Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ID : pk-8-Multiplication-of-Polynomials [1] Grade 8 Multiplication of Polynomials For more such worksheets visit www.edugain.com Answer t he quest ions (1) Find product of f ollowing polynomials A) (4b2 + 5b + 1) and ( -2b2 - 4b + 2) B) ( -4p2 - p - 2) and (5p2 - 3p + 4) (2) If F1 = 8p + 3, F2 = 3p + 8 and F3 = -p + 7, simplif y F1 × F2 + F3 in terms of p. (3) Simplif y the f ollowing polynomial expressions A) [(9a + 8) × (3a - 6)] - (9a - 7) B) [( -9x - 4) × ( -x - 9)] + ( -2x + 6) (4) Simplif y the f ollowing polynomial expressions: (5) A) [(4q2 - 5q + 4) × (q2 + 4q + 1)] - (5q) B) [( -5b2 - 2b - 2) × ( -5b2 - 4b - 5)] + (5b2 + 2b - 4) Simplif y the f ollowing expressions: A) ( -3y - 3) × (y - 3) × ( -2y - 1) B) (3b + 3) × ( -3b - 1) × (3b - 1) (6) Find the product of the f ollowing polynomials A) ( -3q2 + 4q + 6) and (0.4q) B) (0.3y2 + 3y - 4) and (y2 - 4) (7) If the base of a triangle is ( -6y2 + 6y) and its height is (8y2 + 8y - 2), then what is its area? (8) Find product of (pq + 3p - q - 2) and (pq + 2p - 2). Choose correct answer(s) f rom given choice (9) If (6x2 + 7x + 5) × ( -x2 + 4x + 6) = -6x4 + 17x3 + ax2 + 62x + 30, f ind the value of a. a. 60 b. 59 c. 68 d. 49 (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : pk-8-Multiplication-of-Polynomials [2] (10) If ( -2xy - 3x + 2y) × ( -3xy + 2x - 3y - 3) = (6x2y2 + 5x2y + 19xy - 6x2 + 9x - 6y2 - 6y + a) , f ind value of a. a. 1 b. 0 c. -1 d. -2 (11) If the length and width of a rectangle are (8b2 + 3b) and (9b2 + 9b + 9), f ind the area of the rectangle. a. 72b4 + 99b3 - 99b2 + 27b b. 72b4 + 99b3 + 99b2 + 27b c. 72b4 - 99b3 + 99b2 + 27b d. 72b4 + 99b3 + 99b2 - 27b (12) Find product of (2y) and ( -y2 - y - 2) f or y = 1. a. -14 b. -3 c. -8 d. -12 © 2016 Edugain (www.edugain.com). All Rights Reserved (C) 2016 Edugain (www.Edugain.com) Many more such worksheets can be generated at www.edugain.com Personal use only, commercial use is strictly prohibited ID : pk-8-Multiplication-of-Polynomials [3] Answers (1) A) -8b4 - 26b3 - 14b2 + 6b + 2 Step 1 In order to multiply two polynomials, lets multiply each term of f irst polynomial to second polynomial as f ollowing, (4b2 + 5b + 1) × ( -2b2 - 4b + 2) = (4b2)( -2b2 - 4b + 2) + (5b)( -2b2 - 4b + 2) + (1)( -2b2 - 4b + 2) = ( -8b4 - 16b3 + 8b2) + ( -10b3 - 20b2 + 10b) + ( -2b2 - 4b + 2) = -8b4 - 26b3 - 14b2 + 6b + 2 Step 2 T heref ore, the product of (4b2 + 5b + 1) and ( -2b2 - 4b + 2) is -8b 4 - 26b 3 14b 2 + 6b + 2. B) -20p4 + 7p3 - 23p2 + 2p - 8 Step 1 In order to multiply two polynomials, lets multiply each term of f irst polynomial to second polynomial as f ollowing, ( -4p2 - p - 2) × (5p2 - 3p + 4) = ( -4p2)(5p2 - 3p + 4) + ( - p)(5p2 - 3p + 4) + ( - 2)(5p2 - 3p + 4) = ( -20p4 + 12p3 - 16p2) + ( -5p3 + 3p2 - 4p) + ( -10p2 + 6p - 8) = -20p4 + 7p3 - 23p2 + 2p - 8 Step 2 T heref ore, the product of ( -4p2 - p - 2) and (5p2 - 3p + 4) is -20p 4 + 7p 3 23p 2 + 2p - 8. (2) 24p2 + 72p + 31 T his is a straightf orward case