Download crust

Document related concepts
no text concepts found
Transcript
Global Changes
aa 2015/2016
Sergio Rocchi
Dipartimento di Scienze della Terra
[email protected]
http://people.dst.unipi.it/rocchi/SR/Home.html
registro lezioni
1
global changes
•changes of what?
•on which timescale?
•measured how?
everything changes (evolves)
•early (and continuing) differentiation of the Earth
•early terrestrial atmosphere and its evolution
•mineral evolution vs atmosphere and biosphere
early Earth
•heating
•age of the Earth
•differentiation
• mantle
• core
• crust
• atmosphere
early Earth
•age of the Earth?
•is the Earth older than any Earth’s material?
Rogers et al. (2008)
early Earth
•heating and differentiation
•heating causes melting that drives differentiation
•heat sources
• primordial collision accretion: kinetic energy E=1/2 mv2
converts to heat, with DT=mv2/[2C(m+M)]
• primordial core formation: Fe-Ni “inward falling” with
potential energy converted to kinetic converted to heat
• radiogenic heating: primordial short-lived isotopes +
long-lived U, Th, K (continental crust)
• tidal heating by friction
early Earth
•mantle-core separation
•magma ocean
• melt segregation and metal-silicate equilibration
Rogers et al. (2008)
chemical evolution of the Earth
core - mantle - crust - atmosphere
• core
• planetesimal accretion = energy to keep primordial Earth molten
• gravitational separation of metal phases towards the core = further energy to keep
the planet molten longer = more efficient segregation of siderophile elements from
the mantle to the core
• Fe-Ni alloy (P waves point out a lower density: ≈10% sulfide-type phases present?)
• mantle
• made of silicate phases (70% Earth’s mass)
• underwent partial melting to generate basaltic magmas
• some major elements (Na, Al, Si, Fe) preferentially enter the liquid
• others (refractory elements such as Mg) preferentially stay into the solid
• some trace elements (LILE) fit best into the liquid structure (more “open” than the solid)
• rising mantle magmas accumulate into the crust elements with low-melting point as well
as incompatible elements (including K, Th, U)
8
chemical evolution of the Earth
9
core - mantle - crust - atmosphere
• crust
• oceanic crust
• produced by partial melting of mantle peridotite
• SiO2≈50 wt%
• max lifetime ≈ 200 Ma, average lifetime ≈ 60 Ma
• continental crust
• produced by partial melting of hydrated mantle peridotite
• SiO2≈57 wt%
• max lifetime ≈ 4 Ga, average lifetime ≈ 600 Ma
• lower continental crust differs from upper continental crust
• in the Solar system only the Eartyh has a non-basalic crust
• due to the occurrence of surficial liquid water
• liquid water triggeres the sedimentary process
• plate tectonics (subduction of altered oceanic crust and some of the overlying
sediemnts carries water also into the upper mantle)
chemical evolution of the Earth
core - mantle - crust - atmosphere
Si
Ca Fe
Mg
Ca
Si
Fe
Mg
Ni
Na
K
Al
lower continental crust
Al
Si
oceanic crust
Al
Fe
mantle
Si
Fe
upper continental crust
S
(O)
core
10
atmosphere and hydrosphere
•composition
•nitrogen and the inert gases
•loss of the earliest atmosphere
•water
atmosphere and hydrosphere
•composition
atmosphere and hydrosphere
•composition
atmosphere and hydrosphere
•atmosphere and hydrosphere produced
by outgassing from volcanic activity
•volcanic volatiles
• major: H2O, CO2, SO2
• minor: N, halogens, hydrides
• water soluble dissolve in the oceans
• less-reactive, less-soluble (N, inert gases)
accumulate in atmosphere
•O not from volcanoes
• first Ga: water breakdown by UV radiation
• Archean (3.8-2.5 Ga): cyanobacteria
Press et al. (2006)
atmosphere and hydrosphere
•a planet retain a gas
with molecule
velocity < 1/6
escape velocity
Vesc=(2GM/r)1/2
average
molecular
volocity
•giant planets retain
any of the gases
•Moon retains no gas
Rogers et al. (2008)
atmosphere and hydrosphere
•nitrogen and the inert gases (Ar, Ne, Kr, Xe)
•N inert in inorganic chemistry
•80-85% was outgassed during the first few tens of
Ma after accretion
atmosphere and hydrosphere
•loss of the earliest atmosphere
•99% early atmosphere lost within 100 Ma
•how?
