Download Relativistic Quantum Chemistry

Document related concepts
no text concepts found
Transcript
CNRS – Université de Lille 1
Relativistic Quantum Chemistry
Outline
P. 2 / 80
Part I: Introduction
1
Three cornerstones of non-relativistic Quantum Chemistry
2
The electronic problem
3
Quantum chemical methods
4
Which are the relativistic elements?
5
The limitations of nonrelativistic quantum chemistry
Part II: Relativistic effects
6
Scalar relativistic effects
7
Illustrations of scalar relativistic effects
8
The spin-orbit interaction
9
Illustration of the spin-orbit interaction
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Outline (2)
P. 3 / 80
Part III: The Dirac equation and four-component calculations
10 Special relativity: Galileo vs. Lorentz Transformation
11 From classical mechanics to quantum chemistry
Non-relativistic quantization
Relativistic quantization
12 The Dirac Equation
One-electron part of the Four-Component Hamiltonian
Two-electron part of the Four-Component Hamiltonian
Part IV: Two-component relativistic theory
13 How important are the small components?
14 Two-component Hamiltonians
Breit-Pauli Hamiltonian
Regular Approximations
Douglas-Kroll-Hess Hamiltonian
15 Summary of 2-component Hamiltonians
eXact 2-Component (X2C) Hamiltonians
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Outline (3)
P. 4 / 80
Part V: Core approximations
16 Core approximations - Valence only approaches
17 Accuracy of pseudopotentials
18 Where can you get the PP parameters?
Part VI: One-component relativistic methods
19 Which spin-orbit operator?
20 Consequences of spin-orbit coupling
21 1c approaches for the treatment of SO-coupling
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Outline (4)
P. 5 / 80
Part VII: Illustrations of relativistic effects
22 Direct and indirect effects on orbitals and properties
23 Effects on atomic shell structures
24 Effects on molecular structures
25 Effects on chemical reactions
26 Effects on NMR shieldings
27 Effects on solid-state band structures
28 Effects on structural chemistry
Part VIII: Final comments
29 Check-list before you start a relativistic calculation
30 Relativity affects many properties
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
P. 6 / 80
Part I
Introduction
1
Three cornerstones of non-relativistic Quantum Chemistry
2
The electronic problem
3
Quantum chemical methods
4
Which are the relativistic elements?
5
The limitations of nonrelativistic quantum chemistry
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Three Cornerstones of Non-Relativistic QC
P. 7 / 80
We assume that:
1
molecular systems follow the Born-Oppenheimer approximation
→ use the concept of Potential Energy Surfaces (PES)
2
nuclear charge can be described by a finite-size model
(e.g. use of gaussian type basis functions)
3
electrons move slow enough to be described by a non-relativistic theory
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
The Electronic Problem
P. 8 / 80
The electronic Hamiltonian can be written as
Ĥ
el
= VNN +
X
i
ĥ(i ) +
1X
ĝ (i , j ); ĥ(i ) = hˆ0 (i ) + ven (i )
2
i <j
The problematic term is the two-electron interaction which connects all
electron coordinates. In the absence of any electron-electron interaction the
electronic problem becomes separable, that is, we can solve it for each
electron separately
ĥ(r)ϕi (r) = εi ϕi (r)
The resulting electronic wave function is then written as a Slater determinant
of orbitals
Ψ(r1 , ·rn ) = |ϕ1 (r1 )ϕ2 (r2 ) · · · ϕn (rn )|
Although the electron interaction can not be ignored, Slater determinants
and orbitals are key ingredients in most quantum chemical methods.
Orbitals are typically expanded in some atom-centered basis
ϕ(r) =
X
µ
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
χµ (r)cµi
Quantum Chemical Methods
P. 9 / 80
Many quantum chemical methods employ the variational principle stating
that the expectation value of the Hamiltonian with respect to some trial
function is always above the exact energy (obtained using the exact wave
function)
hΨtrial |Ĥ el |Ψtrial i ≥ hΨel |Ĥ el |Ψel i = E exact
The simplest quantum chemical method, Hartree-Fock, employs a simple
Slater determinant as trial function and finds the orbitals which minimizes
the energy. In practice they are found by solving the Hartree-Fock equation
mean
F̂ (r)ϕi (r) = εi ϕi (r); F̂ = f̂ + Vee
{ϕk }
where the Fock operator is an effective one-electron operator containing the
mean field of the other electrons in the molecule. More elaborate methods
such as Configuration Interaction (CI) and Coupled Cluster, employ linear
combination of Slater determinants to capture the full electron correlation.
Still, the majority of today’s quantum chemical calculations are based on
density functional theory (DFT) which replaces the complicated electronic
wave function Ψel (r1 , · · · rn ) by the much simpler electron density ρ(r).
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Which Are the Relativistic Elements?
