Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Quiz 3 Name: ID: ||||||||||||||||||||||||||||||||||||||||||||||||||||||1 (4 points) First make a substitution and then use integration by parts to evaluate the integral p 1 dx and dx = 2udu. Let u = x. Then du = 2p1 x dx = 2u Z p cos xdx = Z Z R p cos xdx. Z u d(sin u)2u sin u ¡ 2 sin u du p p p = 2u sin u + 2 cos u + C = 2 x sin x + 2 cos x + C: R 2 (4 points) (extra 2 points if using two correct methods) Evaluate the integral sin(2x) cos(2x)dx Method 1) sin(2x) cos(2x) = 1 2 (cos u)2u du = 2 sin(4x). Z sin(2x) cos(2x)dx = 1 2 Z 1 sin(4x)dx = ¡ cos(4x) + C: 8 Method 2) Let u = sin(2x). Then du = 2 cos(2x)dx and cos(2x)dx = 12 du. Z Z 1 1 1 sin(2x) cos(2x) dx = udu = u2 + C = sin2 (2x) + C: 2 4 4 3 (2 points) Evaluate the integral Z 1 p dx. Express your answer without the inverse of any trigonometric functions. x2 4 ¡ x2 Let x = 2 sin µ. Then dx = 2 cos µ dµ. Z Z Z 2 cos µ 1 1 1 p dx = dµ = dµ 4 4 sin2 µ ¢ 2 cos µ sin2 µ x2 4 ¡ x2 p p Z 1 1 1 ¡ (x=2)2 1 4 ¡ x2 2 = +C =¡ + C: csc µdµ = ¡ cot µ + C = ¡ 4 4 4 (x=2) 4x How to ¯nd cot µ ? Take a point P (a; b) on the terminal side of the angle µ. By de¯nition sin µ = rb , where r = p p We can take r = 1 and b = x2 , since sin µ = x2 . Observe that a = r2 ¡ b2 = 1 ¡ (x=2)2 . Thus a cot µ = = b p 1 1 ¡ (x=2)2 : (x=2) p a2 + b2 .