Download 2015 Assessment Schedule

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Scholarship Calculus (93202) 2015 – page 1 of 9 Assessment Schedule – 2015
Scholarship Calculus (93202)
Evidence QUESTION ONE (8 marks)
(a)
2
3⎛
1 ⎞
1 ⎞
⎛ 2
S = 2π ∫ ⎜ x 3 +
⎟⎠ 1+ ⎜⎝ 3x −
⎟ dx
1 ⎝
12x
12x 2 ⎠
3⎛
1 ⎞
1
1
4
= 2π ∫ ⎜ x 3 +
dx
⎟ 1+ 9x − +
1 ⎝
12x ⎠
2 144x 4
2
3⎛
1 ⎞ ⎛ 2
1 ⎞
= 2π ∫ ⎜ x 3 +
⎟⎠ ⎜⎝ 3x +
⎟ dx
1 ⎝
12x
12x 2 ⎠
3⎛
1 ⎞⎛ 2
1 ⎞
= 2π ∫ ⎜ x 3 +
⎟ ⎜ 3x +
⎟ dx
1 ⎝
12x ⎠ ⎝
12x 2 ⎠
3⎛
3⎛
x x
1 ⎞
x
1 ⎞
= 2π ∫ ⎜ 3x 5 + + +
dx = 2π ∫ ⎜ 3x 5 + +
⎟ dx
3⎟
1 ⎝
1
⎠
⎝
12 4 144x
3 144x 3 ⎠
3
⎡ x6 x2
1 ⎤
S = 2π ⎢ + −
= 2295.5
2 ⎥
⎣ 2 6 288x ⎦1
(b)
f ′( x)
( f ( x ))
3
=1⇒ ∫
f (0) = 2 ⇒
Hence,
f ′( x)
( f ( x ))
3
dx = ∫ 1dx ⇒
−1
=c
8
−4
4
=
8x − 1 1− 8x
4
f ( x) = ±
1− 8x
1
x≠
8
( f ( x ))
2
=
−1
2 ( f ( x ))
2
= x+c
Scholarship Calculus (93202) 2015 – page 2 of 9 (c)
ds
6s
= 0.8 × 6 −
dt
200
ds 960 − 6s
=
dt
200
ds
200 ∫
= dt
960 − 6s ∫
960 − 6s
ln
A
200
=t
−6
6
t
960 − 6s = Ae 200 = Ae −0.03t
960 − Ae −0.03t
= 160 − Ce −0.03t
6
t = 0, s = 0.5 × 200 = 100
s=
⇒ 100 = 160 − Ce0
s = 160 − 60e −0.03t
t = ?, s = 130
⇒ 130 = 160 − 60e −0.03t
ln0.5
= 23.1 min
−0.03
QUESTION TWO (8 marks)
(a)
(3 )
2 x+y 2
Scholarship Calculus (93202) 2015 – page 3 of 9 − 32 x+y − 6 = 0
32 x+y = 3, 32 x+y ≠ −2
2x + y = 1 ⇒ y = 1− 2x
Substituting:
log x+1 ( 4 − 2x ) ( 5 − x ) = 3
20 + 2x 2 − 14x = ( x + 1)
3
x 3 + x 2 + 17x − 19 = 0
x =1
y = −1
(b)
The form of the parabola is y = kx 2 .
At (100,100),
100 = 100 2 k ⇒ k =
1
100
1 2
x
100
Gradient of the tangent at ( x0 , y0 ) :
y=
dy x0
=
dx 50
y0 =
1 2
x0
100
1 2
x0 50 − 100 x0
gradient of the line
Matching gradients: Gradient of tangent: =
50
100 − x0
100x0 − x02 = 2500 −
1 2
x0
2
1 2
x0 − 100x0 + 2500
2
x0 = 29.3
Coordinates of the point (29.3,8.6); 29.3 m east, 8.6 m north.
0=
(c)
dS
= k S(N − S)
dt
dS
∫ S ( N − S ) = ∫ k dt
Using partial fractions:
1
A
B
1
1
= +
⇒A= , B=
S(N − S) S N − S
N
N
1 ⎛1
1 ⎞
⎜⎝ +
⎟ dS = ∫ k dt
∫
N
S N − S⎠
Scholarship Calculus (93202) 2015 – page 4 of 9 S
1 N −S
ln
= kt
N
A
S
= Ae kNt
N −S
t = 0, S = 2
2
⇒A=
N −2
S
2
=
e kNt ⇒ S ( N − 2 ) e − kNt = 2 ( N − S )
N −S N −2
S 2 + ( N − 2 ) e − kNt = 2N
(
S=
)
N
1
1+ ( N − 2 ) e − kNt
2
OR Using differentiation:
N
2N
2Ne kNt
S (t ) =
=
=
− kNt
kNt
1
1+ e − kNt ( N − 2 ) 2 + e ( N − 2 ) 2e + ( N − 2 )
2
2 kNt
kNt
kNt
kNt
dS 2kN e 2e + ( N − 2 ) − 2Ne 2kNe
=
2
dt
2e kNt + ( N − 2 )
(
)
(
)
( )
(
2
⎡ 2N 2 e kNt
4N 2 e kNt
= k ⎢ kNt
−
⎢ 2e + ( N − 2 ) 2e kNt + ( N − 2 )
⎣
(
)
(
= k NS − S 2 = kS ( N − S )
)
)
2
⎤
⎥
⎥
⎦
Scholarship Calculus (93202) 2015 – page 5 of 9 QUESTION THREE (8 marks)
(a)
z = cosθ + isin θ , z n = cos nθ + sin nθ , z − n = cos ( −nθ ) + isin ( −nθ ) = cos nθ − isin nθ
.
