Download CH 13 Heart

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Midsternal line
2nd rib
Sternum
Diaphragm
(a)
Copyright © 2010 Pearson Education, Inc.
Point of
maximal
intensity
(PMI)
Figure 18.1a
Superior
vena cava
Aorta
Parietal
pleura (cut)
Pulmonary
trunk
Left lung
Pericardium
(cut)
Diaphragm
Apex of
heart
(c)
Copyright © 2010 Pearson Education, Inc.
Figure 18.1c
Pulmonary
trunk
Pericardium
Myocardium
Copyright © 2010 Pearson Education, Inc.
Fibrous pericardium
Parietal layer of
serous pericardium
Pericardial cavity
Epicardium
(visceral layer Heart
of serous
wall
pericardium)
Myocardium
Endocardium
Heart chamber
Figure 18.2
Copyright © 2010 Pearson Education, Inc.
Brachiocephalic trunk
Superior vena cava
Right pulmonary
artery
Ascending aorta
Pulmonary trunk
Right pulmonary
veins
Right atrium
Right coronary artery
(in coronary sulcus)
Anterior cardiac vein
Right ventricle
Right marginal artery
Small cardiac vein
Inferior vena cava
(b) Anterior view
Copyright © 2010 Pearson Education, Inc.
Left common carotid
artery
Left subclavian artery
Aortic arch
Ligamentum arteriosum
Left pulmonary artery
Left pulmonary veins
Auricle of
left atrium
Circumflex artery
Left coronary artery
(in coronary sulcus)
Left ventricle
Great cardiac vein
Anterior interventricular
artery (in anterior
interventricular sulcus)
Apex
Figure 18.4b
Atria: The Receiving Chambers
• Walls are ridged by pectinate muscles
• Vessels entering right atrium
• Superior vena cava
• Inferior vena cava
• Coronary sinus
• Vessels entering left atrium
• Right and left pulmonary veins
Copyright © 2010 Pearson Education, Inc.
Ventricles: The Discharging Chambers
• Walls are ridged by trabeculae carneae
• Papillary muscles project into the ventricular
cavities
• Vessel leaving the right ventricle
• Pulmonary trunk
• Vessel leaving the left ventricle
• Aorta
Copyright © 2010 Pearson Education, Inc.
Aorta
Superior vena cava
Right pulmonary
artery
Pulmonary trunk
Right atrium
Right pulmonary
veins
Fossa ovalis
Pectinate muscles
Tricuspid valve
Right ventricle
Chordae tendineae
Trabeculae carneae
Inferior vena cava
Left pulmonary
artery
Left atrium
Left pulmonary
veins
Mitral (bicuspid)
valve
Aortic valve
Pulmonary valve
Left ventricle
Papillary muscle
Interventricular
septum
Epicardium
Myocardium
Endocardium
(e) Frontal section
Copyright © 2010 Pearson Education, Inc.
Figure 18.4e
Pathway of Blood Through the Heart
• The heart is two side-by-side pumps
• Right side is the pump for the pulmonary
circuit
• Vessels that carry blood to and from the
lungs
• Left side is the pump for the systemic circuit
• Vessels that carry the blood to and from all
body tissues
Copyright © 2010 Pearson Education, Inc.
Pulmonary
Circuit
Pulmonary arteries
Venae cavae
Capillary beds
of lungs where
gas exchange
occurs
Pulmonary veins
Aorta and branches
Left atrium
Left ventricle
Right atrium
Right ventricle
Oxygen-rich,
CO2-poor blood
Oxygen-poor,
CO2-rich blood
Copyright © 2010 Pearson Education, Inc.
Heart
Systemic
Circuit
Capillary beds of all
body tissues where
gas exchange occurs
Figure 18.5
Pathway of Blood Through the Heart
• Equal volumes of blood are pumped to the
pulmonary and systemic circuits
• Pulmonary circuit is a short, low-pressure
circulation
• Systemic circuit blood encounters much
resistance in the long pathways
Copyright © 2010 Pearson Education, Inc.
Left
ventricle
Right
ventricle
Interventricular
septum
Copyright © 2010 Pearson Education, Inc.
Figure 18.6
Coronary Circulation
• The blood supply to heart muscle
Copyright © 2010 Pearson Education, Inc.
Superior
vena cava
Anastomosis
(junction of
vessels)
Right
atrium
Aorta
Pulmonary
trunk
Left atrium
Left
coronary
artery
Circumflex
artery
Right
coronary
Left
artery
ventricle
Right
ventricle
Anterior
Right
interventricular
marginal Posterior
artery
artery
interventricular
artery
(a) The major coronary arteries
Copyright © 2010 Pearson Education, Inc.