of polynomial simplif ication We know that F1 = 8p + 3, F2 = 3p + 8, and F3 = -p + 7 So (F1 x F2 + F3) is (F1 x F2 + F3) = ((8p + 3) x (3p + 8)) + ( -p + 7) T his simplif ies to 24p2 + 72p + 31 (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : pk-8-Multiplication-of-Polynomials [4] (3) A) 27a2 - 39a - 41 Step 1 Let's f irst multiply two given polynomials, (9a + 8) × (3a - 6) = (9a)(3a - 6) + (8)(3a - 6) = (27a2 - 54a) + (24a - 48) = 27a2 - 30a - 48 Step 2 Now, subtract 9a - 7 f rom 27a2 - 30a - 48, (27a2 - 30a - 48) - (9a - 7) = 27a2 - 39a - 41 Step 3 T heref ore, the simplif ied f orm of [(9a + 8) × (3a - 6)] - (9a - 7) is 27a2 - 39a 41. B) 9x2 + 83x + 42 Step 1 Let's f irst multiply two given polynomials, ( -9x - 4) × ( -x - 9) = ( -9x)( -x - 9) + ( -4)( -x - 9) = (9x2 + 81x) + (4x + 36) = 9x2 + 85x + 36 Step 2 Now, add 9x2 + 85x + 36 to -2x + 6, (9x2 + 85x + 36) + ( -2x + 6) = 9x2 + 83x + 42 Step 3 T heref ore, the simplif ied f orm of [( -9x - 4) × ( -x - 9)] + ( -2x + 6) is 9x2 + 83x + 42. (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : pk-8-Multiplication-of-Polynomials [5] (4) A) 4q4 + 11q3 - 12q2 + 6q + 4 Step 1 Let's f irst multiply f irst two polynomials, (4q2 - 5q + 4) × (q2 + 4q + 1) = (4q2)(q2 + 4q + 1) + ( - 5q)(q2 + 4q + 1) + (4)(q2 + 4q + 1) = (4q4 + 16q3 + 4q2) + ( -5q3 - 20q2 - 5q) + (4q2 + 16q + 4) = 4q4 + 11q3 - 12q2 + 11q + 4 Step 2 Now, on subtracting 5q f rom 4q4 + 11q3 - 12q2 + 11q + 4, we get: (4q4 + 11q3 - 12q2 + 11q + 4) - (5q) = 4q4 + 11q3 - 12q2 + 6q + 4 Step 3 T heref ore, the simplif ied f orm of [(4q2 - 5q + 4) × (q2 + 4q + 1)] - (5q) is 4q 4 + 11q 3 - 12q 2 + 6q + 4. B) 25b4 + 30b3 + 48b2 + 20b + 6 Step 1 Let's f irst multiply f irst two polynomials, ( -5b2 - 2b - 2) × ( -5b2 - 4b - 5) = ( -5b2)( -5b2 - 4b - 5) + ( - 2b)( -5b2 - 4b - 5) + ( - 2)( -5b2 - 4b - 5) = (25b4 + 20b3 + 25b2) + (10b3 + 8b2 + 10b) + (10b2 + 8b + 10) = 25b4 + 30b3 + 43b2 + 18b + 10 Step 2 Now, on adding 25b4 + 30b3 + 43b2 + 18b + 10 and 5b2 + 2b - 4, we get: (25b4 + 30b3 + 43b2 + 18b + 10) + (5b2 + 2b - 4) = 25b4 + 30b3 + 48b2 + 20b + 6 Step 3 T heref ore, the simplif ied f orm of [( -5b2 - 2b - 2) × ( -5b2 - 4b - 5)] + (5b2 + 2b 4) is 25b 4 + 30b 3 + 48b 2 + 20b + 6. (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : pk-8-Multiplication-of-Polynomials [6] (5) A) 6y3 - 9y2 - 24y - 9 Step 1 Let's f irst multiply f irst two polynomials, ( -3y - 3) × (y - 3) = ( -3y)(y - 3) + ( -3)(y - 3) = ( -3y2 + 9y) + ( -3y + 9) = -3y2 + 6y + 9 Step 2 Now, multiply polynomials ( -2y - 1) and ( -3y2 + 6y + 9), we get: ( -2y - 1) × ( -3y2 + 6y + 9) = ( -2y)( -3y2 + 6y + 9) + ( -1)( -3y2 + 6y + 9) = (6y3 - 12y2 - 18y) + (3y2 - 6y - 9) = 6y3 - 9y2 - 24y - 9 Step 3 T heref ore, the simplif ied f orm of [( -3y - 3) × (y - 3)] × ( -2y - 1) is 6y3 - 9y2 24y - 9. B) -27b3 - 27b2 + 3b + 3 Step 1 Let's f irst multiply f irst two polynomials, (3b + 3) × ( -3b - 1) = (3b)( -3b - 1) + (3)( -3b - 1) = ( -9b2 - 3b) + ( -9b - 3) = -9b2 - 12b - 3 Step 2 Now, multiply polynomials (3b - 