Download Solutions - U.I.U.C. Math

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Practice Problems for the final:
Problem 1 Find the general solutions of the following DEs.
a) x 2 y   xy  y 2  0
solution:
y
y2
y   x  2  0 : homogeneous equation.
x
dy
y
 v  x dv .
v  x , y  vx, and
dx
dx
v  x dv  v  v 2 .
dx
x dv  v 2 : separable equation.
dx
dv  dx .
x
v2
 1v  ln|x|C.
 xy  ln|x|C.
y x .
ln|x|C
Note: You can consider the above equation as a Bernoulli equation with n  2.
b)x 2  1y   x  1y  1
solution:
y   x2  1 y  2 1
: linear equation.
x 1
x 1
y
 21 .
y 
x1
x 1
Integration factor x  e
 x11 dx  e lnx1  x  1.
d x  1y  x  1  1 .
x1
dx
x2  1
x  1y  ln|x  1|C.
y
ln|x  1|C
.
x1
1
c)y 2 y   2xy 3  6x
solution:
y   2xy  6xy 2 : Bernoulli equation with n  2.
dy
 1 v 2/3 dv .
3
dx
dx
v  y 12  y 3 , y  v 1/3 and
1 v 2/3 dv  2xv 1/3  6xv 2/3 .
3
dx
dv  6xv  18x : linear equation.
dx
Integrating factor x  e
 6xdx  e 3x 2 .
d e 3x 2 v  18xe 3x 2 .
dx
e 3x v  18  xe 3x dx  3e 3x  C, u  3x 2 and du  6xdx.
2
2
2
2
v  3  Ce 3x .
2
y  3  Ce 3x  1/3 .
d) y  
xy
sol) Let v  x  y, then y  v  x and
dv 
dx
dy
 dv  1.
dx
dx
dv  1 v .
dx
v  1 : separable equation.
dv
 dx.
v 1

Let w 
dv
 x  C.
v 1
v  1. Then
dw  1 v 1/2 dv
2
and
dv  2v 1/2 dw  2w  1dw.
Hence,

