Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
CASSS 23 September, 2015 Ultrahigh Resolution Mass Spectrometry: Extending the Size and Detail of Biomolecule Structure Analysis Alan G. Marshall National High Magnetic Field Laboratory Department of Chemistry & Biochemistry Florida State University The Tool: Fourier Transform Ion Cyclotron Resonance Mass Spectrometry NMR or EMR B ICR B = B qB = m The Code: Accurate Mass 20 2 1 H Nuclide H 13 Mass Defect (mDa) 12 0 Atomic Mass Defects (All Different) C 14 C N 15 N 17 16 O O 18O 19F -20 31 -40 -60 P 32 S 33S 34 35 S Cl36 S 37Cl Mass Defect = Atom Exact Mass – Nearest Integer -80 -100 Every CcHhNnOoSs mass is unique! 79 Br 81Br 127 I Phosphorylation vs. Sulfation [DY[SO3H]MGWMDF-NH2 - 2H]2Theoretical: 1,140.33618 Da Experimental: 1,140.33614 Da Error: 0.032 ppm [DY[PO3H2]MGWMDF-NH2 - 2H]2Theoretical: 1,140.34570 Da Experimental: 1,140.34576 Da Error: 0.053 ppm 0.0095 Da m/Dm50% = 552,000 m2/(m2-m1) = 118,000 Anal. Chem. 2002, 74, 1674-1679 1140.306 1140.326 1140.346 1140.366 Mass (Da) 1140.386 1140.406 Peptide Sequencing Labile Bonds Cleaved; X-P Cleavage Preferred y1 ECD/ETD IRMPD CAD R1 O Labile Bonds Retained; No X-P Cleavage z1· Rn-1O Rn [M+nH]n+ O H2N C C ... N C C N C C OH cn-1 bn-1 Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A. Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. "Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations", Anal. Chem. 2000, 72, Valence Parity: (H + N) = Even or Odd? 100 c'/z● Overlap (%) Mass Error ± 1.0 ppm 80 ± 0.8 ppm ± 0.6 ppm 60 All Possible Amino Acid Combinations ± 0.4 ppm ± 0.2 ppm ± 0.1 ppm 40 20 Anal. Chem. 2011, 83, 8024-8028 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Nominal Mass (Da) …KATEEQLK… Lys-N Lys-C Digestion KATEEQL ATEEQLK Fragmentation y6’ y5’ y4’ y3’ y2’ y1’ y6 y5 y4 y3 y2 y1 K A T E E Q L b1 b2 b3 b4 b5 b6 -128 Da vs. A T E E Q L K b1’ b2’ b3’ b4’ b5’ b6’ +128 Da y ions RCMS. 2015, 29, 659-666 b ions Bottom-Up MS/MS Protein Identification Phosphorylation n2 F K G P G D T S N F D D Y E E E E I R V S I N E K ~ x 30 [M + HPO3 + 2H]2+ [M + HPO3 + 3H]3+ Finding the Phosphate in a Protein: One Step Electron Capture Dissociation MS/MS c242+ c8 c5 z z4 3 z10 z11 z c65 z 6 c4 z z 8c c11 1 z12 0 7 z c1 9 c7 4 z14 c1 5 c1 z15 7 c2 0 1000 1500 c2 z17 z19 c1 8 500 z20 2000 1 c2 2 2500 m/z Glycosylation H O H CH3 H Glycan structure for E. corallodendron OH Man H Fucose Xyl Man Man CH2OH HOCH2 O OH Fuc GlcNAc H H OH OH H OH Xylose O H H H -N- OH OH OH GlcNAc H OH OH OH H H H Mannose Lectin from Erythrina corallodendron ECD Fragmentation Pattern Håkansson H. Cooper Emmett Costello Nilsson = GlcNAc = Fuc = Man = Xyl c4 c5 c6 c7 c8 c9 c10 2+ c15 c2+ 16 SKPAQGYGYLGIFNNSK 