Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Practice Problems for the final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 0 solution: y y2 y x 2 0 : homogeneous equation. x dy y v x dv . v x , y vx, and dx dx v x dv v v 2 . dx x dv v 2 : separable equation. dx dv dx . x v2 1v ln|x|C. xy ln|x|C. y x . ln|x|C Note: You can consider the above equation as a Bernoulli equation with n 2. b)x 2 1y x 1y 1 solution: y x2 1 y 2 1 : linear equation. x 1 x 1 y 21 . y x1 x 1 Integration factor x e x11 dx e lnx1 x 1. d x 1y x 1 1 . x1 dx x2 1 x 1y ln|x 1|C. y ln|x 1|C . x1 1 c)y 2 y 2xy 3 6x solution: y 2xy 6xy 2 : Bernoulli equation with n 2. dy 1 v 2/3 dv . 3 dx dx v y 12 y 3 , y v 1/3 and 1 v 2/3 dv 2xv 1/3 6xv 2/3 . 3 dx dv 6xv 18x : linear equation. dx Integrating factor x e 6xdx e 3x 2 . d e 3x 2 v 18xe 3x 2 . dx e 3x v 18 xe 3x dx 3e 3x C, u 3x 2 and du 6xdx. 2 2 2 2 v 3 Ce 3x . 2 y 3 Ce 3x 1/3 . d) y xy sol) Let v x y, then y v x and dv dx dy dv 1. dx dx dv 1 v . dx v 1 : separable equation. dv dx. v 1 Let w dv x C. v 1 v 1. Then dw 1 v 1/2 dv 2 and dv 2v 1/2 dw 2w 1dw. Hence, dv v 1 2w 1 2 dw dw 2 w w 2w 2 ln|w|C 2 v 1 2 ln v 1 C. Thus, x 2 x y 1 2 ln x y 1 C. 2 Problem 2 A hemispherical bowl (with top radius 4) shaped water tank is slowly losing water at its lower end. As a result, the height of water in the tank, given by yt satisfies y dy 1 . 72 8y y 2 dt a) Solve the DE for yt when the tank is initially full. solution: Since the tank is initially full and the top radius is 4, y0 4. By separating variables, 8y 1/2 y 3/2 dy 1 dt. 72 16 y 3/2 2 y 5/2 t C. 5 72 3 y0 4, C 448 . 15 b) How long does it take for the tank to be empty? solution: You need to find t for which yt 0. t 72 148 . 15 Problem 3 Determine whether the given functions are linearly independent or not. a) fx e x sin x, gx e x cos x. solution: Wf, g e x sin x e x cos x e 2x sin x cos x e x cos x sin x e 2x sin 2 x sin x cos x e 2x sin x cos x cos 2 x e 2x 0. Hence f and g are linearly independent. b) fx sin 2x, gx sin x cos x and hx e x . solution: Note that sin 2x 2 sin x cos x. Hence fx 2gx 0hx 0. Since we can write 0 as a (nontrivial) linear combination of f, g and h, they are linearly dependent. Remark : Nontrivial combination means linear combination other 0f 0g 0h 0. 3 Problem 4 Find the unique solution to the initial value problem y 7y 12y x 2e 3x , y0 0, y 0 2. solution: Characteristic equation r 2 7r 12 r 3r 4 0, r 3, 4. y c c 1 e 3x c 2 e 4x . Your first guess for y p might be y p Ax Be 3x . But since you have e 3x in y c , the correct candidate should be y p xAx Be 3x . Hence, y p 7y p 12y p 2Ax 2A Be 3x x 2e 3x . 2A 1, 2A B 1. A 12 , B 3. y y c y p c 1 e 3x c 2 e 4x 3xe 3x 1 2 x 2 e 3x . Now, y0 c 1 c 2 0, y 0 3c 1 4c 2 3 0. So, c 1 5 and c 2 5. Hence, the unique solution y is y 5e 3x 5e 4x 1 2 x 2 e 3x 3xe 3x . 4 Problem 5 Find the general solution of the differential equation y y 4y 6y e 2x 2x. solution: Characteristic equation is r 3 r 2 4r 6 0. We observe that r 1 is a solution and using this, we factor r 3 r 2 4r 6 r 1r 2 2r 6 0. r 1, 1 5 i. So, y c c 1 e x c 2 e x cos 5 x c 3 e x sin 5 x. Find each particular solution for e 2x , 2x. n For e 2x : Try y p 1 Ae 2x . Note that y p 1 A2 n e 2x . So, A8 4 4 2 6e 2x e 2x . A 1 18 1 18 y p1 . e 2x . For 2x: Try y p 2 Bx C. Note that y p 2 y 0 0 and y p 2 B. So, 6Bx 4B 6C 2x. 6B 2, B 1 3 4B 6C 0. C 29 . , y p2 1 3 x 2 9 . Therefore, y y c y p 1 y p 2 c 1 e x c 2 e x cos 5 x c 3 e x sin 5 x 1 18 e 2x 1 3 x 2 9 . 5 Problem 6 Find the general solution to the differential equation ex y 2y y 1x 2 . solution: Characteristic equation: r 2 2r 1 0, r 1 2 0, r 1, 1. So, two linearly independent solutions are y 1 e x , y 2 xe x . ex Since the right hand side is fx 1x 2 , we need to use the variation of parameter method. y p u 1 y 1 u 2 y 2 u 1 e x u 2 xe x , where y f y f u1 2 , u2 1 . W W W u1 u2 ex e x xe x xe x x e xe ex 1x 2 2x e ex e x e 2x x 1 xe 2x e 2x . dx ex 1x 2 2x dx x 1 ln1 x 2 . 