P. 10 / 80
Los Alamos National Laboratory Chemistry Division
1A
1
H
1
1s
hydrogen
1.008
3
Be
lithium
beryllium
11
[He]2s1
6.941
Periodic Table of the Elements
2A
4
Li
3A
5
B
[Ne]3s1
22.99
19
37
[He]2s22p2
[He]2s22p3
[He]2s22p4
[He]2s22p5
12.01
14.01
16.00
19.00
13
[Ne]3s2
magnesium
24.31
20
[Ar]4s2
40.08
boron
55
[Xe]6s1
132.9
87
Fr
[Rn]7s1
francium
(223)
3B
21
Sc
[Ar]4s23d2
44.96
47.88
38
39
[Kr]5s24d1
88.91
56
Ba
[Xe]6s2
barium
137.3
4B
22
Ti
[Ar]4s23d1
scandium
[Kr]5s2
Sr
strontium
cesium
Al
87.62
Rb
rubidium
Cs
F
10.81
calcium
[Kr]5s1
7A
9
[He]2s22p1
potassium
85.47
O
12
Ca
[Ar]4s1
1s2
6A
8
9.012
K
39.10
5A
7
N
[He]2s2
Na Mg
sodium
4A
6
C
8A
2
He
Y
yttrium
titanium
40
Zr
[Kr]5s24d2
zirconium
91.22
50.94
41
chromium
manganese
[Ar]4s13d5
52.00
42
Nb Mo
[Kr]5s14d4
niobium
92.91
7B
25
Mn
[Kr]5s14d5
molybdenum
95.94
26
Fe
8B
27
Co
[Ne]3s23p1
28
Ni
[Ar]4s23d5
[Ar]4s23d6
[Ar]4s23d7
[Ar]4s23d8
54.94
55.85
58.93
58.69
43
iron
44
cobalt
45
nickel
46
Tc
Ru
Rh
Pd
technetium
ruthenium
rhodium
palladium
[Kr]5s24d5
(98)
[Kr]5s14d7
101.1
[Kr]5s14d8
102.9
[Kr]4d10
106.4
11B
29
Cu
[Ar]4s13d10
copper
63.55
47
Ag
12B
30
aluminum
[Ar]4s23d10
[Ar]4s23d104p1
Zn
zinc
65.39
48
Cd
26.98
31
Ga
gallium
69.72
49
In
[Kr]5s14d10
[Kr]5s24d10
[Kr]5s24d105p1
107.9
112.4
114.8
silver
cadmium
indium
[Ne]3s23p2
silicon
28.09
32
Ge
[Ar]4s23d104p2
germanium
72.58
50
Sn
[Kr]5s24d105p2
tin
118.7
15
P
[Ne]3s23p3
phosphorus
30.97
33
As
oxygen
16
S
[Ne]3s23p4
sulfur
32.07
34
Se
[Ar]4s23d104p3
[Ar]4s23d104p4
74.92
78.96
arsenic
51
selenium
fluorine
17
Cl
[Ne]3s23p5
chlorine
35.45
35
Br
[Ar]4s23d104p5
bromine
79.90
Ne
[He]2s22p6
neon
20.18
18
Ar
[Ne]3s23p6
argon
39.95
36
Kr
[Ar]4s23d104p6
krypton
83.80
52
53
[Kr]5s24d105p3
[Kr]5s24d105p4
[Kr]5s24d105p5
[Kr]5s24d105p6
121.8
127.6
126.9
131.3
Sb
antimony
Te
tellurium
54
Xe
xenon
72
[Xe]6s24f145d2
[Xe]6s24f145d3
[Xe]6s24f145d4
[Xe]6s24f145d5
[Xe]6s24f145d6
[Xe]6s24f145d7
[Xe]6s14f145d9
[Xe]6s14f145d10
[Xe]6s24f145d10
[Xe]6s24f145d106p1
[Xe]6s24f145d106p2
[Xe]6s24f145d106p3
[Xe]6s24f145d106p4
[Xe]6s24f145d106p5
[Xe]6s24f145d106p6
178.5
180.9
183.9
186.2
190.2
190.2
195.1
197.0
200.5
204.4
207.2
208.9
(209)
(210)
(222)
110
111
112
(272)
(277)
89
[Rn]7s26d1
hafnium
actinium
(227)
104
58
Ce
[Xe]6s24f15d1
cerium
140.1
90
Th
[Rn]7s26d2
thorium
232.0
[Rn]7s25f146d2
rutherfordium
(257)
59
Pr
[Xe]6s24f3
praseodymium
140.9
91
Pa
[Rn]7s25f26d1
protactinium
(231)
73
Ta
tantalum
74
W
tungsten
105
106
[Rn]7s25f146d3
[Rn]7s25f146d4
Db
dubnium
(260)
60
Sg
seaborgium
(263)
61
75
Re
rhenium
107
Bh
[Rn]7s25f146d5
bohrium
(262)
62
76
Os
osmium
108
Hs
[Rn]7s25f146d6
hassium
(265)
63
Nd Pm Sm Eu
[Xe]6s24f4
neodymium
144.2
92
U
[Rn]7s25f36d1
uranium
(238)
[Xe]6s24f5
promethium
(147)
93
Np
[Rn]7s25f46d1
neptunium
(237)
[Xe]6s24f6
samarium
(150.4)
94
77
Ir
iridium
109
Mt
[Rn]7s25f146d7
meitnerium
(266)
64
80
Hg
mercury
65
66
67
Dy
Ho
dysprosium
holmium
95
96
[Rn]7s25f76d1
curium
(247)
[Xe]6s24f9
158.9
97
Bk
[Rn]7s25f9
berkelium
(247)
[Xe]6s24f10
162.5
98
Cf
[Rn]7s25f10
californium
(249)
68
99
100
astatine
86
Rn
radon
116
Uuo
(298)
(?)
69
70
Yb
71
[Xe]6s24f14
[Xe]6s24f145d1
168.9
173.0
175.0
ytterbium
101
102
[Rn]7s25f13
[Rn]7s25f14
mendelevium
(256)
nobelium
(254)
118
Lu
[Xe]6s24f13
Fm Md No
fermium
(253)
85
At
Uuh
thulium
[Rn]7s25f12
Po
polonium
(296)
Tm
167.3
Es
83
Bi
bismuth
Uuq
erbium
[Xe]6s24f12
164.9
[Rn]7s25f11
lead
Er
[Xe]6s24f11
einsteinium
(254)
82
Pb
114
Ds Uuu Uub
darmstadtium
(271)
terbium
[Rn]7s25f7
81
Tl
thallium
[Rn]7s15f146d9
Tb
157.3
americium
(243)
gold
Gd
[Xe]6s24f75d1
152.0
Pu Am Cm
[Rn]7s25f6
plutonium
(242)
79
Au
gadolinium
[Xe]6s24f7
europium
78
Pt
platinum
84
I
iodine
57
88
Actinide Series~
[Ar]4s23d3
vanadium
6B
24
Cr
Si
nitrogen
10
138.9
La* Hf
[Rn]7s2
Lanthanide Series*
V
14
4.003
[Xe]6s25d1
lanthanum
Ra Ac~ Rf
radium
(226)
5B
23
carbon
helium
lutetium
103
Lr
[Rn]7s25f146d1
lawrencium
(257)
element names in blue are liquids at room temperature
element names in red are gases at room temperature
element names in black are solids at room temperature
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
The Limitations of Nonrelativistic QC
P. 11 / 80
Fairly early one realized that nonrelativisitc theory was unable to explain
certain trends in observed properties of atoms and molecules
Metal-carbon bond length in the group 12 [Rao et al. 1960]
I
I
I
Non-relativistic QC: bond length should increase from Zn, Cd, to Hg
Experimentally: bond length increases from Zn to Cd and then decreases from
Cd to Hg
The decrease in bond length is due to relativistic effects!
Ionization potentials of the p block elements
Need for a relativistic quantum chemical formalism
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
P. 12 / 80
Part II
Relativistic effects
6
Scalar relativistic effects
7
Illustrations of scalar relativistic effects
8
The spin-orbit interaction
9
Illustration of the spin-orbit interaction
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Scalar Relativistic Effects: Hydrogen-Like Atoms
P. 13 / 80
In atomic units the average speed of the 1s electron is equal to the nuclear
charge
v1s = Z a.u. and c = 137.0359998a.u.