2+ z16• z3 Lectin from Erythrina corallodendron IRMPD Fragmentation pattern Håkansson H. Cooper Emmett Costello Nilsson = GlcNAc = Fuc = Man = Xyl SKPAQGYGYLGIFNNSK Figuring Out the Structure... (Core is known) -GlcNAc-Gal-NeuAc or -GlcNAc-Gal antennae are known HexNAc loss HexHexNAc loss HexNAcNeuAc loss HexHexNAcFuc loss HexHexNAcNeuAc loss (Hex)2HexNAcNeuAc loss (Hex)5(HexNAc)4NeuAc loss (Hex)5(HexNAc)4NeuAcFuc loss C. Nilsson NeuAc Gal Gal GlcNAc GlcNAc Man GlcNAc Man Man GlcNAc GlcNAc Fuc Glycoprotein Stain – Pro-Q Emerald Alzheimer’s Disease Patient Control Individual Total Protein Stain – Sypro Ruby -1-Glycoprotein -1Antitrypsin 7 1 2 3 4 8 9 10 Apolipoprotein J Apolipoprotein E 32 -Trace 5 6 Glycoforms identified by GlycoMod Spot C5: 1-antitrypsin NeuAc NeuAc NeuAc Gal Gal GlcNAc GlcNAc GlcNAc NeuAc GlcNAc Gal GlcNAc GlcNAc Man NeuAc Gal Gal GlcNAc Man GlcNAc NeuAc Gal GlcNAc GlcNAc Man Man Man NeuAc Gal Gal Man Man NeuAc Man GlcNAc GlcNAc Man Man NeuAc GlcNAc Gal GlcNAc GlcNAc Man Man Gal GlcNAc Man Man Man GlcNAc GlcNAc GlcNAc Fuc Asp-46 GlcNAc Asp-83 Asp-247 Alzheimer’s Disease Biomarker from Cerebrospinal Fluid Top-Down MS/MS Proteomics 100% Sequence Coverage ECD of Ubiquitin: Probe-Mounted Gun 67 of 75 Bonds Cleaved (51 ms Irradiation, 40 scans) H-MQIFVKTLTGKTITLEVEPSc and z• ions DTIENVKAKIQDKEGIPPDQ- QRLIFAGKQLEDGRTLSDYN- IQKESTLHLVLRLRGG-OH a• and y ions Proteomics Sequence Variants PTMs Proteoforms 4 Top-Down Proteomics Post-Translational Modifications + Or? + Methylation Acetylation Tetrahymena Histone H2B -NH3 -NMe3 = C3H6 9.4 T ESI FT-ICR MS R-H R-Ac = COCH2 Net Difference = CH4 vs. O (0.0364 Da) Me3 or Ac? Me Me2 m/z Mass Mol. Cell. Proteomics 2004, 3, 872-886 Lys-111 Lys-41 Lys-4 Lys-3 Ala-1 Methylation/Acetylation of Tetrahymena Histone H2B N C Me Me Me2 Me2 Ac Me3 Me3 Ac Mol. Cell. Proteomics 2004, 3, 872-886 Me Me2 Me3/Ac Top-Down Proteomics: Site-Specific Cys Redox Potentials Cellular Redox Environment Cysteine Cysteine + Disulfide Reduction Cystine Nernst Equation E′ = E°′ − RT nF ln R = Gas Constant n = No. of Electrons If [Electron Donor] [Electron Acceptor] T = Temperature F = Faraday Constant [Electron Donor] [Electron Acceptor] = 1, E′ = E°′ Determination of Disulfide Bond E°′ Protein–S2 + R(SH)2 Protein–(SH)2 + RS2 1) Equilibrate with excess reference redox couple at a series of known ratios, R(SH2)/RS2 to set ambient reduction potential, E′ E′ = E°′(reference) − RT nF ln [R(SH)2] [RS2] 2) Measure ratio of reduced/oxidized protein 3) At midpoint, [Protein-(SH)2 = Protein-S2 E′ = E°′(protein) − RT nF ln [Protein–(SH)2] [Protein–S2] Alkylation of a Protein by N-ethylmaleimide Protein Mass Increase = 125 Da Experiment 1. Equilibrate with Excess Reference Redox