Download scientific achievements

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
SCIENTIFICACHIEVEMENTS
Withthegenerationandmeasurementofthefirstlightpulseontheattosecondscale[1]anditsuse
for observing electron motion deep in the interior of atoms in real time [2], Ferenc Krausz, his coworkers, and collaborators have extended femtosecond laser technology, which they previously
advancedtoitsultimatefrontiersetbythelightwavecycle[3],intotheattoseconddomain.Based
on shapeable attosecond forces (of laser light with controlled waveform [4]), they established a
precisionattosecondmetrology[5],forreal-timeobservationandcontrolofelectronicprocesses[6],
inallformsofmatter:atoms,molecules,andsolid-statesystems[7].
1.M.Hentscheletal.Attosecondmetrology.Nature414,509(2001):generationandmeasurementofalight
pulseshorterthan1femtosecond.
2. M. Drescher et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803 (2002): real-time
observationofelectrondynamicsininnershellsofatoms.
3.T.Brabec&F.Krausz.Intensefew-cyclelaserfields:frontiersofnonlinearoptics.Rev.Mod.Phys.72,545
(2000):reviewsthetechnologiesFerencKrauszandhisgroupdevelopedforthegenerationoffew-cycle,fewfemtosecondlaserlightinthe90s.
4.A.Baltuškaetal.Attosecondcontrolofelectronicprocessesbyintenselightfields.Nature421,611(2003):
generationoflaserlightwithcontrolledwaveformanditsuseforcontrollingatomic-scaleelectronmotion.
5.R.Kienbergeretal.Atomictransientrecorder.Nature427,817(2004):demonstrationofalight-field-driven
“streakcamera”,nowthegoldstandardinattosecondmetrology.∎E.Goulielmakisetal.Directmeasurement
of light waves. Science 305, 1267 (2004): measurement of the oscillating electric field of a the waveformcontrollednear-single-cyclelaserpulse,providing,togetherwiththeisolatedattosecondpulseitcangenerate,
thebasictoolsforattosecondtime-resolvedspectroscopy.
6.F.Krausz&M.Ivanov.AttosecondPhysics.Rev.Mod.Phys.81,163(2009):reviewsthebasicconceptsand
techniquesofattosecondmeasurements,pioneeredinthegroupsofF.KrauszandP.Corkum.
7.M.Klingetal.Controlofelectronlocalizationinmoleculardissociation.Science312,246(2006):electron
steeringinsideamoleculewiththecontrolledelectricfieldoflight.∎M.Uiberackeretal.Attosecondrealtime observation of electron tunnelling in atoms. Nature 446, 627 (2007): tracking electron tunnelling and
intra-atomicelectroninteractions.∎A.Cavalierietal.Attosecondspectroscopyincondensedmatter.Nature
449, 1029 (2007): real-time observation of electron transport through atomic layers of a crystal. ∎ E.
Goulielmakisetal.Single-cyclenonlinearoptics.Science320,1614(2008):breakingthe100-attosecondbarrier
inlightpulsegeneration.∎M.Schultzeetal.Delayinphotoemission.Science328,1658(2010):discoveryof
adelayinthephotoeffect,measuredwitharesolutionbetterthantheatomicunitoftime.∎E.Goulielmakis
et al. Real-time observation of valence electron motion. Nature 466, 739 (2010): tracking the subfemtosecondoscillatorymotionofanelectroninsideanatom.∎A.Wirthetal.Synthesizedlighttransients.
Science 334, 195 (2011): super-octave light waveform synthesis, observation of sub-femtosecond Stark shift
andionization.∎ASchiffrinetal.Optical-field-inducedcurrentindielectrics.Nature493,70(2013):turning
an insulator into a conductor within 1 femtosecond à prospect of petahertz-bandwidth solid-state signal
metrology.∎M.Schultzeetal.Controllingdielectricswiththeelectricfieldoflight.Nature493,75(2013):
manipulation of the electric and optical properties of solids at light frequencies à paving the way towards
petahertz signal processing. ∎ S. Neppl et al. Direct observation of electron propagation and dielectric
screening on the atomic length scale. Nature 517, 342 (2015): real-time observation of electron transport
throughatomiclayersinasolid.
Related documents