The relativistic mass increase of the 1s electron is thus determined by the
nuclear charge
me
m = γ me = p
1 − Z 2 /c 2
The Bohr radius is inversely proportional to electron mass
a0 =
4πε0 ~2
m
Relativity will contract orbitals of one-electron atoms, e.g.
Au78+ : Z/c = 58% ⇒ 18% relativistic contraction of the 1s orbital
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Scalar Relativistic Effects: Polyelectronic Atoms
P. 14 / 80
•
•
The effect of the other electrons is to screen the nuclear charge
The relativistic contraction of orbitals will increase screening of nuclear
charge and thus indirectly favor orbital expansion.
In practice, we observe
I
•
I
s, p
d, f
s, p orbitals : contraction
d, f orbitals : expansion
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Colour of Gold
P. 15 / 80
The colours of silver and gold
are related to the transition
between the (n − 1)d and ns
bands. For silver this transition
is in the ultraviolet, giving the
metallic cluster. For gold it is in
the visible, but only when
effects are included.
(nrelativistic
1)d
ns
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
The Contrasting Neighbors
P. 16 / 80
1064◦ C
12.5 kJ/mol
9.29 kJ/mol
19.32 g/cm3
426 kS/m
dimer
Mp
∆Hfus
∆Sfus
ρ
Conductivity
gas phase
-39◦ C
2.29 kJ/mol
9.81 kJ/mol
13.53 g/cm3
10.4 kS/m
monomer
[Xe]4f 14 5d10 6s1
[Xe]4f 14 5d10 6s2
pseudo halogen
pseudo noble gas
Without relativistic effects mercury would probably not be a liquid at room
temperature!
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Spin-Orbit Interaction
P. 17 / 80
h
SO
=
1
s · [∇V × p]
2m2 c 2
with V = − Zr
Z
s·l
2m2 c 2 r 3
The spin-orbit interaction is not the interaction between spin and angular
momentum of an electron. An electron moving alone in space is subject to
no spin-orbit interaction!
The basic mechanism of the spin-orbit interaction is magnetic induction:
An electron which moves in a molecular field will feel a magnetic field in its rest
frame, in addition to an electric field. The spin-orbit term describes the interaction
of the spin of the electron with this magnetic field due to the relative motion of the
charges.
This operator couples the degrees of freedom associated with spin and space
and therefore makes it impossible to treat spin and spatial symmetry separately.
h
SO
=
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Spin-Orbit Coupling in Atoms
P. 18 / 80
In the absence of spin-orbit coupling atomic electronic states are characterized
by total orbital angular momentum L and total spin S and denoted as 2S +1 L. With
spin-orbit interaction only the total angular momentum
J = kL − S k, · · · kL + S k
is conserved.
The ground state configuration of oxygen is 1s2 2s2 2p4 which in a non-relativistic
framework (LS-coupling) gives rise to three states.
Term
3
P
1
1
D
S
L
S
1
1
2
0
0
0
J
2
1
0
2
0
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Level (cm−1 )
0.000
158.265
226.977
15867.862
33792.583
Atomic Oxygen Emissions in Atmospheric Aurora
P. 19 / 80
Green line
Red line
Transition
S 0 → 1 D2
1
D2 → 3 P2
1
Wavelength(Å)
5577
6300
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Type
E2
M1
Lifetime(s)
0.75
110
P. 20 / 80
Part III
The Dirac equation and four-component calculations
10 Special relativity: Galileo vs. Lorentz Transformation
11 From classical mechanics to quantum chemistry
Non-relativistic quantization
Relativistic quantization
12 The Dirac Equation
One-electron part of the Four-Component Hamiltonian
Two-electron part of the Four-Component Hamiltonian
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Galileo Transformation
P. 21 / 80
Motion in the x-direction
0
x
=
x + vt
y
=
y
0
0
z
=
z
t
=
t
0
Transforms coordinates between two different reference frames
Velocities are additive and time is constant.
No “speed limit”
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Lorentz Transformation
P. 22 / 80
In the x-direction
x
=
Generalized to 3 dimensions
γ(x 0 + vt )
y
=
y
0
z
=
z
0
t
=
γ(t 0 +
r
=
0
r +v
vt 0
)
c2
γ=
1−
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
t
=
v2
c2
− 12
γ t0 +
(v · r0 ) (γ − 1)
v2
0
v·r
c2
+ γt 0
Recall Non-Relativistic Quantization
P. 23 / 80
Spin-Free Non-relativistic Hamiltonian
H =T +V
=
π
=
π2
+ q φ(r )
2m
p − qA
Non-relativistic Hamiltonian including spin
H=
(σ · π)2
2m
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
+ q φ(r )
Including Spin in the Non-relativistic Hamiltonian
P. 24 / 80
Non-relativistic Pauli Hamiltonian.
H
=
=
HΨ
=
(σ · π)2
2m
π2
2m
i~
−
q~
σ · B + qφ
2m
∂
Ψ
∂t
Introduction of spin may appear ad hoc
No spin-orbit coupling
Not Lorentz invariant
Linear in φ but quadratic in A
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
+ q φ(r )
Relativistic Quantization
P. 25 / 80
Classical relativistic energy expression including EM-fiels.
2 4
2
E − qφ
=
m c +c π
π
=
p − qA
2
Quantization results in the Klein-Gordon Equation
(i ~
∂
− q φ)2 Ψ = (m2 c 4 + c 2 π 2 )Ψ
∂t
Lorentz invariant but doesn’t include spin
KG-equation is not suitable for electrons
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Relativistic Quantization
P. 26 / 80
Generalize the concept of the square root in E − q φ equation
2
E − q φ = β mc + c α · π
Require cross-terms drop out by introducing parameters
β2
=
1
+
[αi , αj ]
=
2δij
[αi , β]+
=
0
Quantization yields the Dirac equation which can be used to describe
electrons!
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
A way to Describe Electrons Relativistically
P. 27 / 80
The Dirac equation
(β mc 2 + c α · π + q φ)Ψ(r , t ) = i ~
∂
Ψ(r , t )
∂t
Lorentz invariant
First derivative with respect to time AND position
Linear in scalar AND vector potentials
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
What are the Parameters?