Couple Dihydrolipoic Acid / Lipoic Acid; E°′ = −290 mV 2. Derivatize with NEM “Light” (+125 Da) 3. Reduce & Derivatize w. D5-NEM “Heavy” (+130 Da) H3 H2 D3 D2 Top-Down 14.5 T FT-ICR MS • CID of Dialkylated (2 NEM) E. coli Thioredoxin • 35% Peptide Bonds Cleaved b 108 90 72 54 36 18 S A M V R V D D I A G G K G A K I A I A P L P L I I I N T S H L L I L K L V D D L G T D E Q L Q D F I N F L D W A P K K S A D G N E F E E T G F D W Y A E L T C Q P V D D G G K A A V P K Y A N L C L G T L K K T I K A y Cys-NEM b ion y ion 18 36 54 72 90 108 Determination of E°′ for E. coli Thioredoxin (4 Different b-Ions) E°′ = −280.1 ± 0.7 mV Literature E°′: −270 mV −285 mV Chromophore O.D. Trp Fluorescence HPLC Electrochem UV-VIS NADPH Non-Protein Biomarkers OH OH O OH OH O OH O OH O OH O O NHAc O OH HO O HN OH OH O HO O OH OH OH COOH NHAc O GM1a OH NeuAc = N-Acetylneuraminic Acid (Sialic Acid) HexNAc = N-Acetylhexosamine Hex = Hexose GM1b HO HO OH NHAc O OH OH COOH OH OH O OH O O O OH O O NHAc O O OH OH OH O OH OH O HN OH OH JASMS 2005, 16, 752-762 M- 400 600 2n M-( ’) 800 m/z 1000 M-( M-( ’) ) [M+2H]2+ ** * * * 1200 1400 [M+H]+& [M+2H]+• O [(M-H2O)+H]+ o [(M-COCH3-H)] ’ ~x6 ’) ** o 0,2) M-( OH o M- M-( ) ’) M-( ’ ) M-( ’ * Ceramide Ceramide’ Ceramide’’ Fatty Acid+NH2 ~x2 ** o M-( ’) (from ’ ’ ’’ 0,2) O O HN NH Ac 200 NH Ac ’(from Sphingosine’’ o o * *o o ECD of (+) GM1 O HN OH CcHhNnOoSs DBE = c - h/2 + n/2 + 1 McLafferty & Turecek Interpretation of Mass Spectra 1993 0 Anal.Chem. 2007, 79, 8423-8430 GD1 (d18:1/24:1) GD1 (d18:1/24:0) GD1 (d18:1/23:1) GD1 (d18:1/23:0) GD1 (d18:1/22:0) GD1 (d18:1/16:0) 2000 asialo-GM1 (d18:1/16:0) OH GM1b (d18:1/24:1)+O HN GM1b (d18:1/24:1) GM1b (d18:1/24:0) GM1b (d18:1/23:0) 4000 GM1b (d18:1/22:0) S/N Ratio GM1b (d18:1/17:0) GM1b (d18:1/16:0)+O GM1b (d18:1/16:0) GM1 (18:1/18:0) GM2α (d18:1/24:1) O GM2α (d18:1/24:0) 3000 GM2α (d18:1/22:0) GM2α (d18:1/16:0) GM3 (d18:1/24:1) GM3 (d18:1/24:0) GM3 (d18:1/23:0) GM3 (d18:1/22:1) GM3 (d18:1/22:0) GM3 (d18:1/18:1) GM3 (d18:1/18:0) GM3 (d18:1/17:0) GM3 (d18:1/16:1) GM3 (d18:1/16:0)+O GM3 (d18:1/16:0) GM3 (d18:1/15:0) GM3 (d18:1/14:0) Gangliosides LTQ 14.5 T FT-ICR MS U87 + DI312/24 hr + SN38/24 hr U87 + P53/24 hr + SN38/24 hr O Glucose Galactose GalNac Neuraminic acid 1000 0 (32:0) (32:1) (34:1) (34:1)+O (34:2) (34:2)+O (34:3) (35:1) (35:2) (36:1) (36:1)+O (36:2) (36:2)+O (36:3) (36:3)+O (36:4) (36:4)+O (36:5) (37:2) (37:3) (37:4) (37:5) (38:2) (38:2)+O (38:3) (38:3)+O (38:3)+2O (38:3)+3O (38:4) (38:4)+O (38:4)+2O (38:4)+3O (38:4)+4O (38:5) (38:5)+O (38:5)+2O (38:5)+3O (38:6) (38:6)+O (39:3) (39:4) (39:4)+O (39:4)+2O (39:4)+3O (39:5) (40:3) (40:4) (40:4) +O (40:4)+2O (40:5) (40:5)+O (40:5)+2O (40:6) (40:6)+O (40:7) Phosphatidylinositols