Download Supplementary Information Supplementary Methods Sequences of

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Supplementary Information
Supplementary Methods
Sequences of nucleic acids used for assembly of elongation complexes (EC13s). Note that
some complexes were walked to various positions before reactions in them were assessed.
WT
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
+1A
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGGGAACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCTTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
+1C
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGGGCACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCGTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
+1T
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGGGTACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCATGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
-1A
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGGAGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCTCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
-1T
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGGTGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCACTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
-1C
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGGCGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCGCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
-2A
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGAGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCTCCTGTGCCGCTTATCGGT
UAAUCGAGAGA
AA
-2C
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGCGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCGCCTGTGCCGCTTATCGGT
UAAUCGAGAGC
AA
1
-2T
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGTGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCACCTGTGCCGCTTATCGGT
UAAUCGAGAGU
AA
-3A
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAAGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTTCCCTGTGCCGCTTATCGGT
UAAUCGAGAAG
AA
-3C
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGACGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTGCCCTGTGCCGCTTATCGGT
UAAUCGAGACG
AA
-3T
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGATGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTACCCTGTGCCGCTTATCGGT
UAAUCGAGAUG
AA
-4G
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGGGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCCCCCCTGTGCCGCTTATCGGT
UAAUCGAGGGG
AA
-4C
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGCGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCGCCCCTGTGCCGCTTATCGGT
UAAUCGAGCGG
AA
-4T
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGTGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCACCCCTGTGCCGCTTATCGGT
UAAUCGAGUGG
AA
-5A
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAAAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTTTCCCCTGTGCCGCTTATCGGT
UAAUCGAAAGG
AA
-5C
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGACAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTGTCCCCTGTGCCGCTTATCGGT
UAAUCGACAGG
AA
-5T
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGATAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTATCCCCTGTGCCGCTTATCGGT
UAAUCGAUAGG
AA
-6G
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGGGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCCCTCCCCTGTGCCGCTTATCGGT
UAAUCGGGAGG
AA
-6C
2
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGCGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCGCTCCCCTGTGCCGCTTATCGGT
UAAUCGCGAGG
AA
-6T
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGTGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCACTCCCCTGTGCCGCTTATCGGT
UAAUCGUGAGG
AA
-7A
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCAAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGTTCTCCCCTGTGCCGCTTATCGGT
UAAUCAAGAGG
AA
-7C
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCCAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGGTCTCCCCTGTGCCGCTTATCGGT
UAAUCCAGAGG
AA
-7T
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCTAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGATCTCCCCTGTGCCGCTTATCGGT
UAAUCUAGAGG
AA
-8A
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATAGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTATCTCTCCCCTGTGCCGCTTATCGGT
UAAUAGAGAGG
AA
-8T
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATTGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAACTCTCCCCTGTGCCGCTTATCGGT
UAAUUGAGAGG
AA
-8G
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATGGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTACCTCTCCCCTGTGCCGCTTATCGGT
UAAUGGAGAGG
AA
-9A
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAAACGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTTGCTCTCCCCTGTGCCGCTTATCGGT
UAAACGAGAGG
AA
-9C
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAACCGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTGGCTCTCCCCTGTGCCGCTTATCGGT
UAACCGAGAGG
AA
-9G
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAAGCGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTCGCTCTCCCCTGTGCCGCTTATCGGT
UAAGCGAGAGG
AA
ST
NON-TEMPLATE
TEMPLATE
ACTTACAGTAATCCGAAGTACAGACGGCGAATAGCCA
TGAATGTCATTAGGCTTCATGTCTGCCGCTTATCGGT
