Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Lecture 13: The Cardiovascular System ref: Cardiovascular Physiology, D. Mohrman and L. Heller, 4th ed. McGraw-Hill (1997) • Blood • Heart • Blood Vessels Arteries - capillaries - Veins Ventilation-Perfusion Relationships Ventilation O2 enters the lung CO2 leaves the lung P!(O2) = 100 mm P!(CO2)= 40 mm P!(O2) = 40 mm P!(O2) = 100 mm P!(CO2)= 45 mm P!(CO2)= 40 mm CO2 enters the lung Respiratory Exchange Ratio O2 leaves the lung Perfusion 8.63 R*[CA(O2) - CV(O2)]Q = V P(CO2) Increase V/Q (Shunt) : Increase P(O2) / Decrease P(CO2) (hypocapnia) Decrease V/Q (Ventilation Defect) : Decrease P(O2) / Increase P(CO2) (hypercapnia) Blood (5 liters or 11 pints) • plasma + RBC + WBC + platelets (erythrocytes) 5x106/mm3 (leukocytes) 7000/mm3 (clotting) 2x105/mm3 • Plasma: H2O + electrolytes (ions/Ca) + proteins • RBC: hematocrit = VRBC/Vtotal • WBC: 50-70% Phagocytes 20-40% Lymphocytes neutrophils (gobblers) 1-4% eosinophils (eat paracites; allergy complex) produce antibodies <1% Basophils 2-4% Monocyte (histamines) (macrophages - BIG) Blood • Density: rblood = 1.04 gm/cm3 = 1.04x103 kg/m3 15 h (10-3 Pa*s) • Viscosity: 10 5 0 0 25 50 75 Hematocrit (%) DP = R * (DV/Dt) R = 8phL/A2 !(tube) 100 Blood • 80 % systemic circulation – 15% arterial – 10% capillaries – 75% venous Vena Cava Aorta Left Heart • 20% pulmonary circulation – 46% arterial – 7% capillary – 46% venous Pulmonary Artery Pulmonary Vein Pulmonary Capillary Bed O2 CO2 Blood Flow 100% LUNGS RIGHT HEART 100% LEFT HEART HEART MUSCLE BRAIN SKELTAL MUSCLE BONE 3% 14% 15% 5% GI SYSEM 21% LIVER 6% KIDNEY SKIN OTHER 22% 6% 8% The Heart Aorta Pulmonary Artery Pulmonary Veins Right Heart Inferior vena cava Aorta Heart Chambers and Valves Pulmonary artery Aorta Vena cava Left Atrium Pulmonary Veins 4 Right Atrium 3 1 Right Ventricle Valves 1. Tricuspid valve 2. Pulmonic valve 3. Mitral valve 4. Aortic valve 2 Left Ventricle Myocardium Cardiac Output • Cardiac Output = Heart Rate x Stroke Volume liters/min 5.8 l/m beats/min x = 72 b/m x liters/beat 80 ml/b • Stroke Volume Control – Ventricular Pressure = Force/Area Muscles provide SURFACE TENSION (T = Force per unit length) P=T/r (cylinder) P=T/2r (sphere) Cardiac Output r Intraventricular Pressure (mm Hg) 1. Tricuspid valve 2. Pulmonic valve 3. Mitral valve 4. Aortic valve 120 60 Ejection AV opens 4 1 2 Diastolic filling (P constant) Blood is “ incompressible” P=g/4r Left g increases when 2r venticle cardiac muscles contract r 3 Isovolumetric Contraction 2r P (g) increases 25x Frank-Starling Law systole ejection AV opens isovolumetric relaxation diastolic filling isovolumetric contraction mitral valve opens 0 0 60 120 Ventricular Volume (ml) increase Stroke Volume Stroke Volume Isovolumetric relaxation P decreases 50x diastole volume (filling pressure) Cardiac Output Control • • • • Cardiac Parasympathetic Nerve Activity: Cardiac Sympathetic Nerve Activity: Arterial Pressure: Filling Pressure (Frank-Starling Law): HR (-) HR (+)/SV (+) SV (-) SV (+) Cardiac Output: Work and Energy Intraventricular Pressure (mm Hg) Area =∫ P dV = W = 1.2 J/Beat Power = W x HR ~ 1 watt = 20 kcal/day 120 isovolumetric relaxation 60 ejection AV opens isovolumetric contraction mitral valve opens 0 0 60 120 Ventricular Volume (ml) increase Stroke Volume Heart Muscle and Control • Striated (like skeltal muscle) • “Autorhythmic” (spontaneously contract) – Individual cells of cardiac muscle isolated in a saline solution beat spontaneously at random rates. – Sinoatrial node "pacemaker” beats faster to control heart rhythm. • The primary cardiovascular control center is located in the medulla oblongata of the brain – The heart is innervated by sympathetic and parasympathetic nerve fibers. • Temperature, ion concentration, and hormones affect heart rate. Vascular System Capillary Connects Artery to Vein Aorta Vein Right Heart Pulmonary Artery Left Heart Pulmonary Vein Pulmonary Capillary Bed O2 CO2 Alveolar Space Pressure Drops Q = DPA2/8phL (Poiseuille equation) Capillaries: Q= 50 pl/s h (10-3 Pa*s) DP = R * Q R = 8phL/A2 !(tube) 15 10 5 0 0 25 50 75 100 Hematocrit (%) Left Ventricle 120 mm Hg Aorta Arterioles Pressure Capillaries Veins Right Ventricle Position Blood Velocity Q (m3/s) = v (m/s) * A (m2) DP=8phLv/A Capillary Blood Flow: v =Q/A ~1 mm/s Laminar vs Turbulent Flow Reynolds Number: R = rvr/h (for tube radius r) Laminar Flow: v Turbulent Flow: R > 1000 for blood: Aorta during systole Cardiac Cycle • Left Heart – Diastole (lowest aortic presure): ventricle contracts 0-0.02 s 0- 0.1 s 0.1-0.25 s ... aortic valve opens - HEART SOUND aortic pressure increases to Systole aortic valve closes as blood leaves ventricle Heart Valves An estimated 78,000 people get replacement heart valves in the United States each year, according to the American Heart Association. Electrocardiology ra ce 3 +t + Electrode (1 of 3) 2 ce - tra - - trace 1 + Motion of dipole after impulse Lead 2 “P wave” Left Leg A wave of - and + charge moves across the heart muscle and is measurable on the skin Potential changes of 0.001 Volt arise