daily
PMT gain calibration
Advanced test as needed
Daily
Slice thickness
Daily
Advanced test as needed
Impulse Response
System Initialization
Baseline collection (analog offsets of all
photomultiplier channels)
Monthly
Daily
Frequency
Daily
Daily
Daily
Contrast scale and artifacts
Noise and Artifacts.
On body phantom
QA procedures and schedules for Philips Gemini TF, V3.3 and V3.4
Device
QA Procedure
Tube Calibration
Air Calibration
Noise. On head phantom
No warning message for calgen program
ROI average should be 1.0 (0.9 - 1.1).
Completion of program
Values within range.
visually inspect for non uniformities
Values within range. Success message
All PMTs calibrated within target gain. No
Failed message.
Energy centroids approximately 100.
FWHM < FWHM threshold.
Agreement with system timing against the
calibration settings
No artifacts. Large Acrylic pin diameter is
50 ±1 mm. All 7 resolution holes visible.
Five of the six low contrast aculon pins
detectable. Water 0±4, Nylon 100 ± 15,
Polyethylene 75 ± 15, Teflon 1016 ± 50,
Acrylic +140 ± 15, Lexan +116 ± 15
Width at 50% Max of the Impulse
Response profile should be 1.45 mm ±
0.10 mm.
Average of aluminimum strips within
tolerence of values stated in manual.
Completion of program
No artifacts. Teflon pin = 890± 50 CT
Water 0± 4 CT
No artifacts. Water 0± 4 CT
Performance Requirement
Staff
Staff, service
Staff
Staff
Staff
Staff
Staff
Staff
Staff
Staff
Physicist/service
Physicist/service
Physicist/service
Staff
Staff
Operator
Staff
Staff
Staff
Page:64
1451
Copyright©2016:RSNA
PET
CT
Acquire scans daily
Acquire scans daily
After tube replacement or as PM
Daily
Daily
Daily
Daily
Daily
Daily
Daily
Daily
Daily
Daily
Daily
Daily
Slice Thickness
Laser Light Accuracy
Weekly
Weekly
Quarterly (if appropriate for the system)
Quarterly (if appropriate for the system)
Quarterly
Quarterly
Every 18 months
Clean database
PET 2D normalization
PET 2D well counter correction
PET 3D normalization and well counter correction
Establish new DQA baseline
Ge-68 source pin replacement
Coincidence
PET coincidence mean
PET coincidence variance
Singles
PET singles mean
PET singles variance
Deadtime
PET mean deadtime
Timing
PET timing mean
Energy
PET energy shift
Acquire scans daily
Acquire scans daily
Low Contrast Detectability
Noise and Uniformity
Acquire scans daily
High Contrast Spatial Resolution
PET singles update gain
PET Daily Quality Assurance
(DQA)
Full system calibration
CT QA phantom
Acquire scans daily
Contrast Scale
QA procedures and schedules for GE Discovery ST, STE, Rx and Discovery 600/700 series PET/CT systems
Device
QA Procedure
Frequency
Computers System reboot
Daily or as needed
CT tube warm up
Daily or after 2 hours of inactivity
Air calibrations (fast cals)
Daily
Generator calibrations
Daily
Operator
Local Staff
Local Staff
Local Staff
Local Staff
The difference in CT numbers between the
Plexiglas resolution block and water = 120, Local Staff
variation 10%
The standard deviation for an ROI in the
1.6mm bar pattern should equal 37 ± 4 for Local Staff
the standard algorithm
Local Staff
CT number for water of 0 ± 3 HU for the
center ROI. The uniformity difference
between the Center ROI and the average
of the edge ROIs should be 0 ± 3 for Small Local Staff
Body (0 ± 10 maximum deviation if Large
Body is used). Noise in the center of the
image to approximately equal 4.3 ± 0.5.
Slice thickness should not vary by more
Local Staff
than ± 1mm from the expected value
Local Staff
Service
Local Staff
Local Staff
Local Staff
Local Staff
Local Staff
Local Staff
Local Staff
Local Staff
Local Staff
Local Staff
Local Staff
Local Staff
Contrast value for a 3 mm object is less
Local Staff
than 5 HU. Typical variation is ± 0.5 HU.
Local Staff
Local Staff
Local Staff
Local Staff
Local Staff
Service
Performance Requirement
N/A
N/A
Page:65
QA procedures and schedules for Siemens Biograph 6/16 Hi-Rez, Biograph 16 Truepoint, Biograph 16 Truepoint with TrueV, PET Syngo 2010A, Biograph mCT
Device
QA Procedure
Frequency
Performance Requirement
Operator
Restart computers
Daily at Startup
N/A
Staff
Clear scheduler
Daily
N/A
Staff
Computers Clear network, local, and film queues
Four times daily
N/A
Staff
Archive patient data
Daily
N/A
Staff
System cleanup/defragmentation
Weekly
N/A
Staff
CT
Daily, after 60 minutes of full load,
Checkup/Calibration
within 1 hour of patient scan
Staff
Results stated as "in tolerance"
CT
Water HU = 0 +/- 4
Water HU
Daily
Staff
CT Quality
Pixel noise
Daily
Results stated as "in tolerance"
Staff
Tube voltages
Daily
Results stated as "in tolerance"
Staff
Daily vs. standard chi-square <10,
Daily normalization
Daily
Staff
no patterns or artifacts
Computation/ verification of the PET calibration
Pass/fail comparison against
factor (ECF)
expected scanner min/mean/max Staff
Daily
Normalization results display and sinogram
No visual artifacts or unusual
PET Daily QC
inspection
patterns
Daily
Staff
System quality report
Daily
Pass/fail
Staff
PET
Partial detector setup: generate crystal region
maps/energy profiles
Weekly
Pass/fail
Staff
Full detector setup and time alignment
Quarterly
Pass/fail
Staff
Calculate the Cross Calibration Correction Factor
When Ge-68 phantoms are replaced
Staff
Scanner cross
Recalibrate the current Ge-68 phantom and ECF
When Ge-68 phantoms are replaced
Staff
calibration
Normalize and calibrate the scanner
When Ge-68 phantoms are replaced
Staff
CT
CT constancy and
Monthly as part of maintenance plan
Service
1452
Copyright©2016:RSNA
Page:66
1454
AppendixE:DataFieldstobeRecordedintheCommonDataFormat
Mechanism
1455
1456
1457
1458
1459
1460
1461
1462
Thelistbelowcomprisesmeta-information(i.e.inadditiontoimagevaluesofkBq/ml)thatisnecessaryfor
quantitativelyaccurate(i.e.knownandminimaluncertainties)ofPETSUVs.Theintenthereistolistwhat
information should be captured rather than the mechanism itself. The format and corresponding
mechanismofdatacapture/presentationiscurrentlyunspecified,butrangesfrompapernotes,toscanned
forms or electronic data records, to direct entry from the measurement equipment (i.e., the PET/CT
scanner or auxiliary measurement devices such as the dose calibrator) into pre-specified DICOM fields.