P. 28 / 80
Parametrization includes the Pauli matrices
αx
=
αy
=
αz
=
β
=
0
σx
σx
0
0
σy
σy
0
0
σz
σz
0
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
I2
0
0
−I2
Requires a Four-Component Wave Function
P. 29 / 80
2
H = β mc + c α · π + q φ
The Dirac Hamiltonian
mc 2 + q φ

0
H=

c πz
c (πx + i πy )

0
c πz
mc 2 + q φ
c (πx − i πy )
−c πz
c (πx + i πy )
−mc 2 + q φ
1
Spin doubles the components
2
Has negative energy solutions: E < −mc 2
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
0

c (πx − i πy )
−c πz 


0
−mc 2 + q φ
How Can we Treat Many-Electron Systems?
P. 30 / 80
Exact relativistic many-electron Hamiltonian is unknown
Born-Oppenheimer Approximation
I
I
I
Theory remains relativistic
Decouples nuclear and electronic motion
Simplifies relationship between time and space coordinates
Add two-electron terms via the Coulomb potential?
What relativistic effects should the external potential include?
I
I
Electron feels the motion of other electrons after some time (i.e. a retarded,
velocity-dependent potential)
Electron generates B as it moves and can interact with another electrons spin
(i.e. spin-orbit coupling, SOC)
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Dirac-Coulomb-Breit Hamiltonian
P. 31 / 80
Correction to the Coulomb operator obtained as a leading term in the
Quantum Electrondynamics (QED) expansion.
Coulomb term O (c 0 ) (including spin-”same” orbit (SSO))
Coul
ĝij
=
I4 · I4
; charge-charge interaction
rij
Breit term O (c −2 )
Breit
ĝij
I
Gaunt term (including spin-”other” orbit (SOO))
ĝijGaunt = −
I
= ĝijGaunt + ĝijgauge
c αi · c αi
c 2 rij
; current-current (magnetic) interaction
Gauge-dependent term:
gauge
ĝij
=−
(c αi · ∇i )(c αi · ∇i )rij
; retardation term
2c 2
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Dirac-Coulomb-Breit Hamiltonian
P. 32 / 80
Dirac-Coulomb-Breit Hamiltonian
H
DCB
=
X
D
hij ai+ aj +
ij
X
CB
gijkl ai+ ak+ aj al
i <j ;k <l
But what about the wavefunction?
Still have positive and negative energy solutions!!
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Rewriting the Dirac Eq. in a “Two-Component Form”
P. 33 / 80
Shift the diagonal of the Dirac Hamiltonian by −mc 2
This aligns the relativistic and nonrelativistic energy scales
In a two-component form:
V
cσ · π
cσ · π
−2mc 2 + V
ΨL (r)
ΨL (r)
=E
ΨS (r)
ΨS (r)
ΨL (r) and ΨS (r) are exact eigenfunctions of the Dirac equation
For simplification, A = 0 and π = p
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
P. 34 / 80
Part IV
Two-component relativistic theory
13 How important are the small components?
14 Two-component Hamiltonians
Breit-Pauli Hamiltonian
Regular Approximations
Douglas-Kroll-Hess Hamiltonian
15 Summary of 2-component Hamiltonians
eXact 2-Component (X2C) Hamiltonians
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Nature of the Small Components
P. 35 / 80
Contributions from the large and small component densities
4c
L
S
p (r) = p (r)p (r)
Reducing computational cost
Exploit the highly local and atomic nature of the small components
Use the no-pair approximation
atomic character of the contributions of the S components
⇒ neglect the multi-center integral block in the S components
Transforming the 4-component equation to a two-component one.
Beware: Do not ignore the non-negligible contributions of the
small-components: L and S are coupled!
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Unnormalized Elimination of the Small Components
P. 36 / 80
Find a relationship between the two components
ΨS (r)
=
χΨL (r)
χ
=
K (E , r)
σ·p
2mc
Eliminate ΨS (r) to obtain a two-component problem
1
(σ · p)K (E , r)(σ · p) + V
2m
ΨL (r)
=
E ΨL (r)
K (E , r)
=
1−
V −E
2mc 2
−1
Exact but not an eigenvalue equation
D
D
The resulting two component hamiltonian is H ++ = H11
+ χH12
Starting point for approximations.
The simplest approximation, K (E , r), leads to the non-relativistic Pauli
Hamiltonian
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Breit-Pauli Hamiltonian
P. 37 / 80
Begin with Unnormalized Elimination of the Small Components (UESC)
equation
UESC equation
(
1
V −E
(σ · p) 1 −
2m
2mc 2
(σ · p) + V
Expand K (E , r) in terms of small parameter
represent relativistic effects
)
−1
ΨL (r) = E ΨL (r)
V −E
to give operators that
2mc 2
Need to renormalize ΨL (r) (expansion occurs in normalization term as well):
H
BP
= H Pauli + H Darwin + H MV + H SO
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Breit-Pauli Hamiltonian
P. 38 / 80
The very useful Dirac identity
(σ · p)V (σ · p) = pV · p + i σ · (pV × p)
Breit-Pauli Operators (so called Scalar Rel. Corrections in blue).
H
Darwin
=
MV
=
SO
=
H
H
1
(∇2 V )
8m2 c 2
p4
− 3 2
8m c
1
σ · ((∇V ) × p)
4m2 c 2
Good to first order, but variational collapse at higher order
Used for light elements where first order is sufficient
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Regular Approximations
P. 39 / 80
V −E
only valid when this term is small
2mc 2
Not small near the nuclei (|V − E |/2mc 2 > 1)
E
where expansion is valid for whole region of
Expand in terms of
2mc 2 − V
space
In Breit-Pauli, expanding in terms of
K (E , r ) =
1−
V −E
2mc 2
−1
=
1−
V
2mc 2
−1 Expansion is variationally stable unlike Breit-Pauli
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
1+
E
2mc 2 − V
−1
Zero Order Regular Approximation (ZORA)
P. 40 / 80
In practice, include only first term in the Regular Approximation
K (E , r) =
V
2mc 2
−1
leading to the ZORA Hamiltonian:
H
ZORA
=
=
1−
2mc 2
1
(σ · p)
(σ · p)
2m
2mc 2 − V
1
V +T +
(σ · p)V (σ · p) + . . .
4m2 c 2
V+
this formula shows that the ZORA Hamiltonian contains no mass velocity
term, only parts of the Darwin term, but all spin-orbit interactions arising
from nuclei
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Douglas-Kroll-Hess
P. 41 / 80
Ideally: Achieve decoupling of the large and small components of the Dirac
Hamiltonian via a unitary transformation
H
DKH
h+
= UH U =
0
D
†
0
h−
Discard chemically uninteresting negative energy solutions
h+ would require a two component wavefunction
If completely decoupled, the positive energy eigenvalues are the same as
those for the Dirac equation
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
What Can We Use for U in UH D U † ?