• major impact with
Theia
• Moon formation?
atmosphere and hydrosphere
•origin of water
• cometary impacts
• D/H in comets twice D/H in hydrosphere
• outgassing of water-bearing minerals
• early surface was hot, but early atmosphere was very dense
earliest land
•3.9 Ga
• komatiites
• very high mantle T or
• high mantle T, water in the
mantle by subduction
• quartz pebbles
• erosion, water (0-100°C)
Rogers et al. (2008)
•4.4 Ga
• relic zircons
50 mm
50 mm
early Earth
•summary
Rogers et al. (2008)
evolution of the atmosphere
•evolution of gas
concentration
evolution of the atmosphere
•the atmosphere
before the life
•the atmosphere
today
evolution of the atmosphere
• evolution of atmospheric oxygen
concentration
• Earth’s O2 from photosynthesis
Great Oxidation Event (GOE)
vs
Great Oxygen Transition (GOT)
evolution of the atmosphere
the rise of oxygen
Archean
•
•
•
•
Proterozoic
Phanerozoic
non-mass-dependent (NMD) fractionation of S isotopes
generated by photosynthetic reactions
signal preserved in rock record if atmospheric O < 0.001% PAL
trace metals enrichment in marine sediments before GOE: on-land oxidative weathering of pyrite?
Present
Atmospheric
Level
Lyons et al. (2014)
evolution of the atmosphere
rise of oxygen and glaciations
•oxygen
•biosphere
•ice
• rise of O
• oxidize CH4
(greenhouse gas)
• T drops
(Ga)
Snowball Earth:
Makganyene
Sturtian Marinoan
http://www.snowballearth.org/index.html
mineral evolution
Hazen et al. (2010)
mineral evolution
Hazen et al. (2008)
mineral evolution
Hazen et al. (2008)
mineral evolution
Hazen et al. (2008)
mineral evolution
Hazen et al. (2008)
planetary accretion (>4.55 Ga)
stage 1
•> 4.56 Ga
•primary chondrite minerals
•chondritic meteorites: ~ 60 minerals
•refractory minerals
• forsterite
• piroxene
• troilite
• Fe-Ni metals
• corunndum
planetary accretion (>4.55 Ga)
stage 2
•4.56 - 4.55 Ga
•differenziazione dei
planetesimi
•alterazione acquosa,
metamorfismo
•fillosilicati, idrossidi,
carbonati
crust and mantle reworking (4.55-2.5 Ga)
stage 3
•4.55 - 4.0 Ga
•beginning of igneous magma/
rock evolution
•large mafic-ultramafic igneous
bodies
•cumulates
• foundering: chromitites
• floating: anorthosite
•detrital zircons 4.4-4.0 Ga
•~ 500 minerals
crust and mantle reworking (4.55-2.5 Ga)
stage 4
•~4.0 - 3.5 Ga
•granitoid production
• inizio formazione cratoni: litosfera leggera ➾ preservabile
• trasporto elementi radioattivi verso la crosta superiore
➾ irrigidimento profilo litosferico
• pegmatiti
•~ 1000 minerals
• quarzo, feldspati, anfiboli, miche
• minerali delle pegmatiti (Li, Cs, B, Be, Nb-Ta)
crust and mantle reworking (4.55-2.5 Ga)
stage 5
•>>3.0 Ga
•plate tectonics
• massive sulfide deposits
• exhumation of deep-seated metamorphic rocks (highPressure minerals)
•large-scale hydrothermal crustal reworking
•~ 1500 minerals
crust and mantle reworking (4.55-2.5 Ga)
stage 6
•3.9 - 2.5 Ga
•Archean anoxic biosphere
•~ 1500 minerals
•first banded iron formations
biologically mediated mineralogy (2.5 Ga-Present)
stage 7
•2.5 - 1.9 Ga
•Paleoproterozoic Great Oxidation Event (GOE)
• fotosintesi dei cianobatteri
•> 4000 minerali
•~ 4300 minerali oggi noti: oltre metà rappresentano
prodotti di alterazione, ossidati e idrati, di altri
minerali
•pur non essendo biominerali s.s., i minerali ossidati/
idrati testimoniano il contributo inderetto dell’attività
biologica alla evoluzione/diversificazione dei minerali