1) and ( -9b2 - 12b - 3), we get: (3b - 1) × ( -9b2 - 12b - 3) = (3b)( -9b2 - 12b - 3) + ( -1)( -9b2 - 12b - 3) = ( -27b3 - 36b2 - 9b) + (9b2 + 12b + 3) = -27b3 - 27b2 + 3b + 3 Step 3 T heref ore, the simplif ied f orm of [(3b + 3) × ( -3b - 1)] × (3b - 1) is -27b 3 - 27b 2 + 3b + 3. (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : pk-8-Multiplication-of-Polynomials [7] (6) A) - 1.2q3 + 1.6q2 + 2.4q Step 1 In order to multiply two polynomials, lets multiply each term of f irst polynomial to second polynomial as f ollowing, ( -3q2 + 4q + 6) × (0.4q) = ( -3q2)(0.4q) + (4q)(0.4q) + (6)(0.4q) = ( - 1.2q3) + (1.6q2) + (2.4q) = - 1.2q3 + 1.6q2 + 2.4q Step 2 T heref ore, the product of ( -3q2 + 4q + 6) and (0.4q) is - 1.2q 3 + 1.6q 2 + 2.4q. B) 0.3y4 + 3y3 - 5.2y2 - 12y + 16 Step 1 In order to multiply two polynomials, lets multiply each term of f irst polynomial to second polynomial as f ollowing, (0.3y2 + 3y - 4) × (y2 - 4) = (0.3y2)(y2 - 4) + (3y)(y2 - 4) + ( - 4)(y2 - 4) = (0.3y4 - 1.2y2) + (3y3 - 12y) + ( -4y2 + 16) = 0.3y4 + 3y3 - 5.2y2 - 12y + 16 Step 2 T heref ore, the product of (0.3y2 + 3y - 4) and (y2 - 4) is 0.3y4 + 3y3 - 5.2y2 12y + 16. (7) - 24y4 + 30y2 - 6y If a is the base of a triangle and b is the height of the triangle, we know that the area of the rectangle is obtained as 1/2 x (a x b) T he same thing applies even if the base and height of the triangle are given by equations So the area of this triangle is Area = 1/2 x ( -6y2 + 6y) x (8y2 + 8y - 2) Area = - 24y4 + 30y2 - 6y (8) p2q2 + 5p2q - pq2 - 6pq + 6p2 - 10p + 2q + 4 (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited ID : pk-8-Multiplication-of-Polynomials [8] (9) b. 59 Step 1 It is given that, (6x2 + 7x + 5) × ( -x2 + 4x + 6) = -6x4 + 17x3 + ax2 + 62x + 30 Step 2 On right hand side of above equation, a is coef f icient of x2. If we can compute coef f icient of x2 on lef t hand side multiplication, we can f ind value of a by comparing coef f icients. Step 3 Multiplication of f ollowing terms on lef t hand side can contribute to coef f icient of x2 (5 × -1) (7 × 4) (6 × 6) Step 4 Coef f icients of x2 f rom lef t hand side multiplication, = (5 × -1) + (7 × 4) + (6 × 6) = 59 Step 5 On comparing the coef f icients of x2, we can f ind that value of a is 59. (10) b. 0 (11) b. 72b4 + 99b3 + 99b2 + 27b If a and b are the length and width of a rectangle, we know that the area of the rectangle is obtained by multiplying them, i.e. area = a x b T he same thing applies even if the length and width of a rectangle are given by equations So the area of this rectangle is Area = (8b2 + 3b) x (9b2 + 9b + 9) Area = 72b4 + 99b3 + 99b2 + 27b (12) c. -8 Step 1 It is given that y = 1 Step 2 T he product of (2y) and ( -y2 - y - 2) = (2y) × ( -y2 - y - 2) By putting y = 1, we get: (2y) × ( -y2 - y - 2) = { 2(1) } × { -(1)2 - (1) - 2 } ⇒ = (2) × (-4) ⇒ = -8 Step 3 T hus, the product of (2y) and ( -y2 - y - 2) f or y = 1 is -8. (C) 2016 Edugain (www.Edugain.com) Personal use only, commercial use is strictly prohibited