Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Trigonometry — §4.2.1, 4.2.2 31 Trigonometry Identities ◮ sin2 x + cos2 x = 1 ◮ sin(x + y ) = sin x cos y + cos x sin y ◮ cos(x − y ) = cos x cos y − sin x sin y Remember key values of sin, cos. Trigonometry — §4.2.1, 4.2.2 31 Trigonometry Identities ◮ sin2 x + cos2 x = 1 ◮ sin(x + y ) = sin x cos y + cos x sin y Remember key values of sin, cos. ◮ cos(x − y ) = cos x cos y − sin x sin y Example. Determine the value of cot(π/24). (p. 233) Trigonometry — §4.2.1, 4.2.2 31 Trigonometry Identities ◮ sin2 x + cos2 x = 1 ◮ sin(x + y ) = sin x cos y + cos x sin y Remember key values of sin, cos. ◮ cos(x − y ) = cos x cos y − sin x sin y Example. Determine the value of cot(π/24). π cos 24 π sin 24 (p. 233) Trigonometry — §4.2.1, 4.2.2 31 Trigonometry Identities ◮ sin2 x + cos2 x = 1 ◮ sin(x + y ) = sin x cos y + cos x sin y Remember key values of sin, cos. ◮ cos(x − y ) = cos x cos y − sin x sin y Example. Determine the value of cot(π/24). π π cos 24 2 cos2 24 = π π π sin 24 2 sin 24 cos 24 (p. 233) Trigonometry — §4.2.1, 4.2.2 31 Trigonometry Identities ◮ sin2 x + cos2 x = 1 ◮ sin(x + y ) = sin x cos y + cos x sin y Remember key values of sin, cos. ◮ cos(x − y ) = cos x cos y − sin x sin y Example. Determine the value of cot(π/24). π π π cos 24 2 cos2 24 1 + cos 12 = = π π π π sin 24 2 sin 24 sin 12 cos 24 (p. 233) Trigonometry — §4.2.1, 4.2.2 31 Trigonometry Identities ◮ sin2 x + cos2 x = 1 ◮ sin(x + y ) = sin x cos y + cos x sin y Remember key values of sin, cos. ◮ cos(x − y ) = cos x cos y − sin x sin y Example. Determine the value of cot(π/24). (p. 233) π π π cos 24 2 cos2 24 1 + cos 12 1 + cos( π3 − π4 ) = = = . π π π π sin 24 2 sin 24 sin 12 sin( π3 − π4 ) cos 24 Trigonometry — §4.2.1, 4.2.2 31 Trigonometry Identities ◮ sin2 x + cos2 x = 1 ◮ sin(x + y ) = sin x cos y + cos x sin y Remember key values of sin, cos. ◮ cos(x − y ) = cos x cos y − sin x sin y Example. Determine the value of cot(π/24). (p. 233) π π π cos 24 2 cos2 24 1 + cos 12 1 + cos( π3 − π4 ) = = = . π π π π sin 24 2 sin 24 sin 12 sin( π3 − π4 ) cos 24 Applying the identities, √ 2 6 + √ 4 √ 4 6 2 4 − 4 1+ √ Trigonometry — §4.2.1, 4.2.2 31 Trigonometry Identities ◮ sin2 x + cos2 x = 1 Remember key values of sin, cos. ◮ sin(x + y ) = sin x cos y + cos x sin y ◮ cos(x − y ) = cos x cos y − sin x sin y Example. Determine the value of cot(π/24). (p. 233) π π π cos 24 2 cos2 24 1 + cos 12 1 + cos( π3 − π4 ) = = = . π π π π sin 24 2 sin 24 sin 12 sin( π3 − π4 ) cos 24 Applying the identities, √ 2 6 + √ 4 √ 4 6 2 4 − 4 1+ √ =2+ √ √ √ 2 + 3 + 6. Trigonometry — §4.2.1, 4.2.2 32 Trigonometry Identities Example. Find all acute angles x satisfying the equation (p. 231) 2 sin x cos 40◦ = sin(x + 20◦ ). Trigonometry — §4.2.1, 4.2.2 32 Trigonometry Identities Example. Find all acute angles x satisfying the equation (p. 231) 2 sin x cos 40◦ = sin(x + 20◦ ). Solution. Find a solution that works. Then apply identity, solve for x. Trigonometry — §4.2.1, 4.2.2 32 Trigonometry Identities Example. Find all acute angles x satisfying the equation (p. 231) 2 sin x cos 40◦ = sin(x + 20◦ ). Solution. Find a solution that works. Then apply identity, solve for x. 2 sin x cos 40◦ = sin(x + 20◦ ) = sin x cos 20◦ + sin 20◦ cos x. Trigonometry — §4.2.1, 4.2.2 32 Trigonometry Identities Example. Find all acute angles x satisfying the equation (p. 231) 2 sin x cos 40◦ = sin(x + 20◦ ). Solution. Find a solution that works. Then apply identity, solve for x. 2 sin x cos 40◦ = sin(x + 20◦ ) = sin x cos 20◦ + sin 20◦ cos x. tan x = sin 20◦ /(2 cos 40◦ − cos 20◦ ). Trigonometry — §4.2.1, 4.2.2 32 Trigonometry Identities Example. Find all acute angles x satisfying the equation (p. 231) 2 sin x cos 40◦ = sin(x + 20◦ ). Solution. Find a solution that works. Then apply identity, solve for x. 2 sin x cos 40◦ = sin(x + 20◦ ) = sin x cos 20◦ + sin 20◦ cos x. tan x = sin 20◦ /(2 cos 40◦ − cos 20◦ ). For 0◦ ≤ x < 90◦ , tan x = C can only have one solution. Trigonometry — §4.2.1, 4.2.2 32 Trigonometry Identities Example. Find all acute angles x satisfying the equation (p. 231) 2 sin x cos 40◦ = sin(x + 20◦ ). Solution. Find a solution that works. Then apply identity, solve for x. 2 sin x cos 40◦ = sin(x + 20◦ ) = sin x cos 20◦ + sin 20◦ cos x. tan x = sin 20◦ /(2 cos 40◦ − cos 20◦ ). For 0◦ ≤ x < 90◦ , tan x = C can only have one solution. Idea: You may have to make use of e i θ = cos θ + i sin θ. Trigonometry — §4.2.1, 4.2.2 32 Trigonometry Identities Example. Find all acute angles x satisfying the equation (p. 231) 2 sin x cos 40◦ = sin(x + 20◦ ). Solution. Find a solution that works. Then apply identity, solve for x. 2 sin x cos 40◦ = sin(x + 20◦ ) = sin x cos 20◦ + sin 20◦ cos x. tan x = sin 20◦ /(2 cos 40◦ − cos 20◦ ). For 0◦ ≤ x < 90◦ , tan x = C can only have one solution. Idea: You may have to make use of e i θ = cos θ + i sin θ. Extension: e i (nx) = (e ix )n , so cos nx + i sin nx = (cos x + i sin x)n . Trigonometry — §4.2.1, 4.2.2 32 Trigonometry Identities Example. Find all acute angles x satisfying the equation (p. 231) 2 sin x cos 40◦ = sin(x + 20◦ ). Solution. Find a solution that works. Then apply identity, solve for x. 2 sin x cos 40◦ = sin(x + 20◦ ) = sin x cos 20◦ + sin 20◦ cos x. tan x = sin 20◦ /(2 cos 40◦ − cos 20◦ ). For 0◦ ≤ x < 90◦ , tan x = C can only have one solution. Idea: You may have to make use of e i θ = cos θ + i sin θ. Extension: e i (nx) = (e ix )n , so cos nx + i sin nx = (cos x + i sin x)n . Example. Let f (x) = a + b cos 2x + c sin 5x + d cos 8x for a, b, c, d ∈ R. Then we can write f (x) as the real part of a + be 2ix − ice 5ix + de 8ix . Discrete Geometry — §4.1.2, 4.1.6 Discrete Geometry Idea: Draw good pictures; choose good coordinates. 33 Discrete Geometry — §4.1.2, 4.1.6 Discrete Geometry Idea: Draw good pictures; choose good coordinates. Example. Inscribe in a circle a trapezoid T w/one side as diameter and a triangle △ with sides parallel to the sides of the trapezoid. Prove that T and △ have the same area. (p. 208) 33 Discrete Geometry — §4.1.2, 4.1.6 Discrete Geometry Idea: Draw good pictures; choose good coordinates. Example. Inscribe in a circle a trapezoid T w/one side as diameter and a triangle △ with sides parallel to the sides of the trapezoid. Prove that T and △ have the same area. (p. 208) Solution. Define T by coordinates (1, 0), (−1, 0), (b, a), (−b, a). Find the coordinates of △: 33 Discrete Geometry — §4.1.2, 4.1.6 Discrete Geometry Idea: Draw good pictures; choose good coordinates. Example. Inscribe in a circle a trapezoid T w/one side as diameter and a triangle △ with sides parallel to the sides of the trapezoid. Prove that T and △ have the same area. (p. 208) Solution. Define T by coordinates (1, 0), (−1, 0), (b, a), (−b, a). Find the coordinates of △: they are (0, 1), (b, −a), and (−b, −a). 33 Discrete Geometry — §4.1.2, 4.1.6 Discrete Geometry Idea: Draw good pictures; choose good coordinates. Example. Inscribe in a circle a trapezoid T w/one side as diameter and a triangle △ with sides parallel to the sides of the trapezoid. Prove that T and △ have the same area. (p. 208) Solution. Define T by coordinates (1, 0), (−1, 0), (b, a), (−b, a). Find the coordinates of △: they are (0, 1), (b, −a), and (−b, −a). Idea: Points in the plane can be represented as complex numbers. 33 Discrete Geometry — §4.1.2, 4.1.6 Discrete Geometry Idea: Draw good pictures; choose good coordinates. Example. Inscribe in a circle a trapezoid T w/one side as diameter and a triangle △ with sides parallel to the sides of the trapezoid. Prove that T and △ have the same area. (p. 208) Solution. Define T by coordinates (1, 0), (−1, 0), (b, a), (−b, a). Find the coordinates of △: they are (0, 1), (b, −a), and (−b, −a). Idea: Points in the plane can be represented as complex numbers. Example. Let ABC and BCD be two equilateral triangles, and line passing through D passes through AC at M and through AB at N. (p. 210) Prove that the angle between BM and CN is π3 . 33 Discrete Geometry — §4.1.2, 4.1.6 Discrete Geometry Idea: Draw good pictures; choose good coordinates. Example. Inscribe in a circle a trapezoid T w/one side as diameter and a triangle △ with sides parallel to the sides of the trapezoid. Prove that T and △ have the same area. (p. 208) Solution. Define T by coordinates (1, 0), (−1, 0), (b, a), (−b, a). Find the coordinates of △: they are (0, 1), (b, −a), and (−b, −a). Idea: Points in the plane can be represented as complex numbers. Example. Let ABC and BCD be two equilateral triangles, and line passing through D passes through AC at M and through AB at N. (p. 210) Prove that the angle between BM and CN is π3 . √ √ Solution. Choose A = i 3, B = −1, C = 1, and D = −i 3. Notice DBN is similar to DCM ⇒ can find the coordinates of M c−n = te i π/3 and N: if |MC | = 2t, then |BN| = 2t . Calculate b−m 33