Download Math 217 Final Exam Dec 11, 2015 Instructions: 1. There are three

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 217 Final Exam
Dec 11, 2015
Instructions:
1. There are three parts in this exam. Part I is multiple choice, Part II is True/False, and Part
III consists of hand-graded problems.
2. The total number of points is 100.
3. You may use a calculator.
4. The scantron and Part III will be collected at the end of the exam. You may take Part I and
Part II with you at the end of the exam.
Taylor series:
x
e =
∞
X
xn
n!
n=0
cos x =
∞
X
n=0
sin x =
=1+x+
x2 x3
+
+ ...
2
3!
x2 x4
(−1)n x2n
=1−
+
− ...
(2n)!
2
4!
∞
X
(−1)n x2n+1
n=0
∞
X
cosh x =
n=0
(2n + 1)!
=x−
x3 x5
+
− ...
3!
5!
x2n
x2 x4
=1+
+
+ ...
(2n)!
2
4!
∞
X
x3 x5
x2n+1
sinh x =
=x+
+
+ ...
(2n + 1)!
3!
5!
n=0
ln(1 + x) =
∞
X
(−1)n+1 xn
n=1
n
=x−
x2 x3
+
− ...
2
3
∞
X
1
=
xn = 1 + x + x2 + x3 + . . .
1−x
n=0
Trigonometry:
cos(x + y) = cos x cos y − sin x sin y
sin(x + y) = sin x cos y + sin y cos x
2 cos x cos y = cos(x − y) + cos(x + y)
2 sin x sin y = cos(x − y) − cos(x + y)
2 sin x cos y = sin(x + y) − sin(x − y)
cos(2x) = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x
et + e−t
2
et − e−t
sinh t =
2
eit = cos t + i sin t
cosh t =
1
Laplace transforms:
f (t) = L−1 {F (s)}
1
eat
tn ,
n = positive integer
tp ,
p > −1
sin at
cos at
sinh at
cosh at
eat sin bt
eat cos bt
tn eat ,
n = positive integer
uc (t)
uc (t)f (t − c)
ect f (t)
f (ct)
Z t
f (t − τ )g(τ )dτ
F (s) = L{f (t)}
1
, s>0
s
1
, s>a
s−a
n!
, s>0
n+1
s
Γ(p + 1)
, s>0
sp+1
a
, s>0
2
s + a2
s
, s>0
2
s + a2
a
, s > |a|
2
s − a2
s
, s > |a|
2
s − a2
b
, s>a
(s − a)2 + b2
s−a
, s>a
(s − a)2 + b2
n!
, s>a
(s − a)n+1
e−cs
, s>0
s
e−cs F (s)
F (s − c)
1 s
,
F
c
c
c>0
F (s)G(s)
0
δ(t − c)
e−cs
f (n) (t)
sn F (s) − sn−1 f (0) − sn−2 f 0 (0) − · · · − f (n−1) (0)
(−t)n f (t)
F (n) (s)
2
Part I. Multiple Choices
5 × 10 = 50 points
1. Find the solution of the initial value problem:
(1 + x)y 0 + y = cos x,
A. y = 1 + x
B. y =
C. y =
D. y =
cos x
1+x
sin x
1+x
1+sin x
1+x
ex
1+x
E. y =
F. none of the above
3
y(0) = 1.
(1)
2. Find the (implicit) solution of the exact differential equation
(x + y)y 0 = −(x + arctan y)(1 + y 2 ),
A.
x2
2
x2
2
+ x arctan y = 0
+ x arctan y + 12 ln(1 + y 2 ) = 0
C. y = tan − x2
B.
2
D. y 2 = e−x − 1
2
E. y = e−x − 1
F. none of the above
4
y(0) = 0.
(2)
3. Find the solution to the initial value problem:
2y 000 − 3y 00 − 2y 0 = 0,
y(0) = 1,
1
A. − 27 + 4e− 2 t + 12 e2t
1
B. 1 − 2e− 2 t + 2e2t
C. cosh t + 12 sinh(2t)
D. cos t + 12 sin(2t)
E. eit + 3e−it
F. none of the above
5
y 0 (0) = −1,
y 00 (0) = 3.
(3)
4. Which of the following is NOT a solution of the following differential equation?
y 00 + 4y = cos 3t
A. − 51 cos 3t
B. cos 2t − 51 cos 3t
C. sin 2t − 15 cos 3t
D. e2ti + e−2ti − 15 cos 3t
E. cos 2t + sin 2t
F. all of the above are solutions of (4)
6
(4)
5. For the differential equation (5), what is the lower bound of the radius of convergence for
the power series solution around 0?
(1 + x2 )y 00 − cos x · y 0 + ex y = 0.
A. 0
B. 1
√
C. 2
D. π
E. ∞
F. none of the above
7
(5)
6. If
y(x) =
∞
X
an xn
n=0
is the Taylor series around 0 for the function
cos(1 + x) + sin(1 + x),
then what is the value of a2015 ?
A.
a2015 =
sin 1 − cos 1
2015
a2015 =
cos 1 − sin 1
2015!
a2015 =
sin 1 − cos 1
2015!
B.
C.
D.
a2015 =
π
2015!
a2015 =
π 2015
2015!
E.
F. none of the above
8
7. Find the inverse Laplace transform of
F (s) =
e2−2s (2s2 + π 2 − 1)
.
(s − 1)(s2 + π 2 )
A.
f (t) = et + e2 cos(πt) +
B.
C.
D.
e2
sin(πt)
π
e2
t
2
f (t) = u2 (t) e + e cos(πt) +
sin(πt)
π
e2
t−2
2
sin(πt)
f (t) = u2 (t) e
+ e cos(πt) +
π
e2
t
2
sin(t − 2)
f (t) = u2 (t) e + e cos(t − 2) +
π
E.
f (t) = u2 (t) et−2 + e2 cos(t − 2) + e2 sin(t − 2)
F. none of the above
9
8. Find the Laplace transform of the piecewise