Neoproterozoic
•banded iron formations
•Algoma-type
•Superior-type
• deposition on shelves and intraplate
basins of stable plates
•Rapitan-type
Robb (2005)
Neoproterozoic
Neoproterozoic
•banded iron formations
•contributo di microorganirmi
• Fe2+, Mn2+: bio-ossidazione >> foto-ossidazione
Robb (2005)
early-mid Proterozoic
•U (+Au)
• pyrite placers (late Archean)
• unique metallogenic event pre-oxygenation
• unconformity-associated U (1800-1200 Ma)
• hexavalent U in solution
Evans (1997)
biologically mediated mineralogy (2.5 Ga-Present)
stage 8
•1.9 - 1.0 Ga
•l’oceano intermedio
•> 4000 minerali
biologically mediated mineralogy (2.5 Ga-Present)
stage 9
•1.0 - 0.542 Ga
•“snowball Earth”
•eventi di ossigenazione
del Neoproterozoico
•O atmosferico: 2% ➾
15% valore attuale
•> 4000 minerali
•alterazione bioassistita
dei feldspati: “clay
mineral factory”
(Ga)
biologically mediated mineralogy (2.5 Ga-Present)
stage 10
•< 0.542 Ga
•la biomineralizzazione del Fanerozoico
•> 4300 minerali
•biomineralizzazione
• carbonato di calcio: coralli, molluschi...
• fosfati: scheletro vertebrati e invertebrati, precipitazione
microbica fosforiti
• ossidazione pirite (drenaggi acidi)
evolution, variations, climate
•registrazione variazioni nel passato
•previsione evoluzione futuro
•ambienti futuri già visti nel passato
•archivi paleoambientali/climatici nei sedimenti
near offshore
•glaciovulcanismo & datazioni: strumento per
ricostruzioni paleoambientali
CO2 : cause, effect,proxy
• CO2 - (Mauna Loa observatory)
• CO2 - (molti osservatori)
• Variazione stagionale, oscillazioni più pronunciate nell’emisfero Nord
• cause: season photosynthesis
• globale change: comparable increase in both hemispheres
• T increases parallel to CO2 increase: which started first?
• cause: T increase ➠ CO2 increase (photosynthetic vs anthropogenic)
CO2 increase ➠ aumento T increase
• seasonal variation (7 ppm = 2%)
• cause: season photosynthesis
• globale change: increase
• cause: increasing burning of fossil
fuels(greenhouse effect)?
northern hemisphere
winter:
min photosynthesis
D
E
E
F
northern hemisphere
summer:
max photosynthesis
Rogers (2008)
CK
A
B
proxies and tools
•direct measurement of T proxies
• fossil atmosphere in ice cores
•indirect measurement of T proxies
• fossil shells in marine sediment cores
• CO2 proxies and models
•d18O
•dD
O isotope fractionation
snow
18O-poor
condensation (rain)
18O-enriched
evaporation
16O-enriched
T decrease =
18O increase
fossils and seawater d18O
ocean
ice cap size
ice cap
high latitude sensitive labs
Antarctica and Greenland ice cores
IPCC (2007b)
warm interglacial
warm interglacial
warm interglacial
air trapped in EPICA ice cores
benthic faunas
more ice
less ice
NO2
CH4
CO2
warm interglacial
atmospheric
concentrations
in 2000
warm interglacial
proxies for recent climate variations
paleoclimate variations
•T proxies
• d18O
•CO2 proxies
IPCC (2007b)
paleoclimate variations
•T proxies
• d18O
•CO2 proxies
IPCC (2007b)
Zachos et al (2001)
past vs future
high latitude sensitive labs
Antarctica marine proximal sediment cores
paleoclimate
•nearoffshore
drilling
paleoclimate
•methods
•results
near-offshore drillings
•Cape Roberts
•Andrill: www.andrill.org
near-offshore drillings
the sites
Di Vincenzo et al. (2009)
near-offshore drillings
the age model
•paleontology
• diatoms
• foraminifera
•geochronology
•magnetostratigraphy
