Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
7.3 Notes.notebook January 05, 2017 7.3 Logarithmic Functions as Inverses Name: ____________________ Objectives: Students will be able to evaluate logarithmic expressions and graph logarithmic functions. What in the world is a logarithm? Logarithms are _____________. Let b and y be positive numbers with b≠1. The logarithm of y with base b is denoted logby=x and is defined as follows: x logby=x if and only if b =y In words: logby=x is read "log base b of y". Common log: log10 x=logx Natural log: logex=lnx Feb 146:15 PM Examples: Rewrite in exponential form. 1.) log28=3 2.) log41=0 3.) log12 12=1 4.) log2¼=-2 Examples: Rewrite in logarithmic form. 2 -2 1.) 3 =9 2.) 5 =1/25 -3 0 3.) (½) =8 4.) 4 =1 Examples: Evaluate the logarithms. 1.) log52 2.) log381 3.) log100 4.) ln e Feb 146:26 PM 1 7.3 Notes.notebook 5.) log1000 January 05, 2017 6.) log1/3 27 7.) log164 8.) log33 Inverse Functions: The logarithmic function x y = logbx and the exponential function y = b are x log x inverses. This means: log bb =x and b b =x. Examples: Simplify. log x x 1.) 4 4 2.) log33 x 3.) log5125 Examples: Find the inverse of each function. x 1.) y = 4 2.) y = log6x 3.) y = ln(x + 3) Feb 146:29 PM Vertical asymptote: Domain of a logarithmic function : Range of a logarithmic function : Examples: Graph. State the domain, range and V.A. 1.) y = log 2x Feb 146:41 PM 2 7.3 Notes.notebook January 05, 2017 2.) y = log 2(x + 3) 3.) y = log(x - 1) Feb 219:46 AM 7.3 ICE Name: ___________________ Evaluate each logarithm. 1.) log216 2.) log88 3.) log28 4.) log5125 5.) log 10,000 6.) log93 8.) ln (1/e) 9.) log1/416 7.) log22 5 10.) log 0.001 11.) ln e -6 12.) log4(1/16) Feb 125:53 PM 3 7.3 Notes.notebook January 05, 2017 Jan 512:01 PM Jan 511:55 AM 4