3
RNA
UAAUCCGAAGU
AA
ST(+2G)
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCCGAAGTACGGACGGCGAATAGCCA
TGAATGTCATTAGGCTTCATGCCTGCCGCTTATCGGT
UAAUCCGAAGU
AA
WT(-1A+1C)
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGGACACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCTGTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
WT(+1C -7C)
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCCAGAGGGCACACGGCGAATAGCCA
TGAATGTCATTAGGTCTCCCGTGTGCCGCTTATCGGT
UAAUCCAGAGG
AA
WT(-1A-2T)
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGTAGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCATCTGTGCCGCTTATCGGT
UAAUCGAGAGU
AA
WT(-1A-7C)
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCCAGAGGAGACACGGCGAATAGCCA
TGAATGTCATTAGGTCTCCTCTGTGCCGCTTATCGGT
UAAUCCAGAGG
AA
NT-13
NON-TEMPLATE
TEMPLATE
RNA
A
ACTTACA TAATCGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
NT-12
NON-TEMPLATE
TEMPLATE
RNA
C
ACTTACAG AATCGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
NT-11
NON-TEMPLATE
TEMPLATE
RNA
C
ACTTACAGT ATCGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
NT-10
NON-TEMPLATE
TEMPLATE
RNA
C
ACTTACAGTA TCGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
NT-9
NON-TEMPLATE
TEMPLATE
RNA
C
ACTTACAGTAA CGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
4
NT-8
NON-TEMPLATE
TEMPLATE
RNA
A
ACTTACAGTAAT GAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
NT-7
NON-TEMPLATE
TEMPLATE
RNA
C
ACTTACAGTAATC AGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
NT+1
NON-TEMPLATE
TEMPLATE
RNA
C
ACTTACAGTAATCGAGAGGG ACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
NT+2
NON-TEMPLATE
TEMPLATE
RNA
T
ACTTACAGTAATCGAGAGGGG CACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
NT+3
NON-TEMPLATE
TEMPLATE
RNA
G
ACTTACAGTAATCGAGAGGGGA ACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
NT+4
NON-TEMPLATE
TEMPLATE
RNA
G
ACTTACAGTAATCGAGAGGGGAC CGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
NT+5
NON-TEMPLATE
TEMPLATE
RNA
T
ACTTACAGTAATCGAGAGGGGACA GGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UAAUCGAGAGG
AA
RNA-12
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
AAUCGAGAGG
AAG
RNA-11
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
AUCGAGAGG
AAGC
RNA-10
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
UCGAGAGG
AAGCG
RNA-9
5
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
CGAGAGG
AAGCGG
RNA-8
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGTAATCGAGAGGGGACACGGCGAATAGCCA
TGAATGTCATTAGCTCTCCCCTGTGCCGCTTATCGGT
GAGAGG
AAGCGGG
HIV-1
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGCCATCGAGAGGGAACCCACTGCTTAAGCCTCAATAAAGC
TGAATGTCGGTAGCTCTCCCTTGGGTGACGAATTCGGAGTTATTTCG
AUCGAGAGG
AAUA
antiHIV-1
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGCCATCGAGAGGGCTTAGTTTGCTTAAGCCTCAATAAAGC
TGAATGTCGGTAGCTCTCCCGAATCAAACGAATTCGGAGTTATTTCG
AUCGAGAGG
AAUA
OPS
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGCCATCGAGAGGCGGTAGCGTGCTTTTTTCGATAATAGCCA
TGAATGTCGGTAGCTCTCCGCCATCGCACGAAAAAAGCTATTATCGGT
AUCGAGAGG
AAUA
antiOPS
NON-TEMPLATE
TEMPLATE
RNA
ACTTACAGCCATCGAGAGGCGCTAAGGTGCTTTTTTCGATAATAGCCA
TGAATGTCGGTAGCTCTCCGCGATTCCACGAAAAAAGCTATTATCGGT
AUCGAGAGG
AAUA
Templates used for promoter borne transcription and for cloning into the plasmid for in vivo
experiments (shown sequence of non-template strand of PCR fragment). Start of transcription
is in italic.
A2WT
TCGACACCGGGGGAATTCGGATAAGTAGACAGCCTGATAAGTCGCACGAAAAACAGGTATTGACAACATGAAGTAACA
TGCAGTAAGATACAAATCGCAAGGAAACACTAGCAGCGTCAACCGGGCGCGCAGTGCCTTCTAGGTGACTTAAGCG
A2ST(for in vitro)
TCGACACCGGGGGAATTCGGATAAGTAGACAGCCTGATAAGTCGCACGAAAAACAGGTATTGACAACATGAAGTAACA
TGCAGTAAGATACAAATCGCAAGGAAACACTAGCAGCGTCAACCGAAGTACAGGTGCCTTCTAGGTGACTTAAGCG
A2ST(for in vivo)
6
TCGACACCGGGGGAATTCGGATAAGTAGACAGCCTGATAAGTCGCACGAAAAACAGGTATTGACAACATGAAGTAACA
TGCAGTAAGATACAAATCGCTAGGTAACACTAGCAGCGTCAACCGAAGTACAGGTGCCTTCTAGGTGACTTAAGCG
Supplementary Figure Legends
Supplementary Figure 1. The rate of second phosphodiester bond hydrolysis as a
measure of changes in translocation equilibrium. The rate of phosphodiester bond
hydrolysis was measured in assembled elongation complexes of E.coli RNAP, containing 16
nucleotide long RNA transcript, which was labeled at the 3’ proximal phosphodiester bond
with [32P]. Shown are the template and non-template strands and the RNA of the complex
without mismatches, EC16WT (for all sequences see Supplementary Methods). Nucleotide
positions in the elongation complex are numbered relative to the position of the RNAP active
center in the backstepped complex. Mismatches in the DNA duplex were introduced by
changing sequence of the non-template DNA strand. Mismatches in the RNA-DNA hybrid
were introduced by changing sequence of the transcript. Representative gels are shown in the
bottom of the figure. The rates of second phosphodiester bond hydrolysis, kobs, in the
resultant mismatched complexes were normalized to the rate of hydrolysis in the complex
without mismatches (EC16WT) which was taken as 1, and are shown in logarithmic scale in
histograms at the positions of corresponding mismatches. The results are consistent with the
current understanding of the structure of the elongation complex, and are summarized in Fig.