LTQ 14.5 T FT-ICR MS S/N Ratio ~X4 8000 U87 +DI312/24 hr + SN38/24 hr U87 + P53/24 hr + SN38/24 hr 6000 4000 2000 PI (18:1(9Z)/18:1(9Z)) Anal.Chem. 2007, 79, 8423-8430 Sulfatides LTQ 14.5 T FT-ICR MS S/N Ratio U87 DI312/24 hr + SN38/24 hr 500 U87 P53/24 hr + SN38/24 hr 400 300 200 100 0 (34:1) (34:1)+O (34:2) (34:2)+O O Sulfatide (34:1) O - 4OS HN OH Anal.Chem. 2007, 79, 8423-8430 Galactose (42:2) Isotopes and Charge State CO+ 28 29 C70+ 840 Bovine Ubiquitin 842 844 (M+10H)10+ C378H629N105O118S 8,559.6 Da 857.0 m/z 858.0 Isotopic Depletion FK506-Binding Protein C527H830N146O155S3 Cys-22 (M+10H)10+ Ala-22 Monoisotopic (0.65%) Natural Abundance Monoisotopic 11,780 Dalton 13C,15N Depleted 1179.0 Marshall, A.G., Senko, M.W., Li, W., Li, M., Dillon, S., Guan, S., Logan, T.M., JACS 1997, 119, 433-434. 1179.4 1179.8 m/z 1180.2 Monoclonal Antibody – RAS-111 (IgG1) Glycoforms Pfizer (Wyeth/Ayerst) 147,756 Da C6528H10088N1728O2098S44 Proteins as Drugs: $80B/Year 16 Disulfide Bonds 1325 Amino Acids Plus Glycans (+) ESI 9.4 T FT-ICR MS Anal. Chem. 2013, 85, 4239-4246 Calculated: 147,757.5 Da Experimental: 147,755.5 Da 55+ 53+ 57+ Quadrupole Isolation 51+ IgG1k Monoclonal Antibody 59+ 49+ 61+ 67+ 2,200 65+ 63+ 47+ 2,400 2,600 m/z 2,800 3,000 3,200 Quadrupole-Isolated Monoclonal IgG1k Antibody 57+ + K + Phosphate ESI 9.4 T FT-ICR MS 14 s Transient 125 Scans 2.7 s 6 Beats 0.0 3.4 6.8 10.2 13.6 Time (sec) 2,591 2,592 2,593 2,594 2,595 1/57 Da 2,592.85 2,592.93 2,593.01 2,593.09 m/z 2,593.17 2,596 2,597 Magnitude-Mode RP ~ 330,000 2,593.26 2,593.34 z1148+ 8+ c886+ c118 c1037+ c1178+ Electron Capture Dissociation of IgG1k z997+ z906+ 6+ 88 c896+ c1057+ c543+ 8+ 1620 1,620 5+ c906+ c1067+z119 c916+ c1047+ c1218+ z896+ c1077+ z1057+ c926+ c1238+ 7+ y1057+ z 895+ z 1066+ c915+ z 90 5+ 6+ z 108 c92 5+ c463+ 1600 1,600 91 z1027+ 8+ c1047+ z117 z z1007+ z 1096+z 1640 1,640 1660 1,660 1680 1,680 1700 1,700 1990 1,720 2000 2010 2020 2030 2040 2050 Heavy Chain Fragments (Blue) Light Chain Fragments (Red) 500 1000 1500 2000m/z 2500 3000 3500 4000 ECD MS/MS Antibody Light Chain Fragment Map (118 c-ions; 8 z-ions; 11 y-ions; 70 unique cleavages) c Anal. Chem. 2013, 85, 4239-4246 z y ECD MS/MS Antibody Heavy Chain Fragment Map (77 c-ions; 204 z-ions; 41 y-ions; 154 unique cleavages) Protein Complexes H/D Exchange Engen, J. Anal. Chem. 2009, 81(19), 7870. Citations Publications 5000 175 4500 150 4000 3500 125 3000 100 2500 75 2000 50 1500 1000 25 0 1990 500 1995 2000 Year 2005 0 2010 Amide backbone Hydrogen/Deuterium Exchange Marcsisin, S. R.; Engen, J. R. Anal Bioanal Chem 2010, 397, 967-972 SLOW and FAST Exchanging Hydrogens Marcsisin, S. R.; Engen, J. R. Anal Bioanal Chem 2010, 397, 967-972 H/D Exchange Monitored by