Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
D-Branes and Noncommutative Geometry in Sting Theory Pichet Vanichchapongjaroen 3rd March 2010 Introduction The Need For a New Model Noncommutative Geometry in String Theory Quantum Mechanics in Noncommutative Phase Space I N T R O D U C T I O N The Need For a New Model • General Relativity (GR) highly gravitating objects • Quantum Mechanics (QM) small objects • What about T H E N E E D F O R A Inside Black Hole Time around Big Bang • But GR+QM does not work. Need new model • GR requires smooth spacetime of spacetime • String Theory noncommutative geometry (NCG) Pictures from: http://commons.wikimedia.org/wiki/File:Black_Hole_in_the_universe.jpg http://en.wikipedia.org/wiki/File:Universe_expansion2.png N E W M O D E L Strings Strings Quantise Particles and Fields S T R I N G S D-Branes Boundary Conditions • Neumann • Dirichlet Fields: NO Background: Flat String: Neutral Commutation Relations 𝑥 𝑖 , 𝑝𝑗 = 𝑖ℏδ𝑖 𝑗 , 𝑥 𝑖 , 𝑥 𝑗 = 𝑝𝑖 , 𝑝𝑗 = 0 D B R A N E S Noncommutative D-Brane Boundary Conditions • Neumann • Dirichlet Fields: constant NS-NS B-field Background: Flat String: Charged Commutation Relations 𝑥 𝑖 , 𝑝𝑗 = 𝑖ℏ𝛿 𝑖 𝑗 , 𝑥 𝑖 , 𝑥 𝑗 = 𝑖𝜃 𝑖𝑗 , 𝑝𝑖 , 𝑝𝑗 = 0 N O N C O M M U T A T I V E D B R A N E Topics in Quantum Field Theory in Noncommutative Spacetime • UV/IR mixing • Morita Equivalence etc. N O N C O M M U T A T I V E Q F T D-Brane in pp-wave Background Boundary Conditions • Neumann • Dirichlet Fields: constant NS-NS B-field Background: pp-wave String: Charged Commutation Relations 𝑥 𝑖 , 𝑝𝑗 = 𝑖ℏ𝛿 𝑖 𝑗 , 𝑥 𝑖 , 𝑥 𝑗 = 𝑖𝜃 𝑖𝑗 , 𝑝𝑖 , 𝑝𝑗 = 𝑖ϕ𝑖𝑗 P P W D A - V B E R A B N A E C K I G N R O U N D To Study Physics in Noncommutative Phase Space • Goal: Quantum Field Theory • Quantum Field Theory Lots of Simple Harmonic Oscillators |𝑥〉 |𝑝〉 • Problem: Coordinate and Momentum Space Representation no longer works • Need to view phase space as a whole • Study Phase Space Quantisation N O N C O M M U T A T I V E P H A S E S P A C E Two Dimensional Simple Harmonic Oscillator • Hamiltonian 1 2 𝐻 = 𝑥 + 𝑦 2 + 𝑝𝑥2 + 𝑝𝑦2 2 • Commutation Relations 𝑥 𝑖 , 𝑝𝑗 = 𝑖δ𝑖 𝑗 , 𝑥 𝑖 , 𝑥 𝑗 = 𝑝𝑖 , 𝑝𝑗 = 0, 𝑖, 𝑗 = 1,2 • Spectrum 𝑛 = 0,1,2, … , • Degeneracies 𝐸𝑛,𝑚 = 1 𝐸𝑛,𝑚 = 2 𝐸𝑛,𝑚 = 3 𝐸𝑛,𝑚 = 𝑛 + 1, 𝑚 = −𝑛, −𝑛 + 2, … , 𝑛 − 2, 𝑛 1 state 2 states 3 states ⋮ 𝑚=0 𝑚 = −1,1 𝑚 = −2,0,2 2 D S H O Two Dimensional Simple Harmonic Oscillator in Noncommutative Phase Space • Hamiltonian 1 2 𝐻 = 𝑥 + 𝑦 2 + 𝑝𝑥2 + 𝑝𝑦2 2 S H O I N N C • Commutation Relations 𝑥 𝑖 , 𝑝𝑗 = 𝑖δ𝑖 𝑗 , 𝑥, 𝑦 = 𝑖𝜃, 𝑝𝑥 , 𝑝𝑦 = 𝑖𝜙, 2 D 𝑖, 𝑗 = 1,2 • Spectrum 𝑛+1 𝜃+𝜙 𝑚 2 𝐸′𝑛,𝑚 = 4+ 𝜃−𝜙 − , 2 2 𝑛 = 0,1,2, … , 𝑚 = −𝑛, −𝑛 + 2, … , 𝑛 − 2, 𝑛 • This analysis valid for 𝜃𝜙 < 1 P H A S E S P A C E Two Dimensional Simple Harmonic Oscillator in Noncommutative Phase Space 𝜃𝜙 < 1 • Small 𝜃, 𝜙 ′ 𝐸𝑛,𝑚 − 𝐸𝑛,𝑚 𝑚 ≈ − (𝜃 + 𝜙) 2 2 D S H O I N N C P H A S E S P A C E Two Dimensional Simple Harmonic Oscillator in Noncommutative Phase Space • 𝜙 = 0 (noncommutative spacetime) 𝜃𝜙 < 1 2 D S H O I N N C P H A S E S P A C E Two Dimensional Simple Harmonic Oscillator in Noncommutative Phase Space • General 𝜃, 𝜙 𝜃𝜙 < 1 𝜙=1 2 D S H O I N N C P H A S E S P A C E Two Dimensional Simple Harmonic Oscillator in Noncommutative Phase Space • Assume 𝜃𝜙 ≥ 1 𝑛+1 𝜃+𝜙 𝑚 2 𝐸′𝑛,𝑚 = 4+ 𝜃−𝜙 − 2 2 continues to work for 𝜃𝜙 ≥ 1 • 𝜃𝜙 = 1: Degenerate vacuum with 𝜃+𝜙 ′ 𝐸𝑣𝑎𝑐𝑢𝑢𝑚 = 2 • 𝜃𝜙 > 1: No vacuum 𝐸′𝑛,𝑚 → −∞ as 𝑛 → ∞ 2 D S H O I N N C P H A S E S P A C E Conclusion • The need of a new model • D-brane becomes noncommutative in some situations • Noncommutative Phase Space: Use Phase Space Quantisation to study Simple Harmonic Oscillator hope to get starting point for QFT • Energy level of Noncommutative SHO is generally nondegenerate • Sign of degenerate vacuum and vanished vacuum further investigation C O N C L U S I O N References • F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer. Deformation theory and quantization. II. Physical applications. Annals of Physics, 111:111–151, Mar. 1978. • C.-S. Chu, P.-M. Ho, Noncommutative Open String and Dbrane, Nucl. Phys. B550:151-168, 1999. • C.-S. Chu and P.-M. Ho. Noncommutative D-brane and open string in pp-wave background with B-field. Nucl. Phys., B636:141–158, 2002. R E F E R E N C E S