Download Trigonometry Review for Test 4 Name______________________

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trigonometry Review for Test 4
Name______________________
Name the quadrant that contains the terminal point of the given arc with initial point (1, 0) on the unit
circle.
1)
7
Answer: III
Find the exact functional value for arc x.
2) sin
4
Answer:
2
2
Find the exact functional value.
3
3) sin
4
Answer:
2
2
Determine the quadrant that contains the terminal point of t.
4) cos t < 0 and sin t > 0
Answer: II
Find the indicated functional value.
2
5) If cos t = and sin t > 0, find sin t.
3
Answer:
5
3
Find the reference arc for the given arc.
11
6)
4
Answer:
4
1
Prove that the equation is an identity.
7) cos x csc x tan x = 1
Answer: Answers may vary. One possibility:
cos t csc t tan t = 1
1
sin t
cos t
=1
sint cos t
1=1
8) tan2x = sec2x - sin2x - cos2x
Answer: Answers may vary. One possibility:
tan2 = sec2 - sin2 - cos2
sec2 - 1 = sec2 - sin2 - cos2
sec2
sec2
9)
- (sin2 + cos2 ) == sec2 - sin2 - cos2
- sin2 - cos2 = sec2 - sin2 - cos2
cot2x
1 + sin x
=
csc x - 1
sin x
Answer: Answers may vary. One possibility:
cot2
1 + sin
=
csc - 1
sin
csc2 - 1 1 + sin
=
csc - 1
sin
(csc
- 1)(csc
csc -1
csc
+1=
1
sin
+
sin
sin
1 + sin
sin
=
+ 1)
=
1 + sin
sin
1 + sin
sin
=
1 + sin
sin
1 + sin
sin
Find the exact functional value using the cosine sum or difference identity.
10) cos
12
Answer:
6+ 2
4
2
11) cos 165°
6+ 2
4
Answer: -
Find the exact functional value.
4
12) If sin A = - , with A in QIV, then find sin 2A.
5
Answer: -
24
25
Prove the identity.
13) sin x +
2
= cos x
Answer: Answers may vary. One possibility:
sin x +
= cos x
2
sin x cos
2
+ cos x sin
2
= cos x
(sin x)(0) + (cos x)(1) = cos x
cos x = cos x
Solve the equation for exact values of x, 0
14) sin x = 1 - 2 sin2x
Answer: x =
x<2 .
5 3
,
6 6 2
,
Solve the equation for the exact values of , 0°
15) 4 sin2 = 3
< 360°.
Answer: 60°, 120°, 240°, 300°
Solve the equation for , 0°
< 360°. When necessary, approximate solution(s) to the nearest tenth of a
degree.
16) sin2 + 8 sin + 16 = 0
Answer: No solution
Solve the equation for the interval [0, 2 ).
17) 2 sin2x = sin x
Answer: 0, ,
5
6 6
,
3
18) cos2x + 2 cos x + 1 = 0
Answer:
Solve the equation for exact values of x, 0°
19) sin 2x = cos x
x < 360°.
Answer: 30°, 90°, 150°, 270°
Find all solutions to the given equation.
20) cos x + sin x cos x = 0
Answer:
2
+k
Find the exact functional value.
7
and sin B < 0, then find sin 2B.
21) If tan B =
24
Answer:
336
625
Solve the problem.
1
1
and sin B = - , with A in QI and B in QIV, then find sin(A - B).
3
2
22) If cos A =
Answer:
2 6+1
6
Find the exact functional value using either a sine sum or difference identity or a tangent sum or
difference identity.
23) sin 255°
Answer: -
6+ 2
4
24) tan 165°
Answer:
3-2
Find the exact functional value.
24
, and 90° < 2 < 180°, then find sin .
25) If cos 2 = 25
Answer:
7 2
10
4
26) If tan x =
Answer:
7
, and 180° < x < 270°, then find tan 2x.
24
336
527
Find cos(A + B).
27) cos A = -
Answer:
1
4
and tan B = , with A and B in QIII.
6
3
3 - 4 35
30
Use a half-angle identity to find the exact value of the expression.
5
28) sin
12
Answer:
2+ 3
2
Convert the angle to radians. Leave as a multiple of .
29) 210°
Answer:
7
6
Convert the radian measure to degree measure. Round the answer to two decimal places.
7
30)
6
Answer: 210°
Find the angle of smallest possible positive measure that is coterminal with the given angle.
31) -49°
Answer: 311°
32) 472°
Answer: 112°
On a circle with the given radius r, find the length s of the arc intercepted by the central angle .
33) r = 10.18 ft,
=
30
(Round to the nearest tenth if necessary.)
Answer: 1.1 ft.
5
34) r = 36.14 in.,
=170° (Round to the nearest tenth if necessary.)
Answer: 107.2 in.
Find the radius r of a circle with central angle
35) = 1.5 radians, s = 9 in.
and arc length s.
Answer: 6 in.
Find the central angle of a circle with radius r and arc length s.
36) r = 10 cm, s = 25 cm
Answer: 2.5
Find the area of a sector with the given central angle
37)
=
2
,
in a circle of radius r.
r = 8 cm
Answer: 16 sq cm
Find sin , cos , or tan , as specified, for an angle
terminal side.