Ideally all of the specified meta-data will be captured by direct electronic entry to DICOM fields, after
suitablemodificationoftheDICOMformatforPETimaging.
1463
1464
1465
Theconceptendorsedhereisthattheneededmeta-dataisidentified.ThroughrevisionsofthisProfile,the
DICOM standard, and technology the meta-data is inserted into the analysis stream (Figure 3) in a more
directmannerandtechnologyandacceptedstandardsevolve.
1466
1467
1468
1469
1470
•
1471
Datafieldstoberecorded:
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1. Sitespecific
a. Siteinformation(includenameand/orotheridentifiers)
b. Scannermakeandmodel
c. HardwareVersionnumbers
d. SoftwareVersionnumbers
e. Confirmationthatscannerusedwaspreviouslyqualified(ornot)
2. Protocolspecific
a. PET
i. Durationperbed
ii. Bedoverlap
iii. Acquisitionmode(2Dor3D)
iv. Reconstructionmethod
b. CTtechnique
3. ScannerspecificQA/QC
a. Mostrecentcalibrationfactors(scanner)
b. Scannerdailycheckvalues
c. mostrecentclockcheck
d. mostrecentscannerQA/QC
4. Subjectexamspecific
a. Height
b. Weight
c. Fastingtimeassessment
d. Bloodglucoseconcentrationandtimeofsampling
e. Pre-andpost-injectionassayedactivitiesandtimesofassay
1453
•
The needed information, where feasible, is listed in order from least frequently changing to most
frequentlychanging.
In all cases note whether measurements are made directly or estimated. If the latter case, note the
source of information and the date and time (e.g. if subject cannot be moved from bed to measure
weightorheight).
Copyright©2016:RSNA
Page:67
1496
1497
1498
1499
f.
g.
h.
i.
Injectiontime
Siteofinjection(andassessmentofinfiltration)
Netinjectedactivity(calculatedincludingdecaycorrection)
Uptaketime
1501
AppendixF:TestingPET/CTDisplayandAnalysisSystemswiththeFDG-PET/CT
DigitalReferenceObject
1502
1503
1504
1505
1506
1507
ThePET/CTDigitalReferenceObject(DRO)isasyntheticallygeneratedsetofDICOMimagefilesofknown
voxel values for positron emission tomography (PET) and x-ray computed tomography (CT). The PET/CT
DROisintendedtotestthecomputationofstandardizeduptakevalues(SUVs)byPET/CTdisplaystations.It
isalsointendedtotestregionofinterest(ROI)calculationsandalignmentbetweenthePETandCTimages.
Thisismotivatedbyvendor-specificvariationsinPETDICOMformatsusedforSUVs.Thedevelopmentof
thePET/CTDROissupportedbytheQuantitativeImagingBiomarkerAlliance(QIBA).
1508
1509
1510
1511
1512
TheprimarygoalsandobjectivesofthePET/CTDigitalReferenceObjectaretosupporttheQIBAFDG-PET
'TechnicalValidation'effortsforProfiledevelopment.Thiswillbedoneby(1)evaluationandvalidationof
SUV calculations in PET images, (2) evaluation and validation of ROI calculations and (3) providing a
common reference standard that can be adopted and modified by PET/CT scanner and display station
manufacturers.
1513
The PET and CT components of the Images of the
DROareeachasetofDICOMformatfiles,onefile
per image slice. Each set of files are typically
grouped as a stack to form an image volume.
Representative sections through the CT and PET
imagevolumesareshownbelow.
The synthetic test object is based on, but is not
identical to, the NEMA NU-2 PET test phantom [J
NuclMed,vol.43no.101398-1409,2002].ThePET
objecthasadded'testvoxels'togetherwith2Dand
3D 'test patterns'. In each object, the thickness of
theexteriorshellis3mm,thethicknessofthehot
spherewallsis1mm,andthethicknessofthelung
insertwallis2mm.
1514
1500
The CT DRO showing Hounsfield The PET DRO with the SUVbw
Copyright©2016:RSNA
Page:68
1515
Unitsforeachstructure.
valuesofeachstructure.
Image fusion of the CT and PET Coronal view of the PET DRO
DROsshowingperfectalignment
showing the 2D test pattern in
slice 40 (left) as well as the 3D
cubictestpattern(right)
1516
StructureoftheCTandPETDROs.
1517
TheCTObject
1518
1519
The CT object is 512 × 512 × 110 voxels, and is stored in 110 DICOM files named 000001.dcm through
000110.dcm,numericallyorderedsothat000001.dcmcorrespondstoslice1intheimagevolume.