dv

v 1

2w  1
2 dw
dw  2  w
w
 2w  2 ln|w|C  2 v  1  2 ln v  1  C.
Thus,
x  2 x  y  1  2 ln x  y  1  C.
2
Problem 2 A hemispherical bowl (with top radius 4) shaped water tank is slowly losing
water at its lower end. As a result, the height of water in the tank, given by yt
satisfies
y
dy
 1
.
72 8y  y 2 
dt
a) Solve the DE for yt when the tank is initially full.
solution: Since the tank is initially full and the top radius is 4, y0  4.
By separating variables,
8y 1/2  y 3/2 dy   1 dt.
72
16 y 3/2  2 y 5/2   t  C.
5
72
3
y0  4, C  448 .
15
b) How long does it take for the tank to be empty?
solution: You need to find t for which yt  0.
t  72  148 .
15
Problem 3 Determine whether the given functions are linearly independent or not.
a) fx  e x sin x, gx  e x cos x.
solution:
Wf, g 
e x sin x
e x cos x
e 2x sin x  cos x e x cos x  sin x
 e 2x  sin 2 x  sin x cos x  e 2x sin x cos x  cos 2 x  e 2x  0.
Hence f and g are linearly independent.
b) fx  sin 2x, gx  sin x cos x and hx  e x .
solution: Note that sin 2x  2 sin x cos x. Hence
fx  2gx  0hx  0.
Since we can write 0 as a (nontrivial) linear combination of f, g and h, they are linearly
dependent.
Remark : Nontrivial combination means linear combination other 0f  0g  0h  0.
3
Problem 4 Find the unique solution to the initial value problem
y   7y   12y  x  2e 3x ,
y0  0, y  0  2.
solution: Characteristic equation
r 2  7r  12  r  3r  4  0,
r  3, 4.
y c  c 1 e 3x  c 2 e 4x .
Your first guess for y p might be y p  Ax  Be 3x . But since you have e 3x in y c , the
correct candidate should be
y p  xAx  Be 3x .
Hence,
y p  7y p  12y p  2Ax  2A  Be 3x  x  2e 3x .
 2A  1,
2A  B  1.
A   12 ,
B  3.
y  y c  y p  c 1 e 3x  c 2 e 4x  3xe 3x 
1
2
x 2 e 3x .
Now,
y0  c 1  c 2  0,
y  0  3c 1  4c 2  3  0.
So, c 1  5 and c 2  5.
Hence, the unique solution y is
y  5e 3x  5e 4x 
1
2
x 2 e 3x  3xe 3x .
4
Problem 5 Find the general solution of the differential equation
y   y   4y   6y  e 2x  2x.
solution: Characteristic equation is r 3  r 2  4r  6  0. We observe that r  1 is a
solution and using this, we factor
r 3  r 2  4r  6  r  1r 2  2r  6  0.
r  1,
1  5 i.
So, y c  c 1 e x  c 2 e x cos 5 x  c 3 e x sin 5 x. Find each particular solution for e 2x , 2x.
n
For e 2x : Try y p 1  Ae 2x . Note that y p 1  A2 n e 2x . So,
A8  4  4  2  6e 2x  e 2x .
A
1
18
1
18
y p1 
.
e 2x .
For 2x: Try y p 2  Bx  C. Note that y p 2  y  0  0 and y p 2  B. So,
6Bx  4B  6C  2x.
6B  2,
B
1
3
4B  6C  0.
C   29 .
,
y p2 
1
3
x
2
9
.
Therefore,
y  y c  y p 1  y p 2  c 1 e x  c 2 e x cos 5 x  c 3 e x sin 5 x 
1
18
e 2x 
1
3
x
2
9
.
5
Problem 6 Find the general solution to the differential equation
ex
y   2y   y  1x
2 .
solution: Characteristic equation: r 2  2r  1  0, r  1 2  0, r  1, 1. So, two
linearly independent solutions are y 1  e x , y 2  xe x .
ex
Since the right hand side is fx  1x
2 , we need to use the variation of parameter
method.
y p  u 1 y 1  u 2 y 2  u 1 e x  u 2 xe x ,
where
y f
y f
u1    2 , u2   1 .
W
W
W
u1   
u2 
ex
e
x
xe x 

xe x
x
e  xe
ex
1x 2
2x
e
ex 
e
x
 e 2x x  1  xe 2x  e 2x .
dx   
ex
1x 2
2x
dx 

x
  1 ln1  x 2 .
2
2
1x
1 dx  arctan x.
1  x2
Hence,
y p   1 e x ln1  x 2   xe x arctan x.
2
Thus, the general solution is
y  c 1 e x  c 2 xe x  12 e x ln1  x 2   xe x arctan x.
6
Problem 7 Find the Fourier series solution of the end point problem
x   2x  1
x0  0,
x1  0.
solution: According to the boundary data, we need to find the sine series of 1,
0  t  1.
4
n
1
b n  2  sin ntdt 
0,
0
So, 1   n odd
4
n
n odd
,
n even.
sin nt. Now, we are looking for the solution xt of
x   2x 

4
n sin nt.
n odd
Try
xt 
 B n sin nt.
n odd
This would satisfy the end point conditions. We need to determine B n .
x     n 2  2 B n sin nt.
n odd
Hence,
 B n 2   2 n 2  sin nt  
4
n sin nt.
n odd
nodd
It follow that
4 ,
B n 2   2 n 2   n
for n odd.
4
,
n2  n 2  2 
for n odd.
So, we have
Bn 
Therefore,
xt 

n odd
4
sin nt.
n2  n 2  2 
7
Problem 8Find a particular solution of the following equations.
a) x   2x  sin t
solution: Using undetermined coefficient method, set x p  A sin t  B cos t. Note here
that x c does not have either sin t or cos t. Since there is no x  term, we can try
x p  A sin t. We can easily deduce that A  1. So, x p  sin t.
b) x   2x   n odd
4
n
sin nt. (Find a formal Fourier series solution.)
solution: Since there is no x  term, we can try
x p t 
 B n sin nt.
n odd
Then,
x p t 
 n 2 B n sin nt.
n odd
Plugging in
x p , x p
into the equation, we get
 n 2  2B n sin nt  
n odd
4
n
sin nt.
n odd
So,
Bn 
4
.
n2  n 2 
Hence,
x p t 