High-Resolution MS Apoprotein or protein in complex D H Dilute 10 fold in D2O buffer D D H D D D Quench pD/pH 2.3 ~ 2.5 Temp ~1-2 ºC D H/D Exchange Time (min) Peptide from Protein in Complex Peptide from Apoprotein Low-pH Active Enzyme 0.0 ESI FT-ICR MS 0.5 Peptide Separation 2.0 Fast, to Minimize Back- Exchange of DH 60 240 Jasco HPLC System 480 m/z Blank control (No D present) * Δ Δ Δ * ESI FT-ICR MS of Two Myoglobin Fragments with Protease Type XIII Digestion (ProZap C18 Separation) * Δ * Δ Δ Fragment 114-135 (4+) Δ 30 s HDX * * Δ* 2 min HDX * Δ * * Δ * Δ Δ * Δ * Δ * Δ* * * * 563.5 * Δ 564.5 Δ * * * Δ Δ * * Δ Δ * 565.5 Δ Δ * Δ m/z * Δ Δ Δ Δ Δ Δ * Δ 30 min HDX * * Δ * Δ Δ Δ * Δ Δ < 15 mDa Δ Δ * * 8 min HDX 562.5 Δ * Δ Δ Δ Δ Δ Δ *Δ Fragment 119-135 (3+) * Δ * 566.5 Δ * Δ Δ 567.5 Zhang, H.-M. et al. Anal. Chem., 80, 9034-9041 (2008) Bottom of Helix III Protected upon Assembly Centroid Mass 1498 CA 1497 1496 1495 1494 1493 1492 Assembled CA 1491 1490 1 10 100 Time (min) 1000 Helices VI and VII Not Protected upon Assembly Centroid Mass 1941 1940 CA 1939 Assembled CA 1938 1937 1936 1935 1934 1 10 100 1000 Time (min) Deuterium Uptake Automated Screening of Deuterium Incorporation Profiles Time (s) Analysis in less than 10 min! Volume 325 Number 4 24 January 2003 BioMedNet reports: “U.S. scientists … use mass spectrometry and chemical cross-linking to identify…surface of the HIV capsid protein…This represents…new technologies to address an important and current issue in virology.” 1/23/03 HIV Immature SU Mature MA CA TM RNA NC Gag Gag (55 kDa) MA CA p2 NC p1 p6 24 kDa J. Lanman/P. R. Prevelige, Jr. (U. Alabama Birmingham) CA Monomers form a Hexamer Lattice From Li et al, Nature 407:409 (2000) Cyclophilin Loop Unassembled CA H/D Exchange Rate Constant < 0.001 min-1 I IV 0.001-0.01 0.01-0.1 0.1-1.0 IX 1-10 > 10 I IV IX IV I Change in H/D Exchange Rate on Assembly IX Faster Unchanged Slower K70 K182 Lanman et al. J. Mol. Biol. 2003, 325, 759-772 B 2 A’ 1 3 A B’ B 1 A A’ 2 3 B’ Buckminsterfullerene (Buckyball) 250 CA Hexamers 12 CA Pentamers Pornillos et al., Cell 2009, 137, 1282-1292 Molecular Mechanism of RNA Packaging Hexameric ATPase P4 ssRNA Portal Vertex Lam Emmett Lisal Kainov Tuma Orientation of P4 within its Procapsid C-terminus Capsid Interior Translocation Direction Apical Domain Associated with Procapsid P4 Alone C-terminus C-terminus C-Terminus Associated with Procapsid Lam Emmett Lisal Kainov Tuma P4 in Procapsid H/D Exchange Rate < 0.1 h-1 0.1 h-1 - 1 h-1 1 h-1 - 10 h-1 10 h-1 - 100 h-1 > 100 h-1 Procapsid ssRNA Hexameric NTPase Lam Emmett Tuma Functional H/D Imaging during ATP Hydrolysis Mechanism of RNA Loading during Initiation of Packaging: 5' RNA-Induced Ring Opening Protected Exposed 3’ 0 sec 676 678 680 682 684 Bimodal Isotopic Pattern upon Mixing with RNA At 1 hr Add poly(C) 676 678 680 682 684 1.5 hr 676 678 680 682 684 682 684 2 hr 676 678 680 Affected Peptide Resides in the Hydrophobic Core P1 P4 Glycyl Transfer-RNA Synthetase Hot Spots Opened in Five Charcot-Marie-Tooth-causing Mutants He, W.; Zhang, H.