1520
1521
The CT object has a reconstruction diameter of 500 millimeters and an axial extent of 220 millimeters,
resultinginavoxelsizeof500/512×500/512×2(0.9765625×0.9765625×2.0)millimeters3.
1522
1523
1524
1525
1526
1527
The interior of the phantom body and the interiors of the hot spheres have voxels with values of 0
Hounsfield Units (HU), simulating water in the body and the interior of the hot spheres. The shell of the
body,lunginsertwall,andhotspherewallshavevoxelssetto120HU,simulatingpolymethylmethacrylate.
Thevoxelsinteriortothelunginsertaresetto-650HU,simulatinglungattenuationmaterial.Thevoxels
exteriorofthephantombodyaresetto-1000HU,simulatingair.Thesevaluesareindicatedintheabove
figure.NOTE:Partialvolumeeffectswillalterthevoxelvaluesnearthebordersofdifferentregions.
1528
1529
ThePETObject
1530
1531
The PET object consists of a 256 × 256 × 110 voxel image volume stored in 110 DICOM files named
000001.dcmthrough000110.dcm,similartotheCTobjectdescribedabove.
1532
1533
The PET object has a reconstruction diameter of 500 millimeters and an axial extent of 220 millimeters,
resultinginavoxelsizeof500/256×500/256×2(1.953125×1.953125×2.0)millimeters3.
1534
1535
1536
1537
ThevoxelsinteriortothephantombodyaresettoanSUVvalueof1.00.Thevoxelsinteriortothesixhot
spheresaresettoanSUVbwvalueof4.00.Thevoxelscorrespondingtothepolymethylmethacrylateshell
and the exterior of the phantom body and interior to the lung insert are set to an SUVbw value of 0.00.
NOTE:Partialvolumeeffectswillalterthevoxelvaluesnearthebordersofdifferentregions.
1538
1539
1540
1541
1542
Therearetwotestvoxelsinslice40oftheDRO.Thetestvoxelfurthestfromthelargesthotsphereinslice
40issettoanSUVbwvalueof4.11.Thetestvoxelclosesttothelargesthotsphereinslice40issettoan
SUVbwvalueof-0.11.NOTE:Thereisnopolymethylmethacrylateshellsurroundingthetestvoxelsinthe
PET object, and no partial volume effects surrounding the test voxels. An SUV less than zero is possible
whenusingPETimagereconstructionmethodssuchasanalyticfilteredbackprojection.
Copyright©2016:RSNA
Page:69
1543
1544
1545
TherearetwotestpatternsinthePETDRO,asquare(2D)checkerboardpatterninslice40,andacubic(3D)
checkerboard pattern centered in slice 40. The 3D cubic test pattern appears closest to the largest hot
sphereinanaxialviewofslice40.
1546
1547
1548
EachtestpatternconsistsofacheckerboardofvoxelswithalternatingSUVbwvaluesof0.10and0.90Both
the2Dsquareand3Dcubictestpatternshaveedgemeasurementsof40mm.TheSUVbwvaluesofeach
regionofthePETDROareshownintheabovefigure.
1549
1550
Users of the DRO are asked to download the package, import the PET and CT objects into their viewing
software,performregionofinterest(ROI)analyses,andsubmittheresultsbacktothiswebsite.
1551
1552
Procedure
1553
UsersoftheDigitalReferenceObjectarerequestedto:
1554
1.DownloadtheDRO(orimportfromCD)andtheuserreportform.
1555
2.VerifytheDROfilesarepresent.
1556
3.ImporttheDROintotheviewingsoftware.
1557
4.PerformROIanalysisoftheDRO.
1558
5.Submitthecompletedreportandstoreacopylocally.
1559
Copyright©2016:RSNA
Page:70
1560
ReportForm-Page1
1561
Copyright©2016:RSNA
Page:71
1562
ReportForm-Page2
1563
1564
1565
1566
AppendixG:Vendor-neutralPseudo-codesforSUVCalculation
1567
G.1Genericversion
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
This appendix contains the consensus opinion on the generic form of SUV calculation from PET DICOM
images.Agenericpseudo-codeisusedwith"//"signifyingthebeginningofacommentfieldtotheendof
theline.ThisversionassumesthePETIODisbeingusedandnottheEnhancedPETIOD:unitsareBQML,no
privatedataelementsrequired,seriestimeisOK.UpdatedasofSeptember28,2012.Themostuptodate
version
is
maintained
on
the
QIBA
FDG-PET
Wiki
page
(http://qibawiki.rsna.org/index.php?title=Standardized_Uptake_Value_SUV).Notethatthisisbasedonour
mostcompleteunderstandingatthistime,butrequirescarefulvalidationifimplemented.Inparticular,itis
stronglyrecommendednottouseSeriesDateandSeriesTimefordecaycorrection.
//SUVcannotbecalculatedifanyofthespecifiedDICOMattributesaremissingoremptyorzero
ifCorrectedImage(0x0028,0x0051)containsATTNandDECAYandDecayCorrection(0x0054,0x1102)isSTART{
ifUnits(0x0054,0x1001)areBQML{
halflife=RadionuclideHalfLife(0x0018,0x1075)inRadiopharmaceuticalInformationSequence(0x0054,0x0016)//seconds
Copyright©2016:RSNA
Page:72
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
G.2Robustversion
1599
1600
1601
1602
1603
ThisappendixcontainstheconsensusopiniononthemostrobustformofSUVcalculationfromPETDICOM
images.UpdatedasofSeptember28,2012.ThemostuptodateversionismaintainedontheQIBAFDGPET Wiki page (http://qibawiki.rsna.org/index.php?title=Standardized_Uptake_Value_SUV). Note that this
isbasedonourmostcompleteunderstandingatthistime,butrequirescarefulvalidationifimplemented.