P. 42 / 80
Foldy-Wouthuysen Transformation (exact for the free particle problem)
"
U
=
X
=
1
(1 + X † X )− 2
1
X (1 + XX † )− 2
K (E , r)
1
(1 + X † X )− 2 X †
1
(1 + XX † )− 2
#
(σ · p)
2mc
In DKH, use FW transformation for the bare-nucleus Hamiltonian
Douglas and Kroll suggested step-wise decoupling could be done by
parameterizing additional transformations
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
DKH Hamiltonian
P. 43 / 80
Second Order DKH Hamiltonian
"
H
(2)
H DKH2
=
(2)
H21
(2)
H12
(2)
H22
#
Variationally stable
Scalar DKH2 is used most often
Good results in practice
Matrix elements cannot be computed analytically due to the complicated
operators
If including an external field, need to transform the operators
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Summary of Approximate Relativistic Hamiltonians
P. 44 / 80
Approximate decoupling may lead to highly singular operators (problem for
variational calculations!)
Decoupling significantly reduces computational cost
Relativistic 1-component (scalar) Hamiltonian and its spin-orbit counterpart
can be obtained by elimination of the spin
Any property operator should be subjected to the same transformation!!!
Picture change. If neglected:
I
I
small errors on valence properties
significant ones on nucleus properties!!!
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
eXact 2-Component (X2C) Hamiltonians
P. 45 / 80
1
Solve the Dirac equation on matrix form
2
Extract the coupling χ from the solutions
3
Construct the transformation matrix U, next hX 2C
Advantages of X2C
reproduces exactly the positive-energy spectrum of the Dirac Hamiltonian
all matrix manipulations; no new operators to program
explicit representation of transformation matrix;
any property operator can be transformed on the fly, no picture change error
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Two-Component Relativistic Methods
P. 46 / 80
2c implementations of most quantum chemical methods (like in 4c)
Dirac Hartree Fock (DHF) methods
Post DHF methods: MP2, Coupled-Cluster methods (CC), CISD, Full CI
Multi-configuration Self Consistent field
MRCI methods (GAS-CI), IH(FSCC)
Density Functional Theory
Two-component packages
DIRAC http://wiki.chem.vu.nl/dirac/
UTChem, http://utchem.qcl.t.u-tokyo.ac.jp/
ADF http://www.scm.com/
TURBOMOLE http://www.cosmologic.de/
ReSpect http://rel-qchem.sav.sk/
NWCHEM http://www.emsl.pnl.gov/capabilities/computing/nwchem/
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
P. 47 / 80
Part V
Core approximations
16 Core approximations - Valence only approaches
17 Accuracy of pseudopotentials
18 Where can you get the PP parameters?
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Need for Frozen Core Approximations
P. 48 / 80
In the context of chemical applications
Core orbitals are not involved
in heavy elements (second, third transition series, lanthanides, actinides,
superheavy elements...) large number of core orbitals
core orbitals are essentially atomic like in a molecule or material
core orbitals supply a non-local static potential that can be evaluated once in
the calculation
relativistic effects are too a large extent localized in the core region
→ include relativistic effects in the core potential
→ treat valence orbitals non-relativistically
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Idea: Restriction of the Calculations to Valence Electrons
P. 49 / 80
Abbreviations: multiconfiguration Dirac–Hartree–Fock calculations based on the Dirac–Coulomb Hamiltonian perturbatively including the Breit
interaction (MCDHF/DC+B); small-core pseudopotential (SPP); density functional theory (DFT)
Significant computational savings ⇒ study of large complexes;
computational effort concentrated on valence part
Implicit inclusion of major relativistic effects
Consideration of spin–orbit (SO) effects
⇒ SO operator: perturbative treatment subsequent to scalar-relativistic
calculation ⇒ MCDHF/DC+B SPP: variational inclusion from the beginning
Application in nonrel. framework of ab initio and DFT calculations ⇒
GAUSSIAN, MOLCAS, TURBOMOLE, CRYSTAL, DIRAC, NWCHEM ...
PPs: smaller basis sets ⇒ reduced basis set superposition error
LPPs: avoiding of open shells
⇒ no multiconfigurational treatment; good convergence
Computational effort ⇔ Accuracy of results
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Approximations
P. 50 / 80
Core–valence separation (choice of the core)
I
I
Frozen-core approximation
I
I
neglect of core–valence correlation
core-polarization potentials (CPPs) account for dynamic core-polarization
consideration of all important configurations in the adjustment
CPPs account for static core-polarization
Replacement of the core electrons by an ECP
I
convenient form with adjustable parameters
Point charge Coulomb repulsion between nuclei/cores
Application of pseudo valence orbitals
I
I
I
corrections for penetrating/overlapping cores
simplified nodal structure in core region
overestimation of valence correlation energies?
Don’t apply PPs to investigate core properties as NMR shifts!
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Different Kinds of Effective Core Potentials
P. 51 / 80
M. Dolg and X. Cao. “The relativistic energy-consistent ab initio pseudopotential approach and its application to lanthanide and actinide
compounds”. In: Recent Advances in Relativistic Molecular Theory. Ed. by K. Hirao and Y. Ishikawa. Vol. 6. New Jersey: World Scientific, 2004,
pp. 1–35
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Choice of the Pseudopotential Core
P. 52 / 80
M. Dolg and X. Cao. “The relativistic energy-consistent ab initio pseudopotential approach and its application to lanthanide and actinide
compounds”. In: Recent Advances in Relativistic Molecular Theory. Ed. by K. Hirao and Y. Ishikawa. Vol. 6. New Jersey: World Scientific, 2004,
pp. 1–35
Energetic separation:
Spatial separation:
valence space 5f 0
valence space
valence space
6d 2
5f 0
5spdf
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
7s2
6spd
6spd
7s
7s
(4 electrons)
(12 electrons)
(30 electrons)
⇒ not useful
⇒ LPP (large-core PP)
⇒ SPP
Are f-in-core Pseudopotential Useful?
P. 53 / 80
Comparison between Ce (lanthanide) and Th (actinide):
Stronger indirect relativistic destabilization and expansion of Th 5f
Th 5f is more diffuse than Ce 4f
Th 5f amplitude is small, but not negligible in the valence space
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Valence-only Model Hamiltonian
P. 54 / 80
The valence-only model Hamiltonian for a molecule (in a.u.) is given as
Ĥv = −
nv
nv
nv
N
N
X
X
X
X
QI QJ
1
1X
I
+
Vcv (i ) +
+ V̂CPP
∆i +
2
rij
RIJ
i <j
i
I
I <J
I
The effective core potentials Vcv
describe all interactions with the core
system.
scalar-relativistic, one-component
I
V̂cv
(i ) = −
i
QI
riI
+
lmax X
X
l =0
I 2
AIlk exp (−alk
riI )P̂lI (i ) with P̂lI (i ) =
l
X
|lm, I ihlm, I |
m= −l
k
quasi-relativistic, two-component
I
V̂cv
(i ) = −
QI
riI
+
lmax
X
j =l +1/2
X
X
l =0 j =|l −1/2|
I 2
AIljk exp (−aljk
riI )P̂ljI (i ) with P̂ljI (i ) =
k
j
X
|ljm, I ihljm, I |
m= −j
I
I
I
V̂PP
(i ) = V̂PP
,SA (i ) + V̂PP ,SO (i )
Relativistic effects result only from the PP parametrization to relativistic reference data!
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Adjustment of Energy-Consistent Pseudopotentials
P. 55 / 80
1
2
Selection of reference configurations ⇒ consideration of all chemical
important states
AE
AE computation of the total energies EIAE and the core energy Ecore
AE
⇒ calculation of the total valence energies EIAE ,V = EIAE − Ecore
3
Check how many Gaussians are needed
4
Guess for the free parameters AImk and aImk (m = l , lj) of the Gaussians
5
Adjustment of the PP parameters by a least-squares fit to EIAE ,V
S=
X
AE ,valence
wI E I
− EIPP ,valence
2
:= min
I
, Adjustment can be made to any method
currently best method: (average- level) multi-configuration Dirac-Hartree-Fock
(MCDHF) reference data based on the Dirac-Coulomb-Breit Hamiltonian
6
Test if parameters deviate smoothly with increasing nuclear charge
7
Comparison of the PP pseudo valence and the AE valence orbitals
8
Optimization of a corresponding basis set
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Example of Calibration for Atoms
P. 56 / 80
Illustration of the accuracy of the Köln-Stuttgart pseudopotentials
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Example of Calibration for Molecules
P. 57 / 80
Test systems: AcF, ThF3+ , PaF4+ (closed-shell molecules)
Method: MCDHF/DC+B SPPs HF + MP21 in DIRAC
Reference: AE DHF + MP2 using DC as well as X2C/DKH2 + AMFI
Hamiltonians
Active space: all electrons in the PP calculation; virtual orbitals ≤ 100 a.u.
Basis sets: F aug-cc-pVQZ;
Ac: PP (16s15p12d10f6g3h), AE (37s34p27d21f6g3h);
Th: PP (16s15p12d10f9g5h1i), AE (37s34p26d23f9g5h1i);
Pa: PP (16s15p12d10f10g5h2i), AE (37s34p26d23f10g5h2i)
Bond distances (Å2 ) and force constants (N/m) [Weigand et al. manuscript]
ThF3+
AcF
Re
DC
X2C
DKH2
PP
∆DC /PP
% DC/PP
HF
2.130
2.129
2.129
2.124
0.006
0.3
ke
MP2
2.105
2.105
2.104
2.099
0.006
0.3
HF
287.4
287.6
287.8
293.2
5.8
2.0
Re
MP2
301.7
301.8
302.1
309.8
8.1
2.7
HF
1.878
1.877
1.877
1.876
0.002
0.1
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
PaF4+
ke
MP2
1.878
1.878
1.877
1.876
0.002
0.1
HF
712.3
712.3
712.2
724.4
12.1
1.7
Re
MP2
692.3
691.5
691.6
704.3
12.0
1.7
HF
1.772
1.771
1.771
1.772
0.0001
0.01
ke
MP2
1.802
1.802
1.802
1.803
0.001
0.06
HF
986.1
985.7
985.3
993.0
6.9
0.7
MP2
804.7
800.3
798.5
795.2
9.5
1.2
Accessing the PP Parameters?
P. 58 / 80
Program or web databases
In most quantum chemistry programs (GAUSSIAN, NWCHEM, MOLCAS,
MOLPRO, etc...)
http://www.theochem.uni-stuttgart.de/pseudopotentials/index.
en.html
https://bse.pnl.gov/bse/portal
Always prefer the pseudopotentials from the Köln Stuttgart group because
they are far more accurate!
Important review for heavy elements: M Dolg and X. Cao. “Relativistic
Pseudopotentials: Their Development and Scope of Applications”. In:
Chem. Rev. 112 (2012), pp. 403–480. DOI: 10.1021/cr2001383
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
P. 59 / 80
Part VI
One-component relativistic methods
19 Which spin-orbit operator?
20 Consequences of spin-orbit coupling
21 1c approaches for the treatment of SO-coupling
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Philosophy of One-Component Approaches
P. 60 / 80
Split scalar relativistic effects and spin-orbit coupling
In two-component or pseudopotentials we can separate scalar relativistic
effects from spin-orbit coupling
First run a scalar relativistic (DFT, HF, post-HF, multiconfigurational, etc...)
Treat spin-orbit coupling a posteriori
Choose the proper SO Hamiltonian if you use relativistic
pseudopotentials:
Don’t use all-electron spin-orbit hamiltonian: you have pseudo-orbitals!!!