•sedimentary cycles
•Sr-isotope curves
near-offshore drillings
provenance studies
•basement clasts
near-offshore drillings
provenance studies
•basement
clasts
Sandroni et al. (2011)
near-offshore drillings
provenance studies
early-middle Miocene
Sandroni et al. (2011)
near-offshore drillings
provenance studies
•volcanic
material
• lava clasts
• tephra
Di Roberto et al. (2012)
summary
il clima oggi e ieri
•interesse per il clima
•contributo geologia
• retrospettiva
• the past is the key to the present (and future)
•Antartide
• perforazioni ghiaccio fino a 740 ka
• glacio-geomorfologia
• exposure dating
• clima vs cronologia più antichi? rocce formatesi durante
periodi glaciali e interglaciali Cenozoici
Cenozoico: clima vs cronologia
•sedimenti
• solo in mare
• perforazioni off-shore
•rocce vulcaniche
• Antarctic Peninsula
• Marie Byrd Land
• Victoria Land
• Erebus volcanic province
• Melbourne volcanic province
• Hallett volcanic province
eruzione subglaciale
•Gjálp (Vatnajökull) - 1 ottobre 1996
photo by M-T. Gudmusson, http://www.hi.is/~mmh/gos/
eruzione subglaciale
•Gjálp (Vatnajökull) - 1 ottobre 1996
photo by M-T. Gudmusson, http://www.hi.is/~mmh/gos/
eruzione subglaciale
•Gjálp (Vatnajökull) - 1 ottobre 1996
photo by M-T. Gudmusson, http://www.hi.is/~mmh/gos/
eruzione subglaciale
•Gjálp (Vatnajökull) 2 ottobre 1996
photo by M-T. Gudmusson, http://www.hi.is/~mmh/gos/
eruzione subglaciale
•Gjálp (Vatnajökull) - 3 ottobre 1996
photo by M-T. Gudmusson, http://www.hi.is/~mmh/gos/
eruzione subglaciale
•Gjálp (Vatnajökull) - 3 ottobre
1996
photo by M-T. Gudmusson, http://www.hi.is/~mmh/gos/
National Geographic, May 1997
National Geographic, May 1997
Gjálp (Vatnajökull) - 5 novembre 1996
•Gjálp (Vatnajökull) - 5 novembre 1996
photo by M-T. Gudmusson, http://www.hi.is/~mmh/gos/
•Gjálp (Vatnajökull) - 5 novembre 1996
photo by M-T. Gudmusson, http://www.hi.is/~mmh/gos/
glaciovolcanic sequences
paleoenvironmental tool
•c’era un ghiacciaio?
•spessore del ghiacciaio
•quota max del ghiacciaio
•struttura del ghiacciaio
• neve/firn
• ghiaccio integro/fratturato
(permeabile)
•regime termico del ghiacciaio
• temperato vs polare
• età del ghiacciaio (dataz. isotopica)
volcano-ice interactions
•RATIONALE
• ice thickness/type affect eruption style
• eruption style indicates ice thickness/type
•PALEOENVIRONMENT
• sequences of glaciovolcanic lithofacies are key indicators
for past ice thickness, extent, type, and age
• recognition of different types of volcanic lithofacies is
essential for environmental interpretations
•DIFFICULTIES
• rapidly evolving morphology of the volcanic edifices
subglacial eruptions - factors
•temperatura del ghiaccio
• energia necessaria per fondere ghiaccio
• maggiore energia per fondere ghiaccio polare
• la stessa quantità di magma fonde una quantità di ghiaccio
polare minore rispetto a ghiaccio temperato
•reologia del ghiaccio
• ghiaccio più freddo è più rigido
• ghiaccio sporco è più rigido
•idrologia del ghiaccio
• ghiaccio temperato ha acqua alla base
• ghiaccio polare è solido fino alla base
• acqua di fusione polare non può sfuggire dalla base
thin ice
Smellie (2001)
thick ice, thin permeable layer
Smellie (2001)
thick ice, thick permeable layer
Smellie (2001)
Gemelli (2009)
subaerial lavas
subaqueous hyaloclastites
lava-fed deltas
•lava enters water (marine, lacustrine, glacial)
•fossil water/ice levels
