Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Using Sum/Difference and Double/Half Angle Identities Given that sin 5 and cos 13 and that and are in Quadrant I, 3 5 find the exact value for each of the following. **NO DECIMALS** 1. Problem sin a f 2. sin a f 3. cos a f 4. cos a f 5. tan a f 6. tan a f 7. sin2 8. sin2 9. cos2 Apply Identity Substitute Values Simplify 10. cos2 11. tan2 12. tan2 13. tan 2 1 14. tan 2 1 a 15. tan 2 3 f Using Sum/Difference and Double/Half Angle Identities KEY Given that sin 5 and cos 13 and that and are in Quadrant I, 3 5 5 find the exact value for each of the following. **NO DECIMALS** 3 4 13 12 5 Problem 1. sin a a 2. sin a f a a 5. tan a 6. tan Substitute Values Simplify sin 𝜃 cos 𝛾 + cos 𝜃 sin 𝛾 3 5 4 12 ( )( ) + ( )( ) 5 13 5 13 63 65 sin 𝛾 cos 𝜃 − cos 𝛾 sin 𝜃 ( 12 4 5 3 )( ) − ( )( ) 13 5 13 5 33 65 cos 𝛾 cos 𝜃 − sin 𝛾 sin 𝜃 ( 5 4 12 3 )( ) − ( )( ) 13 5 13 5 cos 𝜃 cos 𝛾 + sin 𝜃 sin 𝛾 4 5 3 12 ( )( ) + ( )( ) 5 13 5 13 f 3. cos 4. cos Apply Identity f f f f tan 𝜃 + tan 𝛾 1 − tan 𝜃 tan 𝛾 tan 𝜃 − tan 𝛾 1 + tan 𝜃 tan 𝛾 7. sin2 3 12 + 4 5 = 3 12 1− ( ) 4 5 3 12 − 4 5 = 3 12 1+ ( ) 4 5 63 20 16 − 20 33 − 20 56 20 − 16 65 56 65 − 63 16 − 33 56 2 sin 𝜃 cos 𝜃 2 3 4 ( )( ) 1 5 5 24 25 2 sin 𝛾 cos 𝛾 2 12 5 ( )( ) 1 13 13 120 169 4 2 3 2 ( ) −( ) 5 5 7 25 8. sin2 9. cos2 2 2 cos 𝜃 − sin 𝜃 10. cos2 2 5 2 12 2 ( ) −( ) 13 13 2 cos 𝛾 − sin 𝛾 11. tan2 2 3 6 ( ) 1 4 = 4 7 3 2 1 − (4) 16 2 12 24 ( ) 1 5 5 2 = 119 12 − 1−( ) 25 5 2 tan 𝜃 1 − tan2 𝜃 12. tan2 2 tan 𝛾 1 − tan2 𝛾 13. tan 2 1 ±√ 1 − cos 𝜃 1 + cos 𝜃 1 1 − cos 𝛾 ±√ 1 + cos 𝛾 8 8 4 13 √ =√ =√ =√ 18 5 18 9 1 + 13 13 a f Note: 𝛾 is in Quadrant I therefore 2 is in Quadrant I. Choose the positive. tan 2𝜃 + tan 3𝛾 1 − tan 2𝜃 tan 3𝛾 24 828 + 7 2035 24 828 1− ( 7 2035) Note: Now you have to substitute for tan 2𝜃 and split 3𝛾 into 𝛾 + 2𝛾. Then finally substitute for 2𝛾. From #11 tan 2𝜃 = Therefore tan 3𝛾 = 24 7 and from #12 tan 2𝛾 = − tan 𝛾+tan 2𝛾 1−tan 𝛾 tan 2𝛾 = 12 −120 + 5 119 12 −120 1− 5 ( 119 ) = 120 119 828 595 407 119 . = 828 2035 120 119 1 3 5 1 − 13 𝛾 15. tan 2 3 − 4 1 5 = √ 5 = √1 √ 4 9 9 1+ 5 5 𝜃 119 169 24 7 1− Note: 𝜃 is in Quadrant I therefore 2 is in Quadrant I. Choose the positive. 14. tan 2 − 2 3 − 54636 5627