Survey

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
```6/3/2013
DC Circuits: Ch 32
• Voltage – Starts out at highest point at “+” end of
battery
• Voltage drops across lightbulbs and other
sources of resistance.
• Voltage increases again at battery.
The following circuit uses a 1.5 V battery and
has a 15 W lightbulb.
a. Calculate the current in the circuit
b. Calculate the voltage drop across the lightbulb.
c. Sketch a graph of voltage vs. path (battery, top
wire, resistor, bottom wire)
I
+
Voltage highest
Voltage zero
Resistors in Series
• Same current (I) passes through all resistors
(bulbs)
• All bulbs are equally bright (energy loss, not
current loss)
• Voltage drop across each resistor (V1,V2, V3)
1
6/3/2013
V = V1 + V2 + V3
V = IR1 + IR2 + IR3
V = I(R1 + R2 + R3)
Req = R1 + R2 + R3
V = IReq
Resistors in Parallel
• Current splits at the junction
• Same Voltage across all resistors
Which combination of auto headlights will produce
the brightest bulbs? Assume all bulbs have a
resistance of R.
I = I1 + I2 + I3
I1 = V
R1
I=V
Req
1 = 1
Req R1
+
1
R2
+
1
R3
For the Bulbs in Series:
Req = R + R = 2R
What current flows through each resistor in the
following circuit? (R = 100 W)
For the Bulbs in Parallel
1 = 1
+
1
Req R
R
1 = 2
Req R
Req = R/2
The bulbs in parallel have less resistance and
will be brighter
Req = R1 + R2
Req = 200 W
V = IReq
I = V/Req
I = 24.0 V/ 200 W = 0.120 A
2
6/3/2013
Calculate the current through this circuit, and the
voltage drop across each resistor.
Req = 400 W + 290 W
Req = 690 W
V = IR
I = V/Req
I = 12.0 V/690 W
I = 0.0174 A
What current flows through each of the
resistors in this circuit? (Both are
100 W)
Vab = (0.0174A)(400W)
Vab = 6.96 V
Vbc = (0.0174A)(290W)
Vbc = 5.04 V
DC Circuits: Ex 4
What current will flow through the circuit shown?
1 = 1
+
Rp = 500 W
1
700 W
Rp = 290 W
(0.48 A, 0.24 A)
Req = 400 W + 290 W
Req = 690 W
V = IR
I = V/R
I = 12.0 V/690 W
I = 0.017 A or 17 mA
Example 4
Calculate the equivalent resistance in the following
circuit.
3
6/3/2013
DC Circuits: Ex 5
What current is flowing through just the 500 W
resistor?
The voltage through the resistors in parallel will be:
12.0 V – 6.8 V = 5.2 V
To find the current across the 500 W resistor:
First we find the voltage drop across the first
resistor:
V = IR = (0.017 A)(400 W)
V = 6.8 V
DC Circuits: Ex 6
Which bulb will be the brightest in this
arrangement (most current)?
V = IR
I = V/R
I = 5.2 V/500 W = 0.010 A = 10 mA
Bulb C (current gets split running through A and
B)
What happens when the switch is opened?
– C and B will have the same brightness (I is constant
in a series circuit)
DC Circuits: Ex 5
What resistance would be present between points A
and B?
(ANS: 41/15 R)
4
6/3/2013
EMF and Terminal Voltage
EMF: Example 1
• Batteries - source of emf (Electromotive Force),
E (battery rating)
• All batteries have some internal resistance r
A 12-V battery has an internal resistance of 0.1 W.
If 10 Amps flow from the battery, what is the
terminal voltage?
Vab = E – Ir
Vab = E – Ir
Vab = terminal(useful)voltage
E = battery rating
Vab = 12 V – (10 A)(0.10 W)
Vab = 11 V
r = internal resistance
EMF: Example 2
Calculate the current in the following circuit.
Req = 6 W + 2.7 W
Req = 8.7 W
1/Req = 1/8 W + ¼ W
Req = 2.7 W
1/Req = 1/10 W + 1/8.7 W
Req = 4.8 W
Everything is now in series
Req = 4.8 W + 5.0 W + 0.50 W
Req = 10.3 W
V = IR
I = V/R
I = 9.0 V/10.3 W
I = 0.87 A
5
6/3/2013
EMF: Example 2a
Now calculate the terminal(useful)voltage.