Inparticular,itisstronglyrecommendednottouseSeriesDateandSeriesTimefordecaycorrection.
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
ifSeriesDate(0x0008,0x0021)andTime(0x0008,0x0031)arenotafterAcquisitionDate(0x0008,0x0022)andTime(0x0008,0x0032){
scanDateandTime=SeriesDateandTime
startTime=RadiopharmaceuticalStartTime(0x0018,0x1072)inRadiopharmaceuticalInformationSequence(0x0054,0x0016)
//startDateisnotexplicit…assumesameasSeriesDate;butconsiderspanningmidnight
decayTime=scanTime–startTime
//seconds
//RadionuclideTotalDoseisNOTcorrectedforresidualdoseinsyringe,whichisignoredhere…
injectedDose=RadionuclideTotalDose(0x0018,0x1074)inRadiopharmaceuticalInformationSequence(0x0054,0x0016)//Bq
decayedDose=injectedDose*pow(2,-decayTime/halflife)
weight=Patient'sWeight(0x0010,0x1030) //inkg
SUVbwScaleFactor=(weight*1000/decayedDose)
//RescaleInterceptisrequiredtobe0forPET,butuseitjustincase
//Rescaleslopemayvaryperslice(GE),andcannotbeassumedtobeconstantfortheentirevolume
SUVbw=(storedpixelvalueinPixelData(0x7FE0,0x0010)+RescaleIntercept(0x0028,0x1052))*RescaleSlope(0x0028,0x1053)
*SUVbwScaleFactor //g/ml
}
}
}
//SUVcannotbecalculatedifanyofthespecifiedDICOMattributesaremissingoremptyorzero
ifCorrectedImage(0x0028,0x0051)containsATTNandDECAYandDecayCorrection(0x0054,0x1102)isSTART{
ifUnits(0x0054,0x1001)areBQML{
halflife=RadionuclideHalfLife(0x0018,0x1075)inRadiopharmaceuticalInformationSequence(0x0054,0x0016)//seconds
ifSeriesDate(0x0008,0x0021)andTime(0x0008,0x0031)arenotafterAcquisitionDate(0x0008,0x0022)andTime(0x0008,0x0032){
scanDateandTime=SeriesDateandTime
}
else{
//maybepost-processedseriesinwhichSeriesDateandTimearedateofseriescreationunrelatedtoacquisition
ifGEprivatescanDateandTime(0x0009,0x100d,“GEMS_PETD_01”)present{
scanDateandTime=GEprivatescanDateandTime(0x0009,0x100d,“GEMS_PETD_01”)
}
else{
//elsemaybeSiemensserieswithalteredSeriesDateandTime
//eithercheckearliestofallimagesinseries(forallbedpositions)(wrongforcaseofPETsyngo3.xmulti-injection)
scanDateandTime=earliestAcquisitionDate(0x0008,0x0022)andTime(0x0008,0x0032)inallimagesofseries
or
//backcomputefromcenter(averagecountrate)oftimewindowforbedposition(frame)inseries(reliableinall
cases)
Copyright©2016:RSNA
Page:73
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
//AcquisitionDate(0x0008,0x0022)andTime(0x0008,0x0032)arethestartofthebedposition(frame)
//FrameReferenceTime(0x0054,0x1300)istheoffset(ms)fromthescanDateandTimewewanttotheaverage
countratetime
if(FrameReferenceTime(0x0054,0x1300)>0&&ActualFrameDuration(0018,1242)>0){
frameduration=ActualFrameDuration(0018,1242)/1000
//DICOMisinms;wantseconds
decayconstant=ln(2)/halflife
decayduringframe=decayconstant*frameduration
averagecountratetimewithinframe=1/decayconstant*ln(decayduringframe/(1–exp(-decayduring
frame)))
scanDateandTime=AcquisitionDate(0x0008,0x0022)andTime(0x0008,0x0032)
-
FrameReferenceTime(0x0054,0x1300)/1000+averagecountratetimewithinframe
}
}
}
startTime=RadiopharmaceuticalStartTime(0x0018,0x1072)inRadiopharmaceuticalInformationSequence(0x0054,0x0016)
//startDateisnotexplicit…assumesameasSeriesDate;butconsiderspanningmidnight
decayTime=scanTime–startTime
//seconds
//RadionuclideTotalDoseisNOTcorrectedforresidualdoseinsyringe,whichisignoredhere…
injectedDose=RadionuclideTotalDose(0x0018,0x1074)inRadiopharmaceuticalInformationSequence(0x0054,0x0016)//Bq
decayedDose=injectedDose*pow(2,-decayTime/halflife)
weight=Patient'sWeight(0x0010,0x1030) //inkg
SUVbwScaleFactor=(weight*1000/decayedDose)
}
elseifUnits(0x0054,0x1001)areCNTS{
SUVbwScaleFactor=Philipsprivatescalefactor(0x7053,0x1000,“PhilipsPETPrivateGroup”)
//if(0x7053,0x1000)notpresent,but(0x7053,0x1009)ispresent,then(0x7053,0x1009)*RescaleSlope
//scalespixelstoBq/ml,andproceedasifUnitsareBQML
}
elseifUnits(0x0054,0x1001)areGML{
SUVbwScaleFactor=1.0
//assumesthatGMLindicatesSUVbwinsteadofSUVlbm
}
}
//RescaleInterceptisrequiredtobe0forPET,butuseitjustincase
//Rescaleslopemayvaryperslice(GE),andcannotbeassumedtobeconstantfortheentirevolume
SUVbw=(storedpixelvalueinPixelData(0x7FE0,0x0010)+RescaleIntercept(0x0028,0x1052))*RescaleSlope(0x0028,0x1053)*SUVbwScaleFactor//g/ml
1658
1659
1660
AppendixH:ConsensusFormulaforComputingLean-Body-MassNormalization
forSUVs
1661
1662
1663
ItisimportantthatthePETcommunityisconsistentinitscomputationofSUVLBM,particularlyinlightofthe
recent article by Wahl et al. (1) that proposes using SUVLBM as part of the PERCIST criteria to monitor
treatmentresponse.