2 2 1x 1 dx arctan x. 1 x2 Hence, y p 1 e x ln1 x 2 xe x arctan x. 2 Thus, the general solution is y c 1 e x c 2 xe x 12 e x ln1 x 2 xe x arctan x. 6 Problem 7 Find the Fourier series solution of the end point problem x 2x 1 x0 0, x1 0. solution: According to the boundary data, we need to find the sine series of 1, 0 t 1. 4 n 1 b n 2 sin ntdt 0, 0 So, 1 n odd 4 n n odd , n even. sin nt. Now, we are looking for the solution xt of x 2x 4 n sin nt. n odd Try xt B n sin nt. n odd This would satisfy the end point conditions. We need to determine B n . x n 2 2 B n sin nt. n odd Hence, B n 2 2 n 2 sin nt 4 n sin nt. n odd nodd It follow that 4 , B n 2 2 n 2 n for n odd. 4 , n2 n 2 2 for n odd. So, we have Bn Therefore, xt n odd 4 sin nt. n2 n 2 2 7 Problem 8Find a particular solution of the following equations. a) x 2x sin t solution: Using undetermined coefficient method, set x p A sin t B cos t. Note here that x c does not have either sin t or cos t. Since there is no x term, we can try x p A sin t. We can easily deduce that A 1. So, x p sin t. b) x 2x n odd 4 n sin nt. (Find a formal Fourier series solution.) solution: Since there is no x term, we can try x p t B n sin nt. n odd Then, x p t n 2 B n sin nt. n odd Plugging in x p , x p into the equation, we get n 2 2B n sin nt n odd 4 n sin nt. n odd So, Bn 4 . n2 n 2 Hence, x p t n odd 4 sin nt. n2 n 2 8 Problem 9 Consider the following eigenvalue problem X X 0, 0 x X0 0, X 0. Show that the eigenvalues n and eigenfunctions X n are given by 2n 1 2 2n 1x , X n sin , n 1, 2, . n 2 2 4 You may use the following fact: cos x 0 if and only if x odd). solution: i) 0: Xx C Dx. Since X0 0, C 0. n 2 , n 1, 3, 5, (i.e, n: X D 0. Hence 0 is not an eigenvalue. ii) 0: set 2 , 0 Then, X 2 X 0. The zeros of its characteristic equation is . So, Xx Ae x Be x . X0 A B 0, B A. X Ae Be Ae e 0. 0, A 0 and so B 0. Hence, Xx 0. Thus, if 0, it is not an Since e e eigenvalue. iii) 0: set 2 , 0. Then, the general solution Xx A cos x B sin x. X0 A 0, X A sin x B cos x B cos x 0. , n 1, 2, . Now, we do not want B 0. So, cos 0, which implies that 2n1 2 2n1 2 Thus the eigenvalues are n 4 2 . The corresponding solutions (eigenfunctions) 2n1x are X n x sin 2 . 9 Problem 10 By separating the variables, solve the following wave equation 4u xx u tt , 0 x , t 0 u0, t 0, u, t 0, t 0. ux, 0 1, u t x, 0 0, 0 x . solution: Set ux, t XxTt. 4X T XT . X T . X 4T X X 0. So, n n22 2 X0 0, X 0. n 2 and X n x sin nx. Plug in n n 2 into T 4T 0. We get T 4n 2 0. Tt c 1 cos 2nt c 2 sin 2nt. Since u t x, 0 0, T 0 0. T t 2nc 1 sin 2nt 2nc 2 cos 2nt, T t 2nc 2 0, Hence, T n t cos 2nt. Now c 2 0. ux, t c n sin nx cos 2nt. n1 ux, 0 c n sin nx 1. m1 Fourier sine series of 1 is 4 n sin nx. n odd Hence, cn 4 n, if n is odd and otherwise, c n 0. Thus, ux, t 4 n sin nx cos 2nt. n odd 10 Problem 11 Find the solution of the following problem. You are not required to determine the coefficients. u xx u yy 0, 0 x 2, 0 y 2 ux, 0 ux, 2 0 u0, y 0. solution: u xx u yy 0, 0 x 2, 0 y 2 1 ux, 0 ux, 2 0 2 Set ux, y XxYy. Then, 1 tells us that X Y XY 0. X Y . X Y So, we have Y Y 0, 3 X X 0. 4 From 2, we know Y0 Y2 0. Using these boundary conditions and the equation 3 above, we have a familiar eigenvalue problem Y Y 0 Y0 Y2 0. 2 2 Eigenvalues: n n 4 ny Eigenfunctions: Y n y sin 2 . We find from u0, y 0 that X0 0. Now plug in n consider 2 2 X n x 0 n22 4 into the equation 4 and X0 0. We know that Xx c 1 e nx 2 c2e nx 2 . Since X0 c 1 c 2 0, c 2 c 1 . Hence, nx nx Xx c 1 e 2 e 2 . Thus, X n x e nx 2 e nx 2 . So, ux, y c n X n xY n y c n e n1 n1 nx 2 e nx 2 sin ny 2 . 11