V = E – Ir
V = 9.0 V – (0.87 A)(0.50 W)
V = 8.6 V
Kirchoff’s Rules
1. Junction Rule - The sum of the
currents entering a junction must
equal the sum of currents leaving
2. Loop Rule - The sum of the changes
in potential around any closed path =
0
Kirchoff Conventions
Grounded
•
•
•
•
Wire is run to the ground
Houses have a ground wire at main circuit box
Does not affect circuit behavior normally
Provides path for electricity to flow in
emergency
Kirchoff Conventions
The “loop
current” is not a
current.
Just a direction
that you follow
around the loop.
Kirchoff’s Rule Ex 1
6
6/3/2013
Junction Rule
I1 = I2 + I3
Loop Rule
Main Loop
6V – (I1)(4W) – (I3)(9W) = 0
Side Loop
(-I2)(5W) + (I3)(9W) = 0
I1 = I2 + I3
6V – (I1)(4W) – (I3)(9W) = 0
(-I2)(5W) + (I3)(9W) = 0
Solve Eqn 1
(-I2)(5W) + (I3)(9W) = 0
(I3)(9W) = (I2)(5W)
I3 = 5/9 I2
Eqn 3
Eqn 2
Eqn 3
Substitution into Eqn 2
6V – (I2 + I3)(4W) – (I3)(9W) = 0
6 – 4I2 -4I3 - 9I3 = 0
6 – 4I2 - 13I3 = 0
I3 = 5/9 I2 (from last slide)
6 – 4I2 - 13(5/9 I2) = 0
6 = 101/9 I2
I2 = 0.53 A
I3 = 5/9 I2 = 0.29 A
I1 = I2 + I3 = 0.53 A + 0.29 A = 0.82 A
7
6/3/2013
Kirchoff’s Rule Ex 2
I1 = I2 + I3
Loop Rule
Main Loop
9V – (I3)(10W) – (I1)(5W) = 0
Side Loop
(-I2)(5W) + (I3)(10W) = 0
(-I2)(5W) + (I3)(10W) = 0
(I2)(5W) = (I3)(10W)
I2 = 2I3
I3 = 9/25 = 0.36 A
I2 = 2I3 = 2(0.36 A) = 0.72 A
I1 = I2 + I3 = 0.36A + 072 A = 1.08 A
9V – (I3)(10W) – (I1)(5W) = 0
9V – (I3)(10W) – (I2 + I3)(5W) = 0
9 –10I3 – 5I2 – 5I3 = 0
9 –15I3 – 5I2 = 0
9 –15I3 – 5(2I3) = 0
9 –25I3 = 0
I3 = 9/25 = 0.36 A
8
6/3/2013
Kirchoff’s Rules: Ex 3
Calculate the currents in
the following circuit.
Bottom Loop (clockwise)
10V – (6W)I1 – (2W)I3 = 0
Top Loop (clockwise)
-14V +(6W)I1 – 10 V -(4W)I2 = 0
Work with Bottom Loop
10V – (6W)I1 – (2W)I3 = 0
I1 + I2 = I3
10 – 6I1 – 2(I1 + I2) = 0
10 – 6I1 – 2I1 - 2I2 = 0
10 - 8I1 - 2I2 = 0
10 = 8I1 + 2I2
5 = 4I1 + I2
I2 = 5 - 4I1
I1 = 22/11 = 2.0 Amps
Working with Top Loop
-14V +(6W)I1 – 10 V -(4W)I2 = 0
24 = 6I1 - 4I2
12 = 3I1 - 2I2
12 = 3I1 - 2(5 - 4I1)
22 = 11I1
I1 + I2 = I3
I3 = -1.0 A
Batteries in Series
• If + to -, voltages add (top
drawing)
• If + to +, voltages subtract
(middle drawing = 8V, used
to charge the 12V battery as
in a car engine)
I2 = 5 - 4I1
I2 = 5 – 4(2) = -3.0 Amps
Extra Kirchoff Problems
I1 = -0.864 A
I2 = 2.6 A
I3 = 1.73 A
Batteries in Parallel
• Provide large current when
needed (Same voltage)
9
6/3/2013
A Strange Example
Calculate I (0.5 Amps)
RC Circuits
•
•
•
•
Capacitors store energy (flash in a camera)
Resistors control how fast that energy is released
Car lights that dim after you shut them
Camera flashes
a. Calculate the equivalent resistance. (2.26 W)
b. Calculate the current in the upper and lower
wires. (3.98 A)
c. Calculate I1, I2, and I3 (0.60 A, 2.25 A, 1.13 A)
d. Sketch a graph showing the voltage through the
circuit starting at the battery.