1. Briefly: (i) Mismatches in positions +2 and +3 of the downstream DNA slowed down
second phosphodiester bond cleavage while mismatches in the surrounding positions (+1, +4,
+5) did not influence the rate of hydrolysis significantly. This is consistent with the formation
of the downstream DNA duplex immediately next to the i+1 site of the RNAP active centre
(Kashkina et al., 2007; Vassylyev et al., 2007b) and the fact that translocation shift to the
7
backstepped state should be influenced by formation of base pairs only in positions +2 and +3
(Fig. 1). (ii) Introduction of non-complementarity in the upstream edge of the RNA-DNA
hybrid did not have effect on second phosphodiester bond cleavage until position -10, while
shorter RNA-DNA hybrid strongly inhibited the reaction. This is consistent with the 10 base
pairs long RNA-DNA hybrid observed in crystal structure (Vassylyev et al., 2007a), and the
fact that translocation shift to the backstepped state should require rewinding of the hybrid up
to position -9 (Fig. 1). (iii) Mismatches at positions -11 and -10 (and to lesser extent at -12) of
the upstream DNA increased the rate of second phosphodiester bond hydrolysis, while
mismatches at the surrounding positions of the upstream DNA (-13, -9, -8, -7) had minor or
no effects on the rate of the reaction. This is consistent with the earlier biochemical evidence
that 2-3 base pairs of the upstream DNA next to RNA-DNA hybrid remain melted (Korzheva
and Mustaev, 2001), and the fact that melting of the positions -11, -10 of the upstream DNA
should favor shifting of the translocation equilibrium to the backstepped state (Fig. 1). (iv)
No significant cleavage of the third phosphodiester bond was observed, suggesting that the
complex did not undergo significant backtracking for more than 1 base pair, though further
backtracking was not restricted (see also main text). Fig. 1 shows the structure of the nucleic
acids scaffold during translocational oscillation, consistent with the above results.
Supplementary Figure 2. Recognition of the RNA-DNA hybrid sequence by RNAP. A.
Graphic representation of the sequence of the RNA-DNA hybrid recognized by RNAP
(sequence according to the non-template strand). The scheme shows stabilization and
destabilization of the RNAP active center in the designated position (red circle). The height
of the letters represents the relative rate of the second phosphodiester bond hydrolysis
normalized to the rate of the reaction in EC16WT, where height of upright letters shows “folds
faster” while height of upside down letters shows “fold slower” than cleavage in EC16WT. B.
Some amino acids of the RNAP main channel that do and do not contribute to recognition of
8
the RNA-DNA hybrid sequence. Rates of second phosphodiester bond hydrolysis by wildtype (WT) and mutant RNAPs in elongation complexes bearing substitutions depicted in
histograms (according to the non-template DNA). The rates of phosphodiester bond
hydrolysis by wild-type and mutant enzymes were normalized to the respective rates of the
reaction in EC16WT, which were taken as 1.
Supplementary Figure 3. Transcription pausing caused by recognition of RNA-DNA
hybrid sequence. A. Pause at position 15 on the ST sequence does not depend on the nature
of the incoming NTP. Plots show (in percents of all complexes in reaction) formation and
decay of paused EC15ST in the presence of 1 µM NTPs on ST and ST(+2G) templates, shown
below the plots. B. At the top: kinetics of elongation on a derivative of the T7A2 template
bearing the ST sequence (A2ST; part of the transcribed sequence shown on the left, with ST
sequence in red). Transcription was initiated from the T7A2 promoter with the σ70 holoenzyme of E.coli RNAP (immobilized on the solid phase), stalled at position +13 to
synchronize elongation complexes, and then chased by addition of all NTPs to the end of
template. Two base pairs were changed (green) to allow formation of the stalled complex
(EC13). The ST sequence caused pauses of transcription at positions +34 and +35. Below: To
isolate EC34A2ST, chase reaction (from above) was stopped by washing of the beads after 10
s. EC34A2ST is stabilized in the pre-translocated state as judged by the rates of
pyrophosphorolysis (lane 2’) and NTP addition (lanes 3’-5’). Note, that EC35A2ST formed
from EC34A2ST is rapidly hydrolyzed, indicating that EC35A2ST is stabilized in the
backstepped state. Black line separates parts of one gel that were brought together. C.