Must use the spin-orbit pseudopotential that is paired with your scalar
relativistic pseudopotential
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Choose the Proper SO Hamiltonian for All-Electron
Calculations (1)
P. 61 / 80
Breit-Pauli Hamiltonian
SO
The one-electron term: Ĥ1el =
Two-electron term:
e2 ~ X
r~k
~
Z
i
σ
~
·
×
pk
k
4m2 c 2
rk3
k
SO
Ĥ2el = −
r~kl
e2 ~ X
~
i
(
σ
~
+
2
σ
~
)
·
×
pk
k
l
2m2 c 2
rkl3
k 6=l
3
Z /r divergence when r → 0
Don’t use it in variational calculations and for heavy elements
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Choose the Proper SO Hamiltonian for All-Electron
Calculations (2)
P. 62 / 80
One and two electron spin-orbit contributions derived at the first order
DKH level
The one-electron term:
SO
Ĥ1el
=
X
k
r
Ak
=
Ak
Ek + mc 2
i σ~k ·
r~k
× p~k
rk3
Ak
Ek + mc 2
Ek + mc 2
2Ek
The two-electron term has two contributions:
SO
Ĥ2el
=
X
Ak Al
k 6=l
+
X
k 6=l
Ak Al
i σ~k
·
Ek + mc 2
2i σ~k
·
Ek + mc 2
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
r~kl
rkl3
r~kl
rkl3
× p~k
× p~l
1
Ek + mc 2
1
El + mc 2
Ak Al
Ak Al
Choose the Proper SO Hamiltonian for All-Electron
Calculations (3)
P. 63 / 80
Mean-field approach to spin-orbit coupling
Calculate two-electron contribution (shielding) from a fixed configuration
Effective one-electron integrals
Fock-operator technique
mean-field
Ĥij
=
+
SO
hi |Ĥ1el
|j i
1 X
2
SO
SO
SO
nk {hik |Ĥ2el |jk ihik |Ĥ2el |kj i − hki |Ĥ2el |jk i}
k ,fixed {nk }
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Choose the Proper SO Hamiltonian for All-Electron
Calculations (4)
P. 64 / 80
Atomic Mean-field approach to spin-orbit coupling
Spin-orbit coupling is short-ranged : r −3 behavior ⇒ atomic approximation
Compute the Mean-Field integrals for each atom separately
Use atomic orbitals and ground-state average occupations
⇒ need for atomic natural basis sets
Atomic Mean-Field SO integral approach (AMFI code, Bernd
Schimmelpfennig)
Splitting identical with full SO-operator within a few wave numbers
Available in DALTON, DeMon, Dirac, MOLCAS, ORCA
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Consequences of Spin-orbit Coupling
P. 65 / 80
=
H
Hnr +
X
~iV
Api + B ∇
4
2
+
i
Hso (i )
=
~
4m2 c 2
X
i
~si ·
~ri
ri3
∧ ~pi
f (r )~l · ~s = f (r ) (lx sx + ly sy + lz sz ) = f (r ) {(l+ s− + l− s+ ) /2 + lz sz }
non-relativistic term has certain symmetry properties (atom, molecule,
special symmetry group: C2v , D6h . . .-); 3 P, 2 S, 3 Π, 2 Σ+ , 1 B1 , 2 B2u . . .
Scalar relativistic terms keep these properties (blue)
Commute with L2 , Lz et S 2 , Sz for atoms, with L2z et S 2 , Sz for linear
molecules. It is invariant with respect to symmetry operation in the general
case
In atoms and linear molecules, spin-orbit operators don’t commute with
L2 , Lz et S 2 , Sz
In polyatomic molecules, spin functions have special properties
I
I
I
If Cz (π) rotation around the z-axis is a symmetry operation (H2 O):
[Cz (π)]2 = Cz (2π) is the identity
For spin functions Cz (2π)|αi =?|alphai 6= |αi
Double group symmetry
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
1c Approaches for the Treatment of SO-Coupling
P. 66 / 80
SR all-electron basis
SR-PP + basis set
1-component HF/MCSCF
Post-HF/Post-MCSCF treatment to include dynamical correlation and SO
coupling
One-electron SO operator → singly-excited configurations
Slow convergence of dynamic correlation (single, double, ..., excited
configurations)
Intermediate coupling scheme:
I
I
SO relaxation of valence orbitals is important for heavy main group atoms
dense spectra in transition metals and actinides
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Treat Correlation and SO in a 2-Step Approach
P. 67 / 80
SR all-electron basis
SR-PP + basis set
1-component HF/MCSCF
electron correlation
DFT or WFT correlated method
1) Couple the correlated spin-free states
2) Small SOCI with an effective Ham.
MOLCAS, MOLPRO
EPCISO
Since SO converges faster (small CI space)
MOLCAS (RASSI module) http://www.teokem.lu.se/molcas/
MOLPRO (MRCI module) http://www.teokem.lu.se/molcas/
EPCISO (interface with MOLCAS)[email protected]
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
P. 68 / 80
Part VII
Illustrations of relativistic in chemistry: more common
than you thought
22 Direct and indirect effects on orbitals and properties
23 Effects on atomic shell structures
24 Effects on molecular structures
25 Effects on chemical reactions
26 Effects on NMR shieldings
27 Effects on solid-state band structures
28 Effects on structural chemistry
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Relativistic effects in chemistry
P. 69 / 80
Direct effects
contraction of the core-penetrating orbitals
s orbitals, p1/2 , p3/2 orbitals in core
Energetic stabilization: higher ionization energy, higher electron affinity,
smaller polarizability
Indirect effects
indirect effects on d, f , orbitals and valence p orbitals
nuclear charge is shielded to a larger extent because of direct effect on
core-penetrating orbitals (in particular of the semi-core)
relativistic expansion of core non-penetrating orbitals
energetic destabilization
smaller ionization energy, larger polarizability in turn, stabilization of
core-penetrating orbitals in next shell
gold maximum
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
U4+ atomic spectrum
P. 70 / 80
Non Relativistic
Spin-Free
0
-50
-100
4d
-150
4p
4s
-200
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Spin-Orbit
Relativistic Effects on Atomic Shell structures
P. 71 / 80
S. J. Rose, I. P. Grant, and N. C. Pyper. “The direct and indirect effects in the relativistic modification of atomic valence orbitals”. In: J. Phys. B: At.