DVc + DVr = 0
Q - IR = 0
C
(Divide by R)
Q - I =0
RC
(I = -dQ/dt)
Q + dQ = 0
RC dt
 = time constant (time to reach 63% of full
voltage)
 = RC
10
6/3/2013
A versatile relationship
Charging the Capacitor (for capacitor)
V = Vo (1-e-t/RC)
Q = Qo (1-e-t/RC)
I = Io e-t/RC
Discharging the Capacitor
V = Vo e-t/RC
I = Io(e-t/RC)
Q = Qo e-t/RC
RC Circuits: Ex 1
What is the time constant for an RC circuit of
resistance 200 kW and capacitance of 3.0 mF?
 = (200,000 W)(3.0 X 10-6 F)
 = 0.60 s
(lower resistance will cause the capacitor to charge
more quickly)
RC Circuits: Ex 2
What will happen to the bulb (resistor) in the
circuit below when the switch is closed (like a
car door)?
RC Circuits: Ex 3
An uncharged RC circuit has a 12 V battery, a 5.0
mF capacitor and a 800 kW resistor. Calculate
the time constant.
 = RC
 = (5.0 X 10-6 F)(800,000 W)
 = 4.0 s
Answer: Bulb will glow brightly initially, then dim
as capacitor nears full charge.
What is the maximum charge on the capacitor?
Q = CV
Q = (5.0 X 10-6 F)(12 V)
Q = 6 X 10-5 C or 60 mC
What is the voltage and charge on the capacitor
after 1 time constant (when discharging)?
11
6/3/2013
Consider the circuit below, which is being charged.
Calculate:
a. The time constant (6 ms)
b. Maximum charge on the capacitor (3.6 mC)
c. Maximum current (600 mA)
d. Time to reach 99% of maximum charge (28 ms)
e. Current when charge = ½ Qmax (300 mA)
f. The charge when the current is 20% of the maximum
value. (2.9 mC)
RC Circuits: Ex 4
An RC circuit has a charged capacitor C = 35 mF
and a resistance of 120W. How much time will
elapse until the voltage falls to 10 percent of its
original (maximum) value?
V = Vo e-t/RC
0.10Vo =Voe-t/RC
0.10 =e-t/RC
ln(0.10) = ln(e-t/RC)
-2.3 = -t/RC
RC Circuits: Ex 5
If a capacitor is discharged in an RC circuit, how
many time constants will it take the voltage to
drop to ¼ its maximum value?
Discharging the RC Circuit
V = Vo e-t/RC
2.3 = t/RC
t = 2.3RC
t = (2.3)(120W)(35 X 10-6 F)
t = 0.0097 s or 9.7 ms
A fully charged 1.02 mF capacitor is in a circuit
with a 20.0 V battery and a resistor. When
discharged, the current is observed to
decrease to 50% of it’s initial value in 40 ms.
a. Calculate the charge on the capacitor at t=0
(20.4 mC)
b. Calculate the resistance R (57 W)
c. Calculate the charge at t = 60 ms (7.3 mC)
(t = 1.39RC)
12
6/3/2013
The capacitor in the drawing has been fully
charged. The switch is quickly moved to
position b (camera flash).
a. Calculate the initial charge on the capacitor. (9
mC)
b. Calculate the charge on the capacitor after 5.0
ms. (5.5 mC)
c. Calculate the voltage after 5.0 ms (5.5 V
d. Calculate the current through the resistor after
5.0 ms (0.55 A)
Meters
• Galvanometer
– Can only handle a small current
• Full-scale Current Sensitivity (Im)
– Maximum deflection
• Ex:
– Multimeter
– Car speedometer
Measuring I and V
Measuring Current
– Anmeter is placed in series
– Current is constant in series
Anmeter (Series)
Voltmeter (parallel)
Measuring Voltage
– Voltmeter placed in parallel
– Voltage constant in parallel circuits
– Measuring voltage drop across a resistor
DC Anmeter
• Uses “Shunt” (parallel) resistor
• Shunt resistor has low resistance
• Most of current flows through shunt, only a little
through Galvanometer
• IRR = IGr
Meters: Ex 1
What size shunt resistor should be used if a
galvanometer has a full-scale sensitivity of 50 mA
and a resistance of r= 30 W? You want the meter
to read a 1.0 A current.
