Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
SCIENTIFICACHIEVEMENTS Withthegenerationandmeasurementofthefirstlightpulseontheattosecondscale[1]anditsuse for observing electron motion deep in the interior of atoms in real time [2], Ferenc Krausz, his coworkers, and collaborators have extended femtosecond laser technology, which they previously advancedtoitsultimatefrontiersetbythelightwavecycle[3],intotheattoseconddomain.Based on shapeable attosecond forces (of laser light with controlled waveform [4]), they established a precisionattosecondmetrology[5],forreal-timeobservationandcontrolofelectronicprocesses[6], inallformsofmatter:atoms,molecules,andsolid-statesystems[7]. 1.M.Hentscheletal.Attosecondmetrology.Nature414,509(2001):generationandmeasurementofalight pulseshorterthan1femtosecond. 2. M. Drescher et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803 (2002): real-time observationofelectrondynamicsininnershellsofatoms. 3.T.Brabec&F.Krausz.Intensefew-cyclelaserfields:frontiersofnonlinearoptics.Rev.Mod.Phys.72,545 (2000):reviewsthetechnologiesFerencKrauszandhisgroupdevelopedforthegenerationoffew-cycle,fewfemtosecondlaserlightinthe90s. 4.A.Baltuškaetal.Attosecondcontrolofelectronicprocessesbyintenselightfields.Nature421,611(2003): generationoflaserlightwithcontrolledwaveformanditsuseforcontrollingatomic-scaleelectronmotion. 5.R.Kienbergeretal.Atomictransientrecorder.Nature427,817(2004):demonstrationofalight-field-driven “streakcamera”,nowthegoldstandardinattosecondmetrology.∎E.Goulielmakisetal.Directmeasurement of light waves. Science 305, 1267 (2004): measurement of the oscillating electric field of a the waveformcontrollednear-single-cyclelaserpulse,providing,togetherwiththeisolatedattosecondpulseitcangenerate, thebasictoolsforattosecondtime-resolvedspectroscopy. 6.F.Krausz&M.Ivanov.AttosecondPhysics.Rev.Mod.Phys.81,163(2009):reviewsthebasicconceptsand techniquesofattosecondmeasurements,pioneeredinthegroupsofF.KrauszandP.Corkum. 7.M.Klingetal.Controlofelectronlocalizationinmoleculardissociation.Science312,246(2006):electron steeringinsideamoleculewiththecontrolledelectricfieldoflight.∎M.Uiberackeretal.Attosecondrealtime observation of electron tunnelling in atoms. Nature 446, 627 (2007): tracking electron tunnelling and intra-atomicelectroninteractions.∎A.Cavalierietal.Attosecondspectroscopyincondensedmatter.Nature 449, 1029 (2007): real-time observation of electron transport through atomic layers of a crystal. ∎ E. Goulielmakisetal.Single-cyclenonlinearoptics.Science320,1614(2008):breakingthe100-attosecondbarrier inlightpulsegeneration.∎M.Schultzeetal.Delayinphotoemission.Science328,1658(2010):discoveryof adelayinthephotoeffect,measuredwitharesolutionbetterthantheatomicunitoftime.∎E.Goulielmakis et al. Real-time observation of valence electron motion. Nature 466, 739 (2010): tracking the subfemtosecondoscillatorymotionofanelectroninsideanatom.∎A.Wirthetal.Synthesizedlighttransients. Science 334, 195 (2011): super-octave light waveform synthesis, observation of sub-femtosecond Stark shift andionization.∎ASchiffrinetal.Optical-field-inducedcurrentindielectrics.Nature493,70(2013):turning an insulator into a conductor within 1 femtosecond à prospect of petahertz-bandwidth solid-state signal metrology.∎M.Schultzeetal.Controllingdielectricswiththeelectricfieldoflight.Nature493,75(2013): manipulation of the electric and optical properties of solids at light frequencies à paving the way towards petahertz signal processing. ∎ S. Neppl et al. Direct observation of electron propagation and dielectric screening on the atomic length scale. Nature 517, 342 (2015): real-time observation of electron transport throughatomiclayersinasolid.