t
f (t) = 2 − t


0
A.
F (s) =
continuous function
if 0 ≤ t < 1
if 1 ≤ t < 2
if t ≥ 2
2
1
1
− 2+ 2
2
s
s
s
B.
F (s) = 1 − e−s + e−2s
C.
F (s) = 1 − 2e−s + e−2s
D.
F (s) =
1
2e−s e−2s
+
+ 2
s2
s2
s
F (s) =
1
2e−s e−2s
−
+ 2
s2
s2
s
E.
F. none of the above
10
(6)
9. If y(t) is the solution of the initial value problem:
y 00 + 4y = δ(t − 2014π),
y(0) = 0,
then what is the value of y(2015π)?
A. 0
B. −1
C. 1
D. π
E.
π
2
F. none of the above
11
y 0 (0) = 0,
(7)
10. Find the inverse Laplace transform of
F (s) = ln
A.
s2 + 1
s2 + 4
2 +1
f (t) = et
.
2 +4
+ et
B.
f (t) = e2t + e−2t
C.
f (t) = u1 (t) cos t + u2 (t) sin(2t)
D.
E.
2
f (t) = (2 cos t + 1)(cos t − 1)
t
2
f (t) = (cos t − cos(2t))
t
F. none of the above
12
(8)
Part II. True/False
5 × 2 = 10 points
Choose A if the statement is true; choose B if the statement is false.
11. There is a unique solution to the initial value problem:
1
y 0 − y 2 = 0,
y(0) = 0.
12. If p and q are continuous functions, and y1 and y2 are solutions of the differential equation
y 00 + p(t)y 0 + q(t)y = 0,
then we have
−
W (y1 , y2 )(t) = e
Rt
t0
p(τ )dτ
.
for some constant t0 .
13. If p and q are continuous real-valued functions, and u(t)+iv(t) are complex-valued solutions
of the differential equation
y 00 + p(t)y 0 + q(t)y = 0,
(9)
then both u and v are also solutions of (9).
14. For the power series
∞
X
an xn ,
n=0
if the radius of convergence is ρ and |x1 | ≥ ρ, then the series
∞
X
an (x1 )n
n=0
does not converge.
15. If f is continuous function on [0, ∞), then the Laplace transform
L{f (t)} = F (s)
exists for s > 0.
13
Math 217 Final Exam
Dec 11, 2015
Part III will be collected separately. Please write your NAME and your STUDENT NUMBER.
Student Number:
Name:
For graders:
16a + 16b. + 16c. + 16d.
16e.
17.
Total:
14
Part III. Hand-graded problems
10 + 10 + 20 = 40 points
16a. (4 points)
Find the general solution of the homogenous differential equation:
y 00 − 4y = 0.
15
(10)
16b. (6 points) Use the method of undetermined coefficients to find the general solution of the
non-homogeneous differential equation:
y 00 − 4y = sinh 2t.
16
(11)
This page is intentionally left blank.
17
16c. (6 points)
Use the method of variation of parameters to find the general solution of the non-homogeneous
differential equation:
y 00 − 4y = sinh 2t.
(12)
18
This page is intentionally left blank.
19
16d. (4 points)
Use the results in 16b. or 16c. to find the unique solution of the initial value problem:
y 00 − 4y = sinh 2t,
y(0) = 0,
20
y 0 (0) = 0.
(13)
16e. (10 points)
Use the method of Laplace transform to find the solution of the initial value problem:
y 00 − 4y = sinh 2t,
y(0) = 0,
21
y 0 (0) = 0.
(14)
This page is intentionally left blank.
22
17. Find the solution of the initial value problem:
y 00 + y = f (t),
where
(
1
f (t) =
0
y(0) = 0,
y 0 (0) = 1
if 0 ≤ t < π
if t ≥ π
23
(15)
(16)
This page is intentionally left blank.
24
This page is intentionally left blank.
25
Related documents