Figure 18.7a
Superior
vena cava
Anterior
cardiac
veins
Great
cardiac
vein
Coronary
sinus
Small cardiac vein
Middle cardiac vein
(b) The major cardiac veins
Copyright © 2010 Pearson Education, Inc.
Figure 18.7b
Aorta
Left pulmonary
artery
Superior vena cava
Left pulmonary
veins
Auricle of left
atrium
Left atrium
Great cardiac
vein
Right pulmonary veins
Posterior vein
of left ventricle
Left ventricle
Apex
Copyright © 2010 Pearson Education, Inc.
Right pulmonary artery
Right atrium
Inferior vena cava
Coronary sinus
Right coronary artery
(in coronary sulcus)
Posterior
interventricular
artery (in posterior
interventricular sulcus)
Middle cardiac vein
Right ventricle
(d) Posterior surface view
Figure 18.4d
Homeostatic Imbalances
• Angina pectoris
• Thoracic pain caused by deficiency in blood
delivery to the myocardium
• Cells are weakened
• Myocardial infarction (heart attack)
• Prolonged coronary blockage
• Cell die & are repaired with scar tissue
Copyright © 2010 Pearson Education, Inc.
Heart Valves
• What purpose do valves serve?
• Where are they located?
• What would you call them?
Copyright © 2010 Pearson Education, Inc.
Myocardium
Tricuspid
(right atrioventricular)
valve
Mitral
(left atrioventricular)
valve
Aortic
valve
Pulmonary
valve
Pulmonary valve
Aortic valve
Area of cutaway
(b)
Mitral valve
Tricuspid valve
Copyright © 2010 Pearson Education, Inc.
Figure 18.8b
Pulmonary
valve
Aortic
valve
Area of
cutaway
Mitral
valve
Tricuspid
valve
Chordae tendineae
attached to tricuspid valve flap
(c)
Copyright © 2010 Pearson Education, Inc.
Papillary
muscle
Figure 18.8c
Opening of inferior
vena cava
Tricuspid valve
Mitral valve
Chordae
tendineae
Myocardium
of right
ventricle
Myocardium
of left ventricle
Papillary
muscles
(d)
Copyright © 2010 Pearson Education, Inc.
Interventricular
septum
Pulmonary
valve
Aortic valve
Area of
cutaway
Mitral valve
Tricuspid
valve
Figure 18.8d
1 Blood returning to the
Direction of
blood flow
heart fills atria, putting
pressure against
atrioventricular valves;
atrioventricular valves are
forced open.
Atrium
Cusp of
atrioventricular
valve (open)
2 As ventricles fill,
atrioventricular valve flaps
hang limply into ventricles.
Chordae
tendineae
3 Atria contract, forcing
additional blood into ventricles.
Ventricle
Papillary
muscle
(a) AV valves open; atrial pressure greater than ventricular pressure
Atrium
1 Ventricles contract, forcing
blood against atrioventricular
valve cusps.
2 Atrioventricular valves
close.
3 Papillary muscles
contract and chordae
tendineae tighten,
preventing valve flaps
from everting into atria.
Cusps of
atrioventricular
valve (closed)
Blood in
ventricle
(b) AV valves closed; atrial pressure less than ventricular pressure
Copyright © 2010 Pearson Education, Inc.
Figure 18.9
Aorta
Pulmonary
trunk
As ventricles
contract and
intraventricular
pressure rises,
blood is pushed up
against semilunar
valves, forcing them
open.
(a) Semilunar valves open
As ventricles relax
and intraventricular
pressure falls, blood
flows back from
arteries, filling the
cusps of semilunar
valves and forcing
them to close.
(b) Semilunar valves closed
Copyright © 2010 Pearson Education, Inc.
Figure 18.10
Nucleus
Intercalated discs
Gap junctions
Cardiac muscle cell
Desmosomes
(a)
Copyright © 2010 Pearson Education, Inc.
Figure 18.11a
Superior vena cava
Right atrium
1 The sinoatrial (SA)
node (pacemaker)
generates impulses.
Internodal pathway
2 The impulses
pause (0.1 s) at the
atrioventricular
(AV) node.
3 The atrioventricular
(AV) bundle
connects the atria
to the ventricles.
4 The bundle branches
conduct the impulses
through the
interventricular septum.
5 The Purkinje fibers
Left atrium
Purkinje
fibers
Interventricular
septum
depolarize the contractile
cells of both ventricles.
(a) Anatomy of the intrinsic conduction system showing the
sequence of electrical excitation
Copyright © 2010 Pearson Education, Inc.
Figure 18.14a
Homeostatic Imbalances
•
Defects in conduction system may result in
1. Arrhythmias: irregular heart rhythms
2. Uncoordinated atrial and ventricular
contractions
3. Fibrillation: rapid, irregular contractions;
useless for pumping blood
Copyright © 2010 Pearson Education, Inc.