lava-fed deltas in englacial lakes
•Antarctica, northern
Victoria Land
•late Miocene-Quaternary
volcanic sequences
•volcanic lithofacies
generated in association
with a Neogene ice
cover
lava-fed deltas
• forms when lava enters (glacial) water
• indicators of fossil water (and ice) levels
•pahoehoe
vs. aa
lava-fed
deltas
Smellie et al. (2013)
aa lava-fed delta
•subaerially emplaced relatively thin caprock of aa lavas lying on
and passing down-dip to
•very crudely developed subaerial to subaqueous transition
(passage zone)
•distinctive chaotic subaqueous association of abundant lava lobes
and hyaloclastite with admixed vesicular, often reddened
(oxidized) lava clinkers
•rare subaqueous stratification with predominantly low dips and
layer thickening
•glaciovolcanic lava-fed
delta advancing through
cold-based ice
•only supraglacial
meltwater discharge
•dome or coulée
advancing in wet-based
ice
•subglacial meltwater
escape
•basal tills and eruptionrelated fluvial sandstones
and conglomerates
Smellie et al. (2011)
paleoenvironment-paleoclimate
Smellie et al. (2011)
•warm- to cold-based
glacier transition in
Antarctica
no erosion
ice sheet pulsations
warm-based glaciers
Zachos et al. (2001)
fast exhumation river incision
paleoenvironment-paleoclimate
• basal thermal regime
• determines the potential ice sheet instability
• 30-years paradigm for EAIS (VL)
• basal thermal regime: from wet-based to coldbased either at ca. 14 Ma or after ca. 2.5 Ma
• paleo-ice thicknesses/regime from subglacial
eruptions along 800 km of the Ross Sea coast
• evidence for both wet- and cold-based ice
• basal thermal regime varied spatially and with
time between ca. 12 Ma and present: it was
polythermal
• coarse temperature patchwork of frozen-bed
and thawed-bed ice, similar to the EAIS
E
today
• paradigm shift
Smellie et al. (2014)
global climatic
changes
- greenhouse
greenhouse
gases
- origin gases
•GHG affects climate
•origin of GHG
• anthropic activities
• volcanic activity
• subvolcanic activity?
atmospheric effects of volcanic eruptions
•volcanoes release SO2
•SO2 reacts to H2SO4 =
aerosol
•generally Sa > La = aerosol
layer induces cooling
gas and dust from LIP volcanoes
•Large Igneous Volcanic Provinces
climate effects of volcanic LIPs
aerosol
Rogers (2008)
biological effects of volcanic LIPs
•... and their subvolcanic counterparts?
Wignall (2001)
Subvolcanic LIPs
(Large Igneous
subvolcanic
LIPs Provinces)
North Atlantic
55 Ma
Paleocene-Eocene
Siberia
250 Ma
Karoo
183 Ma
Toarcian
subvolcanic structure of LIPs
Hansen & Cartwright (2006)
Rocchi et al (2007)
subvolcanic structure of LIPs
•saucer-shaped sills
•forced folding
Rocchi et al (2007)
24
subvolcanic structure of LIPs
Polteau et al (2008)
subvolcanic structure of LIPs
Golden Valley, Karoo, South Africa
10 km
subvolcanic structure of LIPs
•hydrothermal venting
Svensen et al. (2004)
Rocchi et al (2007)
sediment fluidisation & venting
•emplacement of magma in wet sediments
•critical pressure of water
•Senegal: shallow emplacement depth
• ≈ 1 s TWT ≈ 350 m
• P ≈ 7 MPa < critical pressure of water
• explosive expansion of water
• fracture-induced P reduction
1.25 1.5 2
4 6
1
Pressure (MPa)
• 22.1 MPa for pure water ≈ 1.1 km of wet seds
• 31.2 MPa for seawater ≈ 1.6 km of wet seds
Kokelaar (1982)
40
8
10
30
12.5
15
20
Liquid
20
25
33
10
50
Vapour
0
•heat source = persistent vapour
