Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
More Practice Converting Repeating Decimals to Rational Numbers Converting any repeating decimal into a rational number follows the following steps: 1. Count the number of digits under the repeat bar and set that number equal to x. a. Example: 0.3 has one digit under the bar so x = 1 b. Example: 0. 36 has two digits under the bar so x = 2 c. Example: 0.00275 has three digits under the bar so x = 3 2. Multiply the original number by 10 3. 3 a. Example: 0. 3 10 36. 36 b. Example: 0. 36 10 c. Example: 0.00275 10 2.75275 3. Set the product obtained in step 2 equal to 10 a. Example: 3. 3 10 b. Example: 36. 36 100 c. Example: 2.75275 1000 4. Set the original number equal to n a. Example: 0. 3 b. Example: 0. 36 c. Example: 0. 00275 5. Subtract the equation in step 4 from the equation in step 3 a. Example: 3. 3 10 0. 3 3 = 9n b. Example: 36. 36 100 0. 36 36 = 99n c. Example: 2.75275 1000 0.00275 2.75 = 999n 6. Solve for n a. Example: 3 = 9n b. Example: c. Example: 36 = 99n 2.75 = 999n 100[2.75 = 999n] 275 = 99900n Your turn: Convert each of the following from the decimal form into the rational number form: 1.) 0. 6 2.) 3. 8 3.) 2. 09 4.) 2. 27 5.) 1. 58 6.) 3.0245 7.) 1.881 8.) 2.7819 9.) 0. 3591 10.) 1. 153846 Answer Key: 1.) 2.) 3.) 4.) 5.) 6.) 7.) 8.) 9.) 10.)