Homeostatic Imbalances
• Defective SA node may result in
• Ectopic focus: abnormal pacemaker takes over
• If AV node takes over, there will be a junctional
rhythm (40–60 bpm)
• Defective AV node may result in
• Partial or total heart block
• Few or no impulses from SA node reach the
ventricles
Copyright © 2010 Pearson Education, Inc.
The vagus nerve
(parasympathetic)
decreases heart rate.
Dorsal motor nucleus of vagus
Cardioinhibitory center
Medulla oblongata
Cardioacceleratory
center
Sympathetic trunk ganglion
Thoracic spinal cord
Sympathetic trunk
Sympathetic cardiac
nerves increase heart rate
and force of contraction.
AV node
SA node
Parasympathetic fibers
Sympathetic fibers
Interneurons
Copyright © 2010 Pearson Education, Inc.
Figure 18.15
Electrocardiography
•
Electrocardiogram (ECG or EKG): a
composite of all contractile cells
•
Three waves
1. P wave: depolarization of SA node
2. QRS complex: ventricular depolarization
3. T wave: ventricular repolarization
Copyright © 2010 Pearson Education, Inc.
QRS complex
Sinoatrial
node
Atrial
depolarization
Ventricular
depolarization
Ventricular
repolarization
Atrioventricular
node
P-Q
Interval
S-T
Segment
Q-T
Interval
Copyright © 2010 Pearson Education, Inc.
Figure 18.16
SA node
Depolarization
R
Repolarization
R
T
P
S
1 Atrial depolarization, initiated
by the SA node, causes the
P wave.
R
AV node
T
P
Q
Q
S
4 Ventricular depolarization
is complete.
R
T
P
T
P
Q
S
2 With atrial depolarization
complete, the impulse is
delayed at the AV node.
R
Q
S
5 Ventricular repolarization
begins at apex, causing the
T wave.
R
T
P
T
P
Q
S
3 Ventricular depolarization
begins at apex, causing the
QRS complex. Atrial
repolarization occurs.
Copyright © 2010 Pearson Education, Inc.
Q
S
6 Ventricular repolarization
is complete.
Figure 18.17
R
SA node
Depolarization
Repolarization
T
P
1
Q
S
Atrial depolarization, initiated by
the SA node, causes the P wave.
Copyright © 2010 Pearson Education, Inc.
Figure 18.17, step 1
R
SA node
Depolarization
Repolarization
T
P
Q
S
1
Atrial depolarization, initiated by
the SA node, causes the P wave.
R
AV node
T
P
Q
2
S
With atrial depolarization complete,
the impulse is delayed at the AV node.
Copyright © 2010 Pearson Education, Inc.
Figure 18.17, step 2
R
SA node
Depolarization
Repolarization
T
P
Q
S
1
Atrial depolarization, initiated by
the SA node, causes the P wave.
R
AV node
T
P
Q
2
S
With atrial depolarization complete,
the impulse is delayed at the AV node.
R
T
P
Q
S
3 Ventricular depolarization begins
at apex, causing the QRS complex.
Atrial repolarization occurs.
Copyright © 2010 Pearson Education, Inc.
Figure 18.17, step 3
Depolarization
Repolarization
R
T
P
Q
4
S
Ventricular depolarization is
complete.
Copyright © 2010 Pearson Education, Inc.
Figure 18.17, step 4
Depolarization
Repolarization
R
T
P
Q
4
S
Ventricular depolarization is
complete.
R
T
P
Q
5
S
Ventricular repolarization begins
at apex, causing the T wave.
Copyright © 2010 Pearson Education, Inc.
Figure 18.17, step 5
Depolarization
Repolarization
R
T
P
Q
4
S
Ventricular depolarization is
complete.
R
T
P
Q
5
S
Ventricular repolarization begins
at apex, causing the T wave.
R
T
P
Q
6
S
Ventricular repolarization is
complete.
Copyright © 2010 Pearson Education, Inc.
Figure 18.17, step 6
SA node
Depolarization
R
Repolarization
R
T
P
S
1 Atrial depolarization, initiated
by the SA node, causes the
P wave.
R
AV node
T
P
Q
Q
S
4 Ventricular depolarization
is complete.
R
T
P
T
P
Q
S
2 With atrial depolarization
complete, the impulse is
delayed at the AV node.
R
Q
S
5 Ventricular repolarization
begins at apex, causing the
T wave.
R
T
P
T
P
Q
S
3 Ventricular depolarization
begins at apex, causing the
QRS complex. Atrial
repolarization occurs.
Copyright © 2010 Pearson Education, Inc.