Voltage same through both (V=IR)
IRR = Igr
Since most of the current goes through the shunt
IR ~ 1 A
13
6/3/2013
IRR = Igr
(1 A)(R) = (50 X 10-6 A)(30 W)
R = 1.5 X 10-3 W or 1.5 m W
Meters: Ex 2
Design an anmeter that can test a 12 A vacuum
cleaner if the galvanometer has an internal
resistance of 50 W and a full scale deflection of 1
mA.
IRR = Igr
(12 A)(R) = (1 X 10-3 A)(50 W)
R = 4.2 X 10-3 W or 4.2 m W
DC Voltmeter
• Resistor in series
• Large R for resistor (keeps current low in
Galvanometer)
• V = I(R + r)
Meters: Ex 4
Design a voltmeter for a 120 V appliance with and
internal galvanometer resistance of 50 W and a
current sensitivity of 1 mA.
Meters: Ex 3
What resistor should be used in a voltmeter that
can read a maximum of 15 V? The galvanometer
has an internal resistance of 30W and a full scale
deflection of 50 mA.
V = I(R + r)
12 V = (50 X 10-6 A)(R + 30W)
R + 30W = 12 V
50 X 10-6 A
R + 30W = 300,000 W
R ~ 300,000 W
Electric Power
• Watt
• 1 Watt = 1 Joule
1 second
P = I2R
(ANS: R = 120,000 W)
14
6/3/2013
Power: Ex 1
Household Electricity
Calculate the resistance of a 40-W auto headlight
that operates at 12 V.
• Kilowatt-hour
• You do not pay for power, you pay for energy
P = I2R
1 kWh = (1000 J)(3600 s) = 3.60 X 106 J
1s
(3.6 W)
Power: Ex 2
An electric heater draws 15.0 A on a 120-V line.
How much power does it use?
P = I2R
V = IR so R = V/I
P = I2V
I
P = IV = (15 A)(120V) = 1800 W or 1.8 kW
Power: Ex 4
A lightening bolt can transfer 109 J of energy at a
potential difference of 5 X 107V over 0.20 s.
What is the charge transferred?
V = PE/Q
Q = E/V = 109 J/ 5 X 107V = 20 C
Power: Ex 3
How much does it cost to run it for 30 days if it
operates 3.0 h per day and the electric company
charges 10.5 cents per kWh?
Hours = 30 days X 3.0 h/day = 90 h
Cost = (1.80 kW)(90 h)(\$0.105/kWh) = \$17
What is the current?
I = DQ/Dt
I = 20 C/0.2 s = 100 A
What is the power?
P = I2R
V = IR so R = V/I
P = I2V
I
P = IV = (100 A)(5 X 107V ) = 5 X 109 W
15
6/3/2013
Household Electricity
much current per wire)
• Metal melts or bimetallic strip expands
Household Electricity:
Ex 1
Determine the total current
drawn by all of the
appliances shown.
P = IV
I = P/V
Ilight = 100W/120 V = 0.8 A
Ilight = 100W/120 V = 0.8 A
Iheater = 1800W/120 V = 15 A
Istereo = 350W/120 V = 2.9 A
Ihair = 1200W/120 V = 10.0 A
DC vs AC
Itotal = 0.8A + 15.0A + 2.9A + 10.0A = 28.7 A
This would blow the 20 A fuse
DC vs AC
DC
AC
•Electrons flow constantly
•Electrons flow in short burst
•Electrons flow in only one
direction
•Electrons switch directions
(60 times a second)
•Batteries
•House current
Jump Starting a Car
POSITIVE TO POSITIVE
http://www.ibiblio.org/obp/electricCircuits/AC/AC_1.html
16
6/3/2013
2. Clockwise (12 V. 50 W, (10 mF and 100 W
parallel))
4. a) 0.10 A
b) Graph page 32-3
6. a) 5 V, 10 V b) Graph page 32-4
8. 1.92 W, 2.9 W
10. 3.6 X 106 J
14. 25 W
18. 3.2 %
20. R/4
22. 12 W
24. 24 W
46. 9.0 V
50.1.0 A, 2.0 A, 15 V
56.a) 8 Amps (8 Vab)
58. a) R =0.505 W
62.Resistor(W)
4
6
8
24(bottom)
24 (right)
26.
28.
30.
32.
34.
36.
38.
40.
42.
44.
183 W
13 V, 5 V, 0 V, -2 V
2 ms
6.9 ms
0.87 K W
A> D = E > B = C
1.99 m
4.0 W
7W
10 W and 60 V
b) 9 Amps (0 Vab)
b) Req = 0.500 W
(V)
Current (A)
8
2
8
1.3
8
1
8
0.33
16
0.66
17
```
Related documents