Mol. Phys. 11.7 (1978), p. 1171. DOI: 10.1088/0022- 3700/11/7/016
Direct (dynamics) and indirect (potential) effects on orbital energies (eV)
Dynamics:
Potential:
Au 6s
Tl 6p1/2
Tl 6p3/2
Lu 5d3/2
Lu 5d5/2
Dirac
Rel
Nonrel
-7.94
-7.97
-5.81
-6.79
-4.79
-5.63
-5.25
-7.32
-5.01
-6.90
Schrödinger
Rel
Nonrel
-6.18
-6.01
-4.58
-5.24
-4.46
-5.24
-4.74
-6.63
-4.81
-6.63
Direct effects dominate for Au 6s and Tl 6p1/2
Compensation of direct and indirect effects for Tl 6p3/2
Indirect effects dominate for Lu
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Relativistic Effects on Molecular Structures
P. 72 / 80
C. L. Collins, K. G. Dyall, and H. F. Schaefer III. “Relativistic and correlation effects in CuH, AgH, and AuH: Comparison of various relativistic
methods”. In: J. Chem. Phys. 102 (1995), p. 2024. DOI: 10.1063/1.468724
Bond lengths in pm, dissociation energies in eV, harmonic frequencies in
cm−1
Molecule
CuH
Method
reSCF
reMP2
DeSCF
DeMP2
ω SCF
ω MP2
NR
DKH
RECP
DC
Exp
156.9
154.2
154.3
154.1
145.4
142.9
142.9
142.8
146.3
1.416
1.476
1.465
1.477
2.585
2.708
2.696
2.711
2.85
1642
1698
1690
1699
2024
2100
2095
2101
1941
NR
DKH
RECP
DC
Exp
177.9
170.1
170.0
170.0
166.3
158.7
158.4
158.5
161.8
1.126
1.229
1.224
1.233
1.986
2.190
2.189
2.195
2.39
1473
1602
1607
1605
1699
1870
1882
1873
1760
NR
DKH
RECP
DC
Exp
183.1
157.6
157.1
157.0
171.1
149.8
149.5
149.7
152.4
1.084
1.727
1.751
1.778
1.901
3.042
3.075
3.114
3.36
1464
2045
2076
2067
1169
2495
2512
2496
2305
AgH
AuH
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Effects on Chemical Reactions
P. 73 / 80
K. G. Dyall. “All-electron molecular Dirac-Hartree-Fock calculations: Properties of the XH4 and XH2 molecules and the reaction energy
XH4 −
→ XH2 + H2 , X=Si, Ge, Sn, Pb”. In: J. Chem. Phys. 96 (1992), p. 1210. DOI: 10.1063/1.462208
SCF reaction energies in kJ/mol for the reaction XH4 −−→ XH2 + H2
Method
NR
RECP
DHF
Si
263
261
Ge
190
195
177
Sn
129
102
97
Pb
89
-31
-26
Large relativistic effects in Pb
Stabilization of the 6s and destabilization of 6p decreases sp3 hybridization
in PbH4 , thus making the reaction exothermic
In some systems, spin-orbit coupling can enable crossing between states of
different multiplicities (inter-system crossings)
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Effects on NMR Shieldings
P. 74 / 80
Peter Hrobárik et al. “Relativistic Four-Component DFT Calculations of 1H NMR Chemical Shifts in Transition-Metal Hydride Complexes: Unusual
High-Field Shifts Beyond the Buckingham–Stephens Model”. In: J. Phys. Chem. A 115.22 (2011), pp. 5654–5659. DOI: 10.1021/jp202327z
Isotropic hydrogen shielding parameters (ppm)
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Relativity and the Lead-Acid Battery
P. 75 / 80
Rajeev Ahuja et al. “Relativity and the Lead-Acid Battery”. In: Phys. Rev. Lett. 106 (1 2011), p. 018301. DOI:
10.1103/PhysRevLett.106.018301
The lead-acid battery reaction
Pb(s) + PbO2(s) + 2 H2 SO4(aq) −−→ 2 PbSO4(s) + 2 H2 O(l)
The nonrelativistic (NR), scalar relativistic (SR),
and fully relativistic (FR) energy shifts (in eV) for
the solids involved in the lead-acid-battery reaction.
Values for both M = Sn ( green) and M = Pb (black)
are given.
Electromotoric force in eV
experimental: 2.107 V
average fully relativistic DFT value: + 2.13 V
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Spin-orbit effects in structural chemistry
P. 76 / 80
Ulrich Wedig et al. “Homoatomic Stella Quadrangula [Tl8 ]6 – in Cs18 Tl8 O6 , Interplay of Spin-Orbit Coupling, and Jahn-Teller Distortion”. In: J.
Am. Chem. Soc. 132.35 (2010), pp. 12458–12463. DOI: 10.1021/ja1051022
Strong influence of SO coupling on heavy element structures
SO makes Ptn clusters flat (n = 2–5)
In Cs18 Tl8 O6 the system exhibit an open-shell degenerate HOMO within a
scalar relativistic approximation.
With SO coupling a closed-shell electronic system is obtained in accordance
with the diamagnetic behavior of this crystal.
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
P. 77 / 80
Part VIII
Comments
29 Check-list before you start a relativistic calculation
30 Relativity affects many properties
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
How to Choose Between 4c, 2c, 1c + SOCI Approaches?
P. 78 / 80
Check-list to choose a relativistic approach
How to choose the relativistic description?
I
I
I
I
Best method depends on the system studied
Which property are you interested in?
What is the accuracy you are looking for? It depends on whether you look at
chemical reactions, spectroscopy, or molecular properties
Which computational capacities do you have access to?
For closed shell systems, one-component methods work well
Don’t use non-relativistically contracted basis sets
As usual correlation is important, esp. as there are often a lot of close lying
states with different correlation effects
There are a lot of PPs, ECPs, AIMPs on the market. If you are not sure,
compare to some all-electron method, perhaps even four-component
An approximate method with a good basis set should be preferable to a
more accurate method with a too small basis set.
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Summary Points
P. 79 / 80
Beware of the importance of relativistic effects
1
The classical examples of relativistic effects in chemistry remain and have
been included in most chemistry textbooks.
2
One of the oldest examples, which deserves more attention, is the
SO-induced NMR heavy-atom shift.
3
Investigators continue to discover new examples, such as the heavy-element
batteries.
4
Catalysis is one of the most important applications of relativistic quantum
chemistry.
5
The SO effects in structural chemistry have been identified only recently
after technical progress.
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Further Reading
P. 80 / 80
Relativistic Quantum Mechanics
R. E. Moss. Advanced Molecular Quantum Mechanics - An Introduction to Relativistic Quantum Mechanics and
the Quantum Theory of Radiation. Springer Netherlands, 1973.
ISBN :
978-94-009-5690-2.
DOI :
10.1007/978-94-009-5688-9
P. Strange. Relativistic Quantum Mechanics with Applications in Condensed Matter and Atomic Physics.
Cambridge Univ. Press, 1998, p. 594.
ISBN :
9780521565837
Relativistic Quantum Chemical methods
P. Schwerdtfeger. Relativistic Electronic Structure Theory: Part 1, Fundamentals. Ed. by P. Schwerdtfeger.
Amsterdam: Elsevier, 2002.
ISBN :
9780444512499
K. G. Dyall and K. Fægri. Introduction to relativistic quantum chemistry. New York: Oxford University Press, 2007
M. Reiher and A. Wolf. Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science, 2nd
Edition. WILEY-VCH Verlag, 2014.
ISBN :
978-3-527-33415-5
Applications
P. Schwerdtfeger. Relativistic Electronic Structure Theory: Part 2, Applications. Ed. by P. Schwerdtfeger.
Amsterdam: Elsevier, 2004.
ISBN :
978-0-444-51299-4
Pekka Pyykkö. “Relativistic Effects in Chemistry: More Common Than You Thought”. In: Ann. Phys. 63.1 (2012),
pp. 45–64. DOI: 10.1146/annurev-physchem-032511-143755
Valérie Vallet ([email protected]) | CNRS – Université de Lille 1
Related documents