1
= 2 cos nθ
zn
Using this
zn +
6
1⎞
15 6 1
⎛
(2 cosθ )6 = ⎜ z + ⎟ = z 6 + 6z 4 + 15z 2 + 20 + 2 + 4 + 6
⎝
z⎠
z
z
z
1⎞
1⎞
1⎞
⎛
⎛
⎛
64 cos 6 θ = ⎜ z 6 + 6 ⎟ + 6 ⎜ z 4 + 4 ⎟ + 15 ⎜ z 2 + 2 ⎟ + 20
⎝
⎝
⎝
z ⎠
z ⎠
z ⎠
= 2 cos 6θ + 12 cos 4θ + 30 cos 2θ + 20
32 cos θ = cos 6θ + 6 cos 4θ + 15 cos 2θ + 10
1
cos 6 θ = ( cos 6θ + 6 cos 4θ + 15 cos 2θ + 10 )
32
6
(b)
1
Restrictions: sin x > , y < 1
2
log ( 2sin x − 1) − log 2 = log(1− y) − log ( 2sin x − 1)
2 log ( 2sin x − 1) = log 2 + log(1− y)
log ( 2sin x − 1) = log 2 (1− y )
2
( 2sin x − 1)2 = 2 (1− y )
( 2sin x − 1)2
y = 1−
2
0 < ( 2sin x − 1) ≤ 1
The range of possible values for y is
1
∴ ≤ y <1
2
(c)
LHS =
=
=
(
cos 2x − 1
8 cos 2 2x − 7 cos 2x − 1
2
=
8sin 4 x
4 sin 2 x 1− cos 2 x
4 cos 2 2x − 4 cos 2x +
(
)
( 8 cos 2x + 1)( cos 2x − 1) = ( 8 cos 2x + 1)( cos 2x − 1) = 8 cos 2x + 1 = RHS
2
2 ( cos 2x − 1)
2 ( cos 2x − 1)
(1− cos 2x )2
8
4
)
4 cos 2 2x − 4 cos 2 x − sin 2 x − sin 2 x
4 cos 2 2x − 4 cos 2 x + 3sin 2 x
=
⎛ 5π
⎞
4 sin 2 x − 4 sin 2 x cos 2 x
4 cos 2 ⎜
− x ⎟ − sin 2 2 ( x − π )
⎝ 2
⎠
QUESTION FOUR (8 marks)
(a)
Scholarship Calculus (93202) 2015 – page 6 of 9 Assume the real root exists and let it be p.
3p 3 + ( 2 − 3ai ) p 2 + ( 6 + 2bi ) p + 4 = 0
Equating real and imaginary:
Imaginary:
−3ap 2 + 2bp = 0
p ( −3ap + 2b ) = 0
p ≠ 0,
p=
2b
3a
Real:
3p 3 + 2 p 2 + 6 p + 4 = 0
p 2 ( 3p + 2 ) + 2 ( 3p + 2 ) = 0
( 3p + 2 )( p 2 + 2 ) = 0
p 2 ≠ −2,
Solution exists if
(b)
p=
−2
3
b
= −1
a
Option 1
AX + BY
= OD ⇒ AX + BY = 2OD Trapezium
2
AX = AF and BY = BF distance to directrix = distance to focal point
AF + BF = 2OD
AB = 2OD
2AO = 2OD
AO = OD
Scholarship Calculus (93202) 2015 – page 7 of 9 (b)
Option 2
Every hour, the maximum number of each type of decoration available is 500 type A, 400 type B and 300 type C.
6x + 2y + 2z ≤ 500 ⇒ 3x + y + z ≤ 250 (1)
3x + 4y + 5z ≤ 400
(2)
2x + 4y + 2z ≤ 300 ⇒ x + 2y + z ≤ 150
( 3)
Every hour, the factory must pack at least 1000 decorations.
11x + 10y + 9z ≥ 1000 ( 4 )
Every hour, the factory must pack more type B decorations than type A decorations.