1664
TwodifferentformulasforestimatingmaleLeanBodyMass-normalizedSUV(SUVLBM)arecurrentlybeing
Copyright©2016:RSNA
Page:74
1665
usedinthePETcommunity.ThetwovariationsoftheformulaforestimatingLBMformalesareasfollows:
LBM(male)=(1.10xWeight)-128x(Weight/Height)2
1666
2
1667
1668
1669
LBM(male)=(1.10xWeight)-120x(Weight/Height) [1]
[2]
Wheretheunitsforweightarekg,andtheunitsforheightarecm.Onlyoneformulaisbeingusedforthe
calculationoffemaleLBM(2,3):
LBM(female)=(1.07xWeight)-148x(Weight/Height)2
1670
[3]
1671
1672
1673
1674
Bothversionsforestimatingmaleleanbodymass(equation1fromHallyncketal.(2)andequation2from
MorganandBray(3))arebasedontheoriginalworkofJames(4),whichinturnwerederivedfromafitof
(weight/height2)topercentagebodyfatasmeasuredbyskinfoldmeasurements.Equation1istheversion
widelyusedbythepharmacologycommunityandcanbeconsideredthe'correct'version(5-7).
1675
1676
1677
1678
1679
1680
1681
1682
Thesecondversionoftheequation[2]canbetracedbacktoanarticlebyMorganandBray(3),inwhich
theformulapresentedbyHallyncketal.(2)islikelymisquoted,sincethearticle(2)isreferencedelsewhere
inMorganandBray(3)withoutdiscussionofthedifferenceinformulaswhere120wassubstitutedfor128
as a coefficient. The first incorporation of this formula for computing LBM into SUV calculations was
describedinSugawaraetal(8),whichcitestheMorganandBraypaper(3).Itisthisversionoftheformula
formales,with120asthecoefficient,thathasbeensometimesquotedinthePETliterature.Sugawaraetal
(8)usedonlydataforfemalepatients,whichcitestheformulaforestimatingfemaleLBMbyMorganand
Bray(3),whichinturnmatchestheHallyncketal.(2)paper.
1683
1684
1685
1686
1687
1688
Althoughtheimpactofthisdifferenceincoefficientisrelativelyminorforpatientswithanormalbodymass
index(BMI(kg/m2)=(weight/height2),itdoesvaryasafunctionofthepatient’sweight/heightratio.For
example,forapatientofheight180cmandweight75kg(BMI:23)thevalueofSUVLBMascomputedbythe
twoformulawoulddifferbylessthan1.5%forregionswithanSUVLBMof~1.However,foramalepatient
ofthesameheightbutweighing150kg(BMI:46),thedifferenceinSUVLBMforthesameregionswouldbe
~7%.
1689
1690
1691
1692
Incomparingequations[1]and[2],itisrecommendedthatequation[1]beusedinpreferencetoequation
[2]. However, although the James (2) is the most commonly used data source for equations estimating
LBM, it is well known that it is incorrect for extreme BMI values (5-7). Janmahasatian et. al (5) have
proposedalternativeequationsforLBM:
1693
LBM(male)(kg)=
(9270xWeight)/(6680/(216xBMI)) [4]
1694
LBM(female)(kg)=
(9270xWeight)/(8780/(244xBMI)) [5]
1695
1696
1697
1698
1699
1700
1701
TheserevisedformulasforLBMhaveachievedsomeacceptanceinthepharmacologycommunity(6,7),and
futureversionsofthisProfilemayrecommendequations[4]and[5]insteadofequations[1]and[3].There
are also continuing efforts to come up with more accurate methods for estimating LBM, through direct
measurementonaper-patientbasisusingCT(9).However,thedifferentmethodsprovidingestimatesof
LBMtypicallyhaveunknownlevelsofbiasandvariance.Thusconsistencyandstandardizationarelikelyto
yieldlargerimprovementsinstudypowerforclinicaltrials,whencomparedtopotentialimprovementsin
accuracyofLBMestimation.
1702
References
1703
1704
1.Wahl,R.,Heather,J.,Kasamon,Y.,Lodge,M.(2009)FromRECISTtoPERCIST:EvolvingConsiderationsfor
PETResponseCriteriainSolidTumours.JNM50(5);122S-150S.
Copyright©2016:RSNA
Page:75
1705
1706
2.HallynckTH,SoepHH,ThomisJA,BoelaertJ,DaneelsR,DettliL.(1981)Shouldclearancebenormalized
tobodysurfaceorleanbodymass.BrJclinPharmac11:523-526.
1707
1708
3.Morgan,D.,BrayK.(1994)LeanBodyMassasapredictorofdrugdosage:ImplicationsforDrugTherapy.
ClinicalPharmacokinetics26(4);292-307.
1709
4.James,W.(1976)ResearchonObesity.London.HerMajesty’sStationaryOffice.
1710
1711
5.JanmahasatianS,DuffullSB,AshS,WardLC,ByrneNM,GreenB.Quantificationofleanbodyweight.Clin
Pharmacokinet44(10):1051-1065,2005.PMID:16176118.
1712
1713
6.HanPY,DuffullSB,KirkpatrickCM,GreenB.Dosinginobesity:asimplesolutiontoabigproblem.Clin
PharmacolTher82(5):505-508,2007.PMID:17952107.
1714
1715
7.HanleyMJ,AbernethyDR,GreenblattDJ.Effectofobesityonthepharmacokineticsofdrugsinhumans.