Q
S
6 Ventricular repolarization
is complete.
Figure 18.17
(a) Normal sinus rhythm.
(b) Junctional rhythm. The SA
node is nonfunctional, P waves
are absent, and heart is paced by
the AV node at 40 - 60 beats/min.
(c) Second-degree heart block. (d) Ventricular fibrillation. These
chaotic, grossly irregular ECG
Some P waves are not conducted
deflections are seen in acute
through the AV node; hence more
heart attack and electrical shock.
P than QRS waves are seen. In
this tracing, the ratio of P waves
to QRS waves is mostly 2:1.
Copyright © 2010 Pearson Education, Inc.
Figure 18.18
Heart Sounds
• Two sounds (lub-dup) associated with closing
of heart valves
• First sound occurs as AV valves close and
signifies beginning of systole
• Second sound occurs when SL valves close at
the beginning of ventricular diastole
• Heart murmurs: abnormal heart sounds most
often indicative of valve problems
Copyright © 2010 Pearson Education, Inc.
Aortic valve sounds heard
in 2nd intercostal space at
right sternal margin
Pulmonary valve
sounds heard in 2nd
intercostal space at left
sternal margin
Mitral valve sounds
heard over heart apex
(in 5th intercostal space)
in line with middle of
clavicle
Tricuspid valve sounds typically
heard in right sternal margin of
5th intercostal space
Copyright © 2010 Pearson Education, Inc.
Figure 18.19
Mechanical Events: The Cardiac Cycle
• Cardiac cycle: all events associated with
blood flow through the heart during one
complete heartbeat
• Systole—contraction
• Diastole—relaxation
Copyright © 2010 Pearson Education, Inc.
Phases of the Cardiac Cycle
1. Ventricular filling—takes place in diastole
•
AV valves are open
•
80% of blood passively flows into ventricles
•
Atrial systole occurs, delivering the remaining
20%
Copyright © 2010 Pearson Education, Inc.
Phases of the Cardiac Cycle
2. Ventricular systole
•
Atria relax and ventricles begin to contract
•
Rising ventricular pressure closes AV valves
•
All valves are closed
•
In ejection phase, ventricular pressure exceeds
pressure in the large arteries, forcing the SL valves
open
Copyright © 2010 Pearson Education, Inc.
Left heart
QRS
P
Electrocardiogram
T
1st
Heart sounds
P
2nd
Pressure (mm Hg)
Dicrotic notch
Aorta
Left ventricle
Ventricular
volume (ml)
Atrial systole
Left atrium
EDV
SV
ESV
Atrioventricular valves
Aortic and pulmonary valves
Phase
Open
Closed
Open
Closed
Open
Closed
1
2a
2b
3
1
Left atrium
Right atrium
Left ventricle
Right ventricle
Ventricular
filling
Atrial
contraction
1
Ventricular filling
(mid-to-late diastole)
Copyright © 2010 Pearson Education, Inc.
Isovolumetric
contraction phase
2a
Ventricular
ejection phase
2b
Ventricular systole
(atria in diastole)
Isovolumetric
relaxation
3
Ventricular
filling
Early diastole
Figure 18.20
Cardiac Output (CO)
• Volume of blood pumped by each ventricle in
one minute
• CO = heart rate (HR) x stroke volume (SV)
• HR = number of beats per minute
• SV = volume of blood pumped out by a
ventricle with each beat
Copyright © 2010 Pearson Education, Inc.
Exercise (by
skeletal muscle and
respiratory pumps;
see Chapter 19)
Heart rate
(allows more
time for
ventricular
filling)
Bloodborne
epinephrine,
thyroxine,
excess Ca2+
Venous
return
Contractility
EDV
(preload)
ESV
Exercise,
fright, anxiety
Sympathetic
activity
Parasympathetic
activity
Heart
rate
Stroke
volume
Cardiac
output
Initial stimulus
Physiological response
Result
Copyright © 2010 Pearson Education, Inc.
Figure 18.22
Chemical Regulation of Heart Rate
1. Hormones
•
Epinephrine and thyroxine enhance heart
rate and contractility
2. Intra- and extracellular ion concentrations
(e.g., Ca2+ and K+) must be maintained for
normal heart function
Copyright © 2010 Pearson Education, Inc.
Other Factors that Influence Heart Rate
• Age
• Gender
• Exercise
• Body temperature
Copyright © 2010 Pearson Education, Inc.
Homeostatic Imbalances
• Tachycardia: abnormally fast heart rate
(>100 bpm)
• If persistent, may lead to fibrillation
• Bradycardia: heart rate slower than 60 bpm
• May result in grossly inadequate blood
circulation
• May be desirable result of endurance training
Copyright © 2010 Pearson Education, Inc.
Related documents