Download More Practice Converting Repeating Decimals to Rational Numbers

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
More Practice Converting
Repeating Decimals to Rational Numbers
Converting any repeating decimal into a rational number follows the following steps:
1. Count the number of digits under the repeat bar and set that number equal to x.
a. Example: 0.3 has one digit under the bar so x = 1
b. Example: 0. 36 has two digits under the bar so x = 2
c. Example: 0.00275 has three digits under the bar so x = 3
2. Multiply the original number by 10
3. 3
a. Example: 0. 3 10
36. 36
b. Example: 0. 36 10
c. Example: 0.00275 10
2.75275
3. Set the product obtained in step 2 equal to 10
a. Example: 3. 3 10
b. Example: 36. 36 100
c. Example: 2.75275 1000
4. Set the original number equal to n
a. Example: 0. 3
b. Example: 0. 36
c. Example: 0. 00275
5. Subtract the equation in step 4 from the equation in step 3
a. Example:
3. 3 10
0. 3 3 = 9n
b. Example:
36. 36 100
0. 36 36
= 99n
c. Example:
2.75275 1000
0.00275 2.75
= 999n
6. Solve for n
a. Example:
3 = 9n
b. Example:
c. Example:
36 = 99n
2.75 = 999n
100[2.75 = 999n]
275 = 99900n
Your turn:
Convert each of the following from the decimal form into the rational number form:
1.)
0. 6
2.)
3. 8
3.)
2. 09
4.)
2. 27
5.)
1. 58
6.)
3.0245
7.)
1.881
8.)
2.7819
9.)
0. 3591
10.)
1. 153846
Answer Key:
1.)
2.)
3.)
4.)
5.)
6.)
7.)
8.)
9.)
10.)
Related documents