ClinPharmacokinet49(2):71-87,2010.PMID:20067334.
1716
1717
8.Sugawara,Y.,Zasadny,K.,Neuhoff,A.,Wahl,R.(1999)ReevaluationoftheSUVforFDG:Variationswith
bodyweightandmethodsforcorrection.Radiology213;521-525.
1718
1719
9. Chan T. Computerized method for automatic evaluation of lean body mass from PET/CT: comparison
withpredictiveequations.JNuclMed53(1):130-137,2012.PMID:22128325.
1720
1721
AppendixI:QIBAFDGPET/CTImagingSiteandScannerChecklists
1722
1723
QIBAFDGPET/CTImagingSite
1724
1725
1726
1727
ThefollowingchecklistmaybeusedtoascertainaPETimagingsite’squalificationforquantitativeimaging
according to the QIBA FDG PET/CT profile. Answers may be provided either as “current practice” or as
“feasible”,dependingonthecontext,butitshouldbemadeclearbothwhichwasexpectedandhowthe
siteanswered.
1728
SiteandPersonnelQualifications
1.
Thesiteisaccredited(ACR,IAC,TJC,etc.)orhasQualifiedstatusforclinicaltrials(ECOG-ACRIN,
SNMMI-CTN,EARL,CROs,etc.)
__yes__no
2.
Thesitehasthesupportoftechnologists,physicists,andphysiciansexperiencedintheuseof
FDG-PET/CT,andmeetingthequalificationsdescribedbelow.
__yes__no
3.
Technologists:PETstudiesareperformedbytechnologistswhosecertificationisequivalentto
therecommendationspublishedbytherepresentativesfromtheSocietyofNuclearMedicine
TechnologistsSection(SNMTS)ortheAmericanSocietyofRadiologicTechnologists(ASRT)and
shouldalsomeetalllocal,regional,andnationalregulatoryrequirementsfortheadministration
ofionizingradiationtopatients.
__yes__no
Copyright©2016:RSNA
Page:76
4.
Physicists:ThemedicalphysicistiscertifiedinMedicalNuclearPhysicsorRadiologicalPhysics
bytheAmericanBoardofRadiology(ABR);inNuclearMedicinePhysicsbytheAmericanBoard
ofScienceinNuclearMedicine(ABSNM);inNuclearMedicinePhysicsbytheCanadianCollege
ofPhysicistsinMedicine;orequivalentcertificationinothercountries;orhave3yearsofPET
experience.Regardlessofcertification,thephysicistshouldhavespecificexperienceinPETand
itsquantitativeuse.
__yes__no
5.
PhysiciansoverseeingandinterpretingPET/CTscansarequalifiedbytheABR(Diagnosticand/or
NuclearRadiology)orAmericanBoardofNuclearMedicine(ABNM)orequivalentwithinthe
UnitedStatesoranequivalententityappropriateforthegeographiclocationinwhichthe
imagingstudy(ies)willbeperformedand/orinterpreted.
__yes__no
ImagingProcedures
6.
PatientheightandweightareenteredintoscannerduringPET/CTacquisition.
__yes__no
7.
Bloodglucoseismeasuredforeachpatientwithin2hoursprecedingFDGadministration.
Measuredvalueandmeasurementtimearedocumented.
__yes__no
8.
Ifandwhenglucosethresholdisexceeded,thereasonshallbedocumented.
__yes__no
9.
Foreachpatient,thepre-injectionFDGactivityismeasuredandinjectedandresidualactivityis
measured.Initialandresidualmeasurementtimesandinjectiontimeareenteredintothe
console.
__yes__no
10. FDGisadministeredthrougha24-gaugeorlargerindwellingcatheterplacedanatomically
remotetoanysitesofsuspectedpathology,preferablyinanantecubitalvein.Intravenousports
shouldnotbeused,unlessnoothervenousaccessisavailable.
__yes__no
Inthecaseofmanualadministration,athree-wayvalvesystemshouldbeattachedtothe
intravenouscannulasoastoallowatleasta10ccnormal(0.9%NaCl)salineflushfollowingFDG
injection.Forautomatedinjectiondevicesalternateflushingmechanismsareallowed.
11. Forfollow-upscans,patientsareimagedwiththesameworkflow(i.e.patienthandling,imaging
acquisition,imageprocessing,andimageanalysis)asforbaselinescans.
__yes__no
12. TheFDGuptaketime(frominjectiontoscan)is60minutes,withanacceptablerangeof55-75
nd
minutes.Whenrepeatingascanonthesamesubject,uptaketimeforthe2 scaniswithin10
minutesofthatforthefirstscan.
__yes__no
13. IfthepatientisobservedtotakeadeepbreathduringtheCTscanitisdocumentedanda
repeatCTstudyisconsidered.
__yes__no
14. Whenapatientisrescanned,thesamescandirectionisused.
__yes__no
15. ReconstructedPETimages,withandwithoutattenuationcorrection,andCTimagesare
archivedattheimagingsite.
__yes__no
QA/QC
Copyright©2016:RSNA
Page:77
16. ThesiteperformsallPET/CTscannerQA/QCproceduresrecommendedbythemanufacturer
andattherecommendedfrequency(e.g.,daily,weekly,quarterly)andassuresthattheoutput
valuesareacceptable.
__yes__no
17. DailyQAproceduresareperformedpriortoanysubjectscan.
__yes__no
18. Awaterorwater-equivalentphantomisscannedandevaluateddailyandacceptableoutputis
ensured.
__yes__no
19. DosecalibratorconstancyisevaluateddailyontheF-18setting.Day-to-daydifferencesno
greaterthan2.5%areallowed.Cs-137,Co-57,orsimulatedF-18maybeused.