-M.; Chong, Y. E.; Guo, M.; Marshall, A. G.; Yang, X.-L. PNAS U.S.A. 2011, 108, 12307-12312 Gastrointestinal Cancer 5000-10,000 new cases/year in USA GIST Alliance (www.gistalliance.com) Median survival: 60 mo. with primary disease 19 months if metastatic 12 months if recurrence Initial Treatment: Imatinib If Resistant: Sunitinib Domain vs. Intact Enzyme Wild Type Receptor Tyrosine Kinase (KIT) ( Kinetic Insertion Domain) 10 20 30 40 50 60 70 80 ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| GPTYKYLQKP MYEVQWKVVE EINGNNYVYI DPTQLPYDHK WEFPRNRLSF GKTLGAGAFG KVVEATAYGL IKSDAAMTVA 90 100 110 120 130 140 150 160 ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| VKMLKPSAHL TEREALMSEL KVLSYLGNHM NIVNLLGACT IGGPTLVITE YCCYGDLLNF LRRKRDSFIC SKQEDHAEAA 170 180 190 200 210 220 230 240 ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| LYKNLLHSKE SSCSDSTNEY MDMKPGVSYV VPTKADKRRS VRIGSYIERD VTPAIMEDDE LALDLEDLLS FSYQVAKGMA 250 260 270 280 290 300 310 320 ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| FLASKNCIHR DLAARNILLT HGRITKICDF GLARDIKNDS NYVVKGNARL PVKWMAPESI FNCVYTFESD VWSYGIFLWE 330 340 350 360 370 380 390 400 ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| LFSLGSSPYP GMPVDSKFYK MIKEGFRMLS PEHAPAEMYD IMKTCWDADP LKRPTFKQIV QLIEKQISES TNHIYSNLAN 410 420 430 435 ....|....| ....|....| ....|....| ....| CSPNRQKPVV DHSVRINSVG STASSSQPLL VHDDV Wild-Type KIT without KID Domain 10 20 30 40 50 60 70 80 ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| GPTYKYLQKP MYEVQWKVVE EINGNNYVYI DPTQLPYDHK WEFPRNRLSF GKTLGAGAFG KVVEATAYGL IKSDAAMTVA 90 100 110 120 130 140 150 160 ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| VKMLKPSAHL TEREALMSEL KVLSYLGNHM NIVNLLGACT IGGPTLVITE YCCYGDLLNF LRRKRDSFIC SKTSPAIMED 170 180 190 200 210 220 230 240 ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| DELALDLEDL LSFSYQVAKG MAFLASKNCI HRDLAARNIL LTHGRITKIC DFGLARDIKN DSNYVVKGNA RLPVKWMAPE 250 260 270 280 290 300 310 320 ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| SIFNCVYTFE SDVWSYGIFL WELFSLGSSP YPGMPVDSKF YKMIKEGFRM LSPEHAPAEM YDIMKTCWDA DPLKRPTFKQ 330 335 ....|....| ....