38) (9, 12)
Answer:
in standard position if the given point is on its
4
5
Solve the problem.
39) From a balloon 1133 feet high, the angle of depression to the ranger headquarters is 46°27'.
How far is the headquarters from a point on the ground directly below the balloon (to the
nearest foot)?
Answer: 1077 ft
Find the exact function value, if defined.
40) tan 30°
Answer:
3
3
41) sec 45°
Answer:
2
42) cos 210°
Answer: -
3
2
6
43) sin
5
3
Answer: -
44) sec
3
2
3
4
Answer: - 2
Solve the right triangle with the given sides and angles.
45) a = 3.8, b = 1.3
Answer:
= 71.1°,
= 18.9°, c = 4.0
Find the missing parts of the triangle.
46) B = 63°30'
a = 12.20 ft
c = 7.80 ft
Answer: b = 11.17 ft, A = 77°49', C = 38°41'
Find the missing parts of the triangle. (Find angles to the nearest hundredth of a degree.)
47) a = 160 yd
b = 188 yd
c = 325 yd
Answer: A = 19.25°, B = 22.79°, C = 137.96°
Use Heron's Formula to find the area of a triangle with sides a, b, and c.
48) a = 240
b = 123
c = 305
Answer: 13,860.45 sq units
49) Find the area of the triangle. Round to the nearest tenth.
ang;e B = 62° c = 7 a = 10
Answer: 30.9 in2
Sketch the graph of the given function on -2
x
2 . State the range and the x-intercepts.
7
50) y = 3 sin x
Answer:
Range: y 3
x-intercepts: x = k
8
Sketch the graph of the function for at least one period. Indicate the amplitude, period, phase shift (if
any), vertical shift (if any) and range.
51) y = 3cos (2x) + 3
Answer:
Amplitude: 3
Period:
Vertical shift: 3 up
Range: 0 y 6
52) y = sin(x - )
Answer:
Amplitude: 1
Period: 2
Phase shift: to the right
Range: y 1
Find the domain, range, and period of the given function.
53) y = sin x
Answer: D: x
R: y 1
Period: 2
9
54) y = cos x
Answer: D: x
R: y 1
Period: 2
55) y = tan x
Answer: D: x
2
+k
R: y
Period:
Find the exact value of the real number y.
1
56) y = arcsin
2
Answer:
6
2
2
57) y = sin-1 Answer: -
58) y = cos-1
Answer:
4
3
2
6
10
Graph the function on the indicated interval, using a solid line. Then graph the inverse, using a dashed
line.
x
59) y = sin x,
2
2
Answer:
11
60) y = cos x, 0
x
2
Answer:
61) Write an equation fpr the cosine function using the given informaion.
Amplitude = 7 Period = 3 Phase shift = left
Answer: y = ±7cos
2
3
3
62) The angle of elevation from the end of the shadow to the top of the building is 63° and the
distance is 220 feet. Find the height of the building to the nearest foot.
Answer: 196 feet
12
Without using a table or graphing utility, sketch the graph of the given function on -2
the range and the x-intercepts.
63) y = - 3 cos x
Answer:
Range: y
3
x-intercepts: x =
2
+k
Indicate the period and the range of the given function.
64) y = -5sec x
Answer: P = 2 ; Range: y
5
13
x
2 . State
Consider the given point graphed on the unit circle. Match the point that corresponds to it on the given
graph.
65)
Graph of y = sinx
A) A
B) D
C) C
D) B
Answer: C
14
66)
Graph of y = sinx
A) D
B) A
C) B
D) C
Answer: D
Find the exact cosine and sine values for the indicated arc on the unit circle.
67)
7
6
Answer: -
3 1
,2
2
15
Name the arc that describes t, the direction and length of the arc on the unit circle.
68)
A) B)
8
C) D)
4
8
4
Answer: D
16
69)
A)
B)
4
8
C) D) -
8
4
Answer: D
17
Find polar coordinates of the given point.
70)
A) 5, B) 5,
2
3
C) 5,
1
3
D) 5,
1
2
2
3
Answer: B
18
71)
A) 1.5, B) 2, -
3
4
C) 2.5,
3
4
D) 2.5, -
3
4
1
4
Answer: D
Convert to rectangular coordinates.
72) 5,
2
Answer: (0, 5)
Convert to polar coordinates. Express the answer in radians.
73) (12, -12)
Answer: 12 2,
7
4
74) (-3, -3 3)
Answer: 6,
4
3
Convert to a polar equation.
75) x2 - y2 = 4
Answer: r2cos 2 = 4
19
Convert to a rectangular equation.
76) r sin = 10
Answer: y = 10
77) r = 5
Answer: x2 + y2 = 25
Express the complex number in trigonometric form.
78) 6 2 - 6 2i
Answer: 12(cos 315° + i sin 315°)
Express in standard notation.
79) 8(cos 30° + i sin 30°)
Answer: 4 3 + 4i
Graph the equation.
80) r = 4 sin
Answer:
20
Related documents