__yes__no
20. Thedosecalibratoraccuracyisevaluatedmonthlywithmeasuredvaluesdifferingnomorethan
2.5%fromtheactualsourcevalue.Cs-137,Co-57,orsimulatedF-18maybeused.
__yes__no
21. Dosecalibratorlinearityisassessedatleastannuallyoverarangeof37-1110MBq,with
deviationofnomorethan2.5%overtheentirerange.
__yes__no
22. Scalesforpatientweightmeasurementareevaluatedannuallyorafteranyrepairbyqualified
personnel,witherrornomorethan2.5%fromexpectedvaluesusingaNIST-traceableor
equivalentstandard.
__yes__no
23. TheglucosemeasuringdeviceismeasuredandtestedaccordingtoaCLIA-approved,CLIAcleared,orequivalent(ifoutsidetheUnitedState)procedure.
__yes__no
24. ThePET/CTscannercomputerandallclocksintheimagingfacilityusedtorecord
activity/injectionmeasurementsaresynchronizedtostandardtimereferencewithin+/-1
minute.
__yes__no
SynchronizationofallclocksusedintheconductoftheFDG-PET/CTstudyischeckedweekly
andafterpoweroutagesorcivilchangesforDaylightSavings(NorthAmerica)orSummerTime
(Europe).
25. QuantitativeCalibrationAccuracy:PETscannerquantitativeaccuracyrelativetothedose
calibratorisverifiedquarterlyandafterscannerupgrades,maintenanceorrepairs,newsetups
andmodificationstothedosecalibratorviaauniformphantomscanofactivitymeasuredinthe
dosecalibrator,achievingalargecentralROImeanSUVvalueof1.0(acceptablerange0.9-1.1).
__yes__no
26. AxialUniformity:Usingauniformcylinderphantomorequivalentshallobtainaslice-to-slice
variabilityoflessthan10%forthesliceswithinthecentral80%oftheaxialFOV.
__yes__no
27. PETResolution:Coldrods(asintheJaszczakorACRPETphantoms)ofdiameter9.5mmor
smallermustbevisible.Ahotcylinder(asintheACRPETphantom)of12mmorsmallermust
bevisibleORthe13mmsphereoftheNEMAimagequalityphantommustbevisible.
__yes__no
28. PETnoise:Inauniformphantomof0.1to0.2µCi/mlF-18concentrationthecoefficientof
variationofvoxelvalueswithinarectangularorcircularregionofatleast3cm(sideor
diameter)mustbenogreaterthan15%forallsliceswithinthecentral80%oftheaxialFOV.
__yes__no
SpecificPersonnelResponsibilities
Copyright©2016:RSNA
Page:78
29. Atechnologistorphysicistassessesuniformity(within-planeandacrossslices)andcompares
withpreviousresults.Quarterlyandfollowingsoftwareupgrades.
__yes__no
30. AtechnologistorphysicistshallperformtheQuantitativeCalibrationAccuracytest.Quarterly
andfollowingsoftwareupgradesorchangestothedosecalibrator
__yes__no
31. Aphysicistshallperformanddocumentperformanceofaquantitativeassessment(usinga
phantomwithdifferingsizedefinedtargetssuchastheACRorNEMAIQphantomsprocessed
withroutineimagereconstructionprotocols)forlesionresolution.Annually.
__yes__no
32. AphysicistShallperformaquantitativeassessmentofimagenoiseinphantomimagestobeof
consistentandacceptablequality.Annually.
__yes__no
1729
1730
1731
QIBAFDGPET/CTScannerChecklist
1732
1733
Thefollowingquestionnaire/checklistmaybeusedtoascertainaPETscanner’squalificationfor
quantitativeimagingaccordingtotheQIBAFDGPET/CTProfile.
1734
Parameter
Specification
Pass?
1.
Calibration
factors
AllnecessarycalibrationfactorsneededtooutputPETimagesinunitsofBq/ml
shallbeautomaticallyappliedduringtheimagereconstructionprocess.
2.
PETScanner
calibration
Shallbeabletobecalibratedaccordingtothefollowingspecifications:Usinga
uniformcylindercontainingF-18inwatersolution(ideallyusingthesame
solutionusedfordosecalibratorcross-calibration)
Slice-to-slicevariabilityshallbenomorethan±5%(notincludingendslices,as
perACRPETCoreLab).
3.
Weight
Shallbeabletorecordpatientweightinlborkgassuppliedfromthemodality
worklistoroperatorentryintoscannerinterface.ShallbestoredinPatient
Weightfield(0010,1030)intheDICOMimageheader,asperDICOMstandard.
4.
Height
Shallbeabletorecordpatientheightinfeet/inchesorcm/massuppliedfrom
themodalityworklistoroperatorentryintoscannerinterface.Shallbestoredin
PatientSizefield(0010,1020)intheDICOMimageheader,asperDICOM
standard.
5.
Administered
Radionuclide
Shallbeabletoentertheradionuclidetype(i.e.F-18)byoperatorentryintothe
scannerinterfaceandthroughpredefinedprotocol.Shallberecordedin
RadionuclideCodeSequence(0054,0300)intheDICOMimageheader[e.g.(C18
111A1,SRT,“ Fluorine”)].
6.
Administered
Radiotracer
Shallbeabletorecordtheradiotracer(i.e.FDG),assuppliedbyoperatorentry
intothescannerinterface.ShallberecordedinRadionuclideCodeSequence
field(0054,0300)intheDICOMimageheader,e.g.(C-B1031,SRT,
18
“FluorodeoxyglucoseF ”).
7.
Administered
Radiotracer
radioactivity
Shallbeabletoentertheadministeredradioactivity,inbothMBqandmCi,as
suppliedbyoperatorentryintothescannerinterface.Shallberecordedin
RadionuclideTotalDosefield(0018,1074)intheDICOMimageheaderinBq.