|. IVQLIEKQIS ESTNHI Deuterium Uptake Deuterium Uptake 7 7 542-548 in JM domain 6 558-568 in JM domain 6 5 5 4 4 3 3 2 2 WT with KID + Sunitinib 1 WT with KID + Sunitinib WT w/o KID + Sunitinib 1 WT w/o KID + Sunitinib 0 0 7 7 624-636 in C-alpha 6 816-828 in A-loop 6 5 5 4 4 3 3 2 WT with KID + Sunitinib 2 WT with KID + Sunitinib 1 WT w/o KID + Sunitinib 1 WT w/o KID + Sunitinib 0 0 0 1 2 Time (h) 3 4 0 1 2 3 Gajiwala, K.S. et al. PNAS (2009) 106 (5), 1542-1547 4 WT KIT +/KID Domain after 230 hrmin Exchange WT KIT +/KID Domain after Exchange WT KIT +/- KID Domain after 8 min Exchange KIT Fragments WT KIT vs. D816H Mutant after 30 min H/D Exchange KIT Fragments Drug Design: Tuberculosis Leucine is an essential amino acid for humans, but plants and microorganisms make their own. Rate-Limiting Step for Leucine Synthesis in\ Mycobacterium tuberculosis (Mt) is α-isopropylmalate synthase (IPMS) (Obvious Anti-Tuberculosis Drug Target) Feedback Inhibition by the leucine. Some IPMS mutants (e.g., Y410F) are resistant to leucine inhibition—why? X-ray studies of IPMS failed to identify structural difference upon leucine binding and in the IPMS mutants TB IPMS is a Homodimer Each monomer consists of an N-terminal Catalytic domain, a Linker Domain and a C-terminal Regulatory Domain Peter Frantom, John Blanchard Albert Einstein College of Medicine Biochemistry 2009, 48, 7457-7464 Active Site Conformational Changes on Binding of Leucine Deuterium Uptake 5 Fragment 78-87 in the Active Site 4 3 WT IPMS 2 WT IPMS + Leu Y410F IPMS 1 Y410F IPMS + Leu 0 0 1 2 3 4 WT Active Site Protected on Leucine Binding Mutant Active Site Unaffected by Leucine BInding Comparison of the Conformations of Y410F and WT MtIPMS Fragment 406-416 in the Linker Domain 5 4 IPMS 3 Y410F IPMS Deuterium Uptake 2 1 0 0 2 4 6 8 Fragment 457-462 in the Linker Domain 5 4 • Fragment in the linker I domain is much more flexible in Y410F than in the WT IPMS 3 2 IPMS 1 Y410F IPMS 0 0 2 4 Time (h) 6 8 • Y410F substitution uncouples the allosteric network from the active site, which causes the loss of signal transduction Top Ring (7*57 kDa) AP AP I EQ I EQ I EQ AP Bottom Ring Electron Microscopy GroEL GroEL+ATP Ranson, N. A.; Farr, G. W.; Roseman, A. M.; Gowen, B.; Fenton, W. A.; Horwich, A. L.; Saibil, H. R. Cell 2001, 107, 869-879. GroES Cap (7*10 kDa) Largest Protein Complex (868 kDa!) Characterized by H/D Exchange AA 263-272 (Strongly affected by binding of GroES) GroEL cis ring (7*57 kDa) Nature Scientific Rpts. 2013, 3, 1247 GroEL trans ring (7*57 kDa) "Chaperone" Complex: Folds Proteins to Correct Shape AA 263-272 (Unaffected by binding of GroES) AA117-127 AA422-441 GroEL GroEL-ATPγs GroEL-ADPAlFx GroEL GroEL-ATPγs GroEL-ADPAlFx COPII Complex in Intracellular Trafficking (Coatomer Protein Complex II) Nature Reviews Microbiology 6, 363-374 (May 2008) Coatamer Protein Complex II: 7.7 MDa Cage Sec13: 34 kDa Sec31: 127 kDa + Edge Cage Diameter: ~ 600 Å Traffic 2010, 11 (3) Sequence Coverage: Sec13 Alone, 