Recognition of various sequences of the RNA-DNA hybrid may cause pausing of
transcription. Plot show (in percents of all complexes in reaction) formation and decay of
9
EC15ST and EC16ST, summed together, in the presence of 1 µM NTPs on templates, shown
below the plots.
Supplementary Figure 4. Pausing on ops and HIV-1 sequences does not depend on the
sequence of the non-template strand. A and B. Kinetics of transcription on the scaffolds
containing ops RNA-DNA hybrid and either ops or antiops non-template strands (panel A),
or HIV-1 RNA-DNA hybrid and either HIV-1 or antiHIV-1 non-template strands (panel B).
Additional pauses and generally slower transcription on the scaffolds with mismatched nontemplates is explained by the slower transcription on partly single-stranded template due to
formation of overextended RNA-DNA hybrids.
10
Supplementary Figure 1
11
Supplementary Figure 2
12
Supplementary Figure 3
13
Supplementary Figure 4
14
Supplementary Table 1. Translocation equilibrium is not affected in the absence of
recognition of the RNA-DNA hybrid sequence. A. The rates of hydrolysis,
pyrophosphorolysis and NTP addition in EC14WT, EC15WT and EC16WT, formed on the WT
template.
15
Largest subunit
T. thermophilus
R534
R601
K610
Q611
R615
K621
R622
R628
R704
A705
P706
A1085
T1088
A1089
R1096
R259
K325
K334
Q335
R339
K345
R346
R352
R425
A426
P427
A787
T790
A791
R798
R249
K315
K324
Q325
R329
K335
R336
R342
R415
A416
P417
A791
T794
A795
R802
S. cerevisiae
Pol I
n.a.
K462
K463
E464
R468
K474
R475
R481
R591
Q592
P593
A1010
T1013
S1014
R1021
S. cerevisiae
Pol II
R257
K323
K332
E333
R337
K343
R344
R350
R446
Q447
P448
A828
T831
A832
R839
S. cerevisiae
Pol III
n.a.
R351
K360
Q361
R365
K371
R372
R378
R476
Q477
P478
A876
T879
A880
R887
E.coli
S. pneumoniae
Second largest subunit
T. thermophilus
E.coli
S. pneumoniae
R134
S387
R388
Q390
F394
R409
E421
R422
P444
N448
I452
N563
Q567
K846
V1001
E1002
L1021
Q1030
R1031
G1033
M1035
E1036
R143
S508
S509
Q510
F514
R529
E541
R542
P564
N568
I572
N684
Q688
K1073
V1239
D1240
L1259
Q1268
R1269
G1271
M1273
E1274
R132
S468
S469
Q470
F474
R489
D501
R502
P524
N528
I532
N646
Q750
K928
V1040
D1041
L1060
Q1069
R1070
G1072
M1074
E1075
S. cerevisiae
Pol I
K201
S482
n.a.
Q480
V487
R501
n.a.
R505
P534
N543
L542
N715
Q724
K924
V1040
D1042
V1060
I1069
R1070
G1072
M1074
E1075
S. cerevisiae
Pol II
K210
S475
R476
Q481
V482
R497
D505
R504
P528
N538
L539
N767
Q776
K987
V1099
D1100
V1119
L1128
R1129
G1131
M1133
E1134
S. cerevisiae
Pol III
K192
S438
R451
n.a.
V457
R472
E508
R481
P503
N513
L514
N699
Q708
K919
V1031
D1033
T1051
L1060
R1061
G1063
M1065
E1066
Supplementary Table 2. Conservation of amino acids that potentially contact the RNA-DNA hybrid. Amino acids within 4 Å from atoms
of the RNA-DNA hybrid of the elongation complex of T. thermophilus RNAP (PDB 2O5J) were aligned among RNAPs used in our study. Dark
blue cells designate conserved amino acids, light blue – homologous substitutions, and white cells show non-conserved amino acids (n.a. – no
alignement).
Related documents