8.
Administered
Shallbeabletorecordthetimeofthestartofactivityinjectionassuppliedby
Copyright©2016:RSNA
Page:79
9.
Radiotracer
Time
operatorentryintothescannerinterface.Shallberecordedin
RadiopharmaceuticalStartDateTimefield(0018,1078)(preferred)or
RadiopharmaceuticalStartTimefield(0018,1072).
Decay
Correction
Methodology
EncodedvoxelvalueswithRescaleSlopefield(0028,1053)appliedshallbe
decay-correctedbythescannersoftware(nottheoperator)toasingle
referencetime(regardlessofbedposition),whichisthestarttimeofthefirst
acquisition,whichshallbeencodedintheSeriesTimefield(0008,0031)for
originalimages.
CorrectedImagefield(0028,0051)shallincludethevalue“DECY”andDecay
Correctionfield(0054,1102)shallbe“START”,whichmeansthattheimagesare
decay-correctedtotheearliestAcquisitionTime(0008,0032).
10. Scanning
Workflow
ShallbeabletosupportProfileProtocol(Section3)PETandCTorder(s)of
acquisition.
Shallbeabletopre-defineandsave(byimagingsite)aProfileacquisition
Protocolforpatientacquisition.
11. CT
Acquisition
Parameters
Shallrecordallkeyacquisitionparameters(technique)intheCTimageheader,
usingstandardDICOMfields.
12. PET-CT
Alignment
ShallbeabletoalignPETandCTimageswithin±2mminanydirection.
13. Activity
Concentratio
ninthe
Reconstructe
dImages
Shallbeabletostoreandrecord(rescaled)imagedatainunitsofBq/mlanduse
avalueofBQMLforUnitsfield(0054,1001).
14. Tracer
UptakeTime
ShallbederivablefromthedifferencebetweentheRadiopharmaceuticalDate
Timefield(0018,1078)(preferred)orRadiopharmaceuticalStartTimefield
(0018,1072)andtheSeriesTimefield(0008,0031)orearliestAcquisitionTime
field(0008,0032)intheseries(i.e.,thestartofacquisitionatthefirstbed
position),whichshouldbereportedasSeriesTimefield(0008,0031).
15. PETVoxel
size
SeeSection4.3(PETVoxelsize)undertheReconstructionSoftwarespecification requirements.
16. CTVoxelsize
ShallbenogreaterthanthereconstructedPETvoxelsize.
Voxelsshallbesquareintransaxialdimensions,althougharenotrequiredtobe
isotropicintheZ(head-foot)axis.
NotrequiredtobethesameasthereconstructedPETvoxelsize.
17. Subject
Positioning
ShallbeabletorecordthesubjectpositioninthePatientOrientationCode
Sequencefield(0054,0410)(whetherproneorsupine)andPatientGantry
RelationshipCodefieldSequence(0054,0414)(whetherheadorfeetfirst).
18. DICOM
Conformance
Allimagedataandscanparametersshallbetransferableusingappropriate
DICOMfieldsaccordingtotheDICOMconformancestatementforthePET/CT
scanner.
19. DICOMData
transferand
storage
format
PETimagesshallbeencodedintheDICOMPETorEnhancedPETImageStorage
SOPClass,usingactivity-concentrationunits(Bq/ml)withadditionalparameters
storedinpublicDICOMfieldstoenablecalculationofSUVs.
PETimagesshallbetransferredandstoredwithoutanyformoflossy
Copyright©2016:RSNA
Page:80
compression.
20. Metadata
Shallbeabletoaccuratelypropagatetheinformationcollectedattheprior
stagesandextenditwiththoseitemsnotedintheReconstructionsection.
21. Data
Corrections
PETemissiondatamustbeabletobecorrectedforgeometricalresponseand
detectorefficiency,systemdead-time,randomcoincidences,scatterand
attenuation.
22. Reconstructio
n
Methodology
Shallbeabletoprovideimageswithoutresolutionrecovery.
23. Reconstructio
n
Methodology
/Output
Shallbeabletoperformreconstructionswithandwithoutattenuation
correction.
24. Data
Reconstructio
n2D/3D
Compatibility
Shallbeabletoperformreconstructionofdataacquiredin3Dmodeusingfully
3Dimagereconstructionalgorithms.
25. Quantitative
calibration
Shallapplyappropriatequantitativecalibrationfactorssuchthatallimageshave unitsofactivityconcentration,e.g.kBq/mL.
26. Multi-bed
data
Shallcombinedatafrommultipleover-lappingbedpositions(including
appropriatedecaycorrections)soastoproduceasinglethree-dimensional
imagevolume.
27. Voxelsize
Shallallowtheusertodefinetheimagevoxelsizebyadjustingthematrix
dimensionsand/ordiameterofthereconstructionfield-of-view.
Shallbeabletoperformreconstructionofdataacquiredin2Dmodeusing2D
imagereconstructionalgorithms.
ShallbeabletoreconstructPETvoxelswithasize4mmorlessinallthree
dimensions(asrecordedinVoxelSpacingfield(0028,0030)andcomputedfrom
thereconstructionintervalbetweenImagePosition(Patient)(0020,0032)values
ofsuccessiveslices).
Voxelsshallbesquareintransaxialdimensions,althoughvoxelsarenot
requiredtobeisotropicinthez(head-foot)axis.
1735
28. Reconstructio
nparameters
Shallallowtheusertocontrolimagenoiseandspatialresolutionbyadjusting
reconstructionparameters,e.g.numberofiterations,post-reconstruction
filters.
29. Reconstructio
nprotocols
Shallallowasetofreconstructionparameterstobesavedandautomatically
applied(withoutmanualintervention)tofuturestudiesasneeded.
Copyright©2016:RSNA
Page:81