96% Sequence Coverage: Sec13 in “Edge”, 92% Shared Fragments (81% Coverage) Sec13 Sec31 Sec13/31 Edge Deuterium Uptake Mapped onto Sec13 upon Sec13/31 Edge Formation 0 15 30 40 50 Averaged Relative Difference Cockroach m/Δm50% = 200,000 at m/z 400 @ 1 Scan/sec Neuropeptides 14.5 T LC/FT-ICR MS 1183 1184 1185 * 1175 1250 1275 P. D. Verhaert Delft U. Technology * 400 800 m/z 1200 1600 Cockroach Neuropeptides (7 T) ... P. D. Verhaert Delft U. Technol. * * . * * * . . * . * . * * * 1183 14.5 T * .. . 1185 1184 m/z Bitumen ESI 9.4 T FT-ICR MS m/Δm50% = 300,000 Magnitude Mode m/Δm50% = 119,242 C57H97O3S1 m/Δm50% = 400,000 m/Δm50% = 508,320 3.4 mDa C60H93O3 Absorption Mode C57H97O3S1 Anal. Chem. 2010, 82, 8807-8812 861.70 861.75 m/z 861.80 Cryocoolers, JT fridge for zero loss 2 K Cryostat Nb3Sn coils 1026 mm to field center 123 mm +/- 5 ppm 100 mm by 100 mm cylinder 4.2 K Vessel Fringe Field 50 Gauss at 1.6 m from field center NbTi coils Drift rate <4 ppb/hr 2 K Vessel with Magnet coils Bovine Serum Albumin 66,463 Da 21 Tesla 6 s Transient 100 Transients S/N Ratio > 1,000 [M+48 H]48+ m/Dm50% = = 1,100,000 1384.5 1384.7 1384.9 1385.1 1385.3 1385.5 1385.7 1385.9 m/z [M+48H]48+ Bovine Serum Albumin 66,433 Da Single 12 s Transient S/N Ratio > 500:1 1384 m = 2,000,000 Dm50% 1385 m/z 1386 [M+48H]48+ Bovine Serum Albumin 66,433 Da 0.38 second Detection Period 1384 m = 150,000 Dm50% 1385 m/z 1386 HCD of Carbonic Anhydrase 21 Tesla 4+ 16+ 958 959 m/z 960 y618+ Carbonic Anhydrase 29,025 Da 100 0.76 s Transients HCD of [M+36H]36+ y618+ y61-H2 b133-H2O17+ O8+ y537+ b13117+ 878 b132 880 882 b13317+ 17+ 884 886 888 [M+36H]36+ 600 700 800 900 m/z 1000 1100 1200 1300 c182+ Carbonic Anhydrase 29,025 Da c10811+ 100 0.76 s Transients z778+ FETD of [M+34H]34+ z687+ c394+ c697+/z697+ z485+ z889+ c586+ z879+ z899+ z384+ c606+ z495+ c596+ 1105 1110 1115 c808+ 1120 1125 1130 1135 [M+34H]34+ 600 700 800 900 1000 1100 1200 1300 1400 1500 m/z Ac Carbonic Anhydrase: FETD and CAD Combined 142/258 = 68% Sequence Coverage c b z y Triple Frequency Detection! RF+ + + + - - + + - -+ RF- Mass Spectral Peaks Peak Ht Ratio = 1:1 Need m/Δm50% = 340,000 580.480 580.500 m/z 580.520 Mass Spectral Peaks Peak Ht Ratio = 1:1 Need m/Δm50% = 340,000 Peak Ht Ratio = 100:1 Need 10x Higher Resolving Power m/Δm50% = 3,350,000 580.480 580.500 m/z 580.520 m SNR √ #Pts/Width s(m) Dm50% Noise m 105,817 Peaks > 6σ 500 < m/z < 2000 De-Asphalted Crude Oil Positive Ion Electrospray 9.4 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrum 500 750 1000 1250 m/z 1500 1750 2000 The best reason for higher magnetic field: Experiments that can be performed only with heroic difficulty at low field become routine at high field. Example: Petroleomics, Proteomics