•high vapour flow rate = sediment fluidization
•continuous vapour flow = sediment transport
0
200
400
Temperature (°C)
100
600
sediment fluidisation & venting
modified after Jamtveit et al. (2004)
venting to the seafloor
crater, diatreme
venting to the seafloor
mud volcano
igneous dyke
further fluids rising
pipes of finer
grained sediments
hydraulic brecciation
of sediments, fluids
escape to the surface
peperite +
sediment fluidization
sill intrusion in wet sediments
GHC from subvolcanic intrusions
•contact aureole around a sill
intrusion emplaced into
sedimentary rocks
•overpressure in the aureole
may cause venting of fluids
to the atmosphere
•fluids are ALSO produced in
contact aurole by
• kerogen cracking to methane
• hydrous minerals releasing H2O
• TOC content decreases towards the contact
• vitrinite reflectance increases towards the contact
Aarnes et al. (2010)
GHC from subvolcanic intrusions
H2O (sandstone, clays)
• CH4 (shale, petroleum)
• CO2 (coal, lime/
dolostone)
• CH3Cl (evaporite)
• SO2 (evaporite)
• HCl (evaporite)
Svensen & Jamtveit (2010)
•
global warming from subvolcanic GHG?
•important global warming episodes
• 55 Ma, Paleocene-Eocene
• 183 Ma, Toarcian (early Jurassic)
• 250 Ma, end-Permian
North Atlantic
55 Ma
Siberia
250 Ma
Karoo
183 Ma
Subvolcanic LIPs (Large Igneous Provinces)
North Atlantic
55 Ma
Paleocene-Eocene
Siberia
250 Ma
Karoo
183 Ma
Toarcian
GHC from North Atlantic PETM
LIP
•rapid (20-200 ka)
global warming
around 55 Ma
•global T rising of
about 6°C (0.03°C/
century)
Zachos et al (2001)
•negative excursion
in carbon stable
13
isotope (δ C)
massive
input of
•massive
13
C-depleted C in
the hydrosphereatmosphere
C for PETM
•C source that caused the global climate
change: extensive melting of gas
hydrates buried in marine sediments?
•large-scale hydrate melting requires a
triggering mechanism
•thousands of hydrothermal vent
complexes of Paleocene-Eocene age
identified on seismic reflection profiles
from the Norwegian Sea
•intrusion of voluminous magmas in Crich sedimentary strata caused
explosive release of CH4
•CH4 was transported to the ocean or
atmosphere through vent complexes
Svensen at al. (2004)
C for PETM
•magma volume:
104-105 km3
•age: Paleocene-Eocene
boundary
•host rocks: organicrich Cretaceous and
Palaeocene mudstones
Svensen et al. (2004)
C for PETM
•host rocks: organic-rich Cretaceous
and Palaeocene mudstones
18
•release of 0.3-3 x 10 g CH4
•thermogenic CH4 from organic
material has low C isotope ratio
13
(d C = -35 to -50‰)
Svensen et al. (2004)
Aarnes et al. (2010)
C for PETM
•volcanic vs subvolcanic GHG
•direct C emissions
• 1 m3 magma emits 3.6 kg C
• volcanism 10x more voluminous than intrusions
• C from volcanism 10x C from intrusions
•indirect C emissions (net flux into the atmosphere)
• 1 m3 magma intruded in organic C-rich mudstone emits
25-100 kg C
• C from intrusion > C from volcanism
Toarcian - Karoo
Toarcian - Karoo
•thermogenic CH4 from
organic material has low
C isotope ratio (d
( 13C =
-35 to -50‰) owing to
preferential
incorporation of 12C
during photosynthesis
Svensen et al. (2007)
Siberia - end-Permian
Svensen et al. (2009)
Siberia - end-Permian
Svensen et al. (2009)
Siberia - end-Permian
Svensen et al. (2009)
global climatic
changes
- greenhouse
greenhouse
gases
- origin gases
•GHG affects climate
•origin of GHG
• anthropic activities
• volcanic activity
• subvolcanic activity!