3x + 4y + 5z > 6x + 2y + 2z ⇒ 2y + 3z > 3x ( 5 )
(ii)
3x + y + z ≤ 250 ⇒ 3x + y + 100 − x − y ≤ 250 ⇒ x ≤ 75
(1)
3x + 4y + 5z ≤ 400 ⇒ 3x + 4y + 500 − 5x − 5y ≤ 400 ⇒ 2x + y ≥ 100
x + 2y + z ≤ 150 ⇒ x + 2y + 100 − x − y ≤ 150 ⇒ y ≤ 50
11x + 10y + 9z ≥ 1000 ⇒ 2x + y ≥ 100
2y + 3z > 3x ⇒ y + 6x < 300
(5)
(4)
( 3)
(2)
QUESTION FIVE (8 marks)
(a)
Scholarship Calculus (93202) 2015 – page 8 of 9 Equation of the Normal
The gradient of the tangent line at the point (x0,y0):
y = kx 2
dy
= 2kx = 2kx0
dx
Gradient of the Normal line:
−1
m=
2kx0
Equation of the normal:
Using y = mx + c at the point (x0,y0) to find c.
−1
1
1
y0 =
x0 + c ⇒ c = y0 +
⇒ c = kx0 2 +
2k x0
2k
2k
y=
(b)
−1
1⎞
⎛
x + ⎜ kx02 + ⎟
⎝
2kx0
2k ⎠
Intersection of Normal and Parabola:
Using the general form of the normal y = mx + c and y = kx2.
kx 2 = mx + c
kx 2 − mx − c = 0
m ± m 2 + 4kc
2k
−1
1
Substitute m =
and c = kx0 2 +
2kx0
2k
x=
x=
m ± m 2 + 4c
2
2
⎛ 1
⎞
−1
⎞
−1
1
−1 ⎛ 1
± ⎜
+ 2kx0 ⎟
±
+ 4k 2 x02 + 2
±
+ 2kx0 ⎟
2 2
2kx0
⎝ 2kx0
⎠
⎛
2kx0
4k x0
2kx0 ⎜⎝ 2kx0
⎠
1 ⎞
x=
=
=
= x0 , − ⎜ x0 + 2 ⎟
2k
2k
2k
2k x0 ⎠
⎝
To find the value of
⎛
⎝
x0 that makes x = − ⎜ x0 +
1 ⎞
a maximum (least negative):
2k 2 x0 ⎟⎠
⎛
dx
1 ⎞
1
1
= − ⎜ 1− 2 2 ⎟ = 0 ⇒ x02 = 2 ⇒ x0 =
d ( x0 )
2k
x
2k
⎝
2k
0 ⎠
Test for maximum
d2x
−1
1
2 = 2 3 < 0 at x0 =
k
x
2k
d ( x0 )
0
Equation of Extreme Normal
Substituting into y =
−1
1
− 2
1
x + kx0 2 +
gives y =
x+
2kx0
2k
2
k
Scholarship Calculus (93202) 2015 – page 9 of 9 (c)
Area
The area is an integral given as:
x0
⎛ −1
⎞
1
A=∫
x + kx02 +
− kx 2 ⎟ dx
1
− x0 − 2 ⎜
2k
⎠
2 k x0 ⎝ 2kx0
x0
⎡ −1 2 ⎛ 1
kx 3 ⎤
⎞
A=⎢
x +⎜
+ kx02 ⎟ x −
⎝ 2k
⎠
3 ⎥⎦ − x −
⎣ 4kx0
0
1
2 k 2 x0
⎡ −1 2 ⎛ 1
kx 3 ⎤
⎞
=⎢
x0 + ⎜
+ kx02 ⎟ x0 − 0 ⎥
⎝ 2k
⎠
3 ⎦
⎣ 4kx0
3
⎡
⎛
1 ⎞ ⎤
k ⎜ −x0 − 2 ⎟ ⎥
⎢
2
2k x0 ⎠ ⎥
⎝
−1 ⎛
1 ⎞ ⎛ 1
1 ⎞
⎞⎛
−⎢
−x −
−
+ kx02 ⎟ ⎜ −x0 − 2 ⎟ +
⎢ 4kx0 ⎜⎝ 0 2k 2 x0 ⎟⎠ ⎜⎝ 2k
⎥
⎠⎝
2k x0 ⎠
3
⎢
⎥
⎢⎣
⎥⎦
3
x 4kx0
1
1
+
+ 3
Simplifying: A = 0 +
5 3
k
3
48k x0 4k x0
Differentiate to find the minimum
dA 1
1
1
= + 4kx02 −
− 3 2 =0
5 4
dx0 k
16k x0 4k x0
=
(
)
1
16k 4 x04 + 64k 6 x06 − 1− 4k 2 x02 = 0
16k 5 x04
16k 5 x04 ≠ 0; 16k 4 x04 + 64k 6 x06 − 1− 4k 2 x02 = 0
(
) (
)
16k 4 x04 1+ 4k 2 x02 − 1+ 4k 2 x02 = 0
(1+ 4k x )(16k x
2
2
0
4
4
0
)
−1 = 0
1+ 4k x ≠ 0; 16k x − 1 = 0
1
x0 = ±
( x0 > 0 )
2k
2
2
0
4
4
0
1
2k
Test minimum using the first derivative test.
Equation of the normal:
3
y = −x +
4k
The real positive root is x0 =
Minimum Area:
4
Amin = 2
3k
Related documents