n odd
4
sin nt.
n2  n 2 
8
Problem 9 Consider the following eigenvalue problem
X   X  0, 0  x  
X0  0, X    0.
Show that the eigenvalues  n and eigenfunctions X n are given by
2n  1 2
2n  1x
, X n  sin
, n  1, 2,  .
n 
2
2
4
You may use the following fact: cos x  0 if and only if x 
odd).
solution: i)   0: Xx  C  Dx. Since X0  0, C  0.
n
2
, n  1, 3, 5,  (i.e, n:
X  D  0.
Hence   0 is not an eigenvalue.
ii)   0: set    2 ,   0 Then, X    2 X  0. The zeros of its characteristic equation
is . So,
Xx  Ae x  Be x .
X0  A  B  0,
B  A.
X    Ae   Be   Ae   e    0.
 0, A  0 and so B  0. Hence, Xx  0. Thus, if   0, it is not an
Since e   e 
eigenvalue.
iii)   0: set    2 ,   0. Then, the general solution
Xx  A cos x  B sin x.
X0  A  0,
X    A sin x  B cos x  B cos x  0.
, n  1, 2,  .
Now, we do not want B  0. So, cos   0, which implies that   2n1
2
2n1 2
Thus the eigenvalues are  n  4 2 . The corresponding solutions (eigenfunctions)
2n1x
are X n x  sin 2 .
9
Problem 10 By separating the variables, solve the following wave equation
4u xx  u tt , 0  x  , t  0
u0, t  0, u, t  0, t  0.
ux, 0  1, u t x, 0  0,
0  x  .
solution: Set ux, t  XxTt.
4X  T  XT  .
X   T   .
X
4T
X   X  0.
So,  n 
n22
2
X0  0, X  0.
 n 2 and X n x  sin nx. Plug in  n  n 2 into T   4T  0. We get
T   4n 2  0.
Tt  c 1 cos 2nt  c 2 sin 2nt.
Since u t x, 0  0, T  0  0.
T  t  2nc 1 sin 2nt  2nc 2 cos 2nt, T  t  2nc 2  0,
Hence,
T n t  cos 2nt.
Now
c 2  0.

ux, t 
 c n sin nx cos 2nt.
n1

ux, 0 
 c n sin nx  1.
m1
Fourier sine series of 1 is

4
n
sin nx.
n odd
Hence,
cn  4
n,
if n is odd and otherwise, c n  0.
Thus,
ux, t 

4
n
sin nx cos 2nt.
n odd
10
Problem 11 Find the solution of the following problem. You are not required to
determine the coefficients.
u xx  u yy  0, 0  x  2, 0  y  2
ux, 0  ux, 2  0
u0, y  0.
solution:
u xx  u yy  0,
0  x  2, 0  y  2
1
ux, 0  ux, 2  0
2
Set ux, y  XxYy. Then, 1 tells us that
X  Y  XY   0.


 X  Y  .
X
Y
So, we have
Y   Y  0, 3
X   X  0.
4
From 2, we know Y0  Y2  0. Using these boundary conditions and the equation
3 above, we have a familiar eigenvalue problem
Y   Y  0
Y0  Y2  0.
2 2
Eigenvalues:  n  n 4
ny
Eigenfunctions: Y n y  sin 2 .
We find from u0, y  0 that X0  0. Now plug in  n 
consider
2 2
X   n x  0
n22
4
into the equation 4 and
X0  0.
We know that
Xx  c 1 e
nx
2
 c2e
nx
2
.
Since X0  c 1  c 2  0, c 2  c 1 .
Hence,
nx
nx
Xx  c 1 e 2  e  2 .
Thus,
X n x  e
nx
2
 e
nx
2
.
So,

ux, y 

 c n X n xY n y   c n e
n1
n1
nx
2
 e
nx
2
 sin
ny
2
.
11
Related documents