Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Scholarship Calculus (93202) 2015 – page 1 of 9 Assessment Schedule – 2015 Scholarship Calculus (93202) Evidence QUESTION ONE (8 marks) (a) 2 3⎛ 1 ⎞ 1 ⎞ ⎛ 2 S = 2π ∫ ⎜ x 3 + ⎟⎠ 1+ ⎜⎝ 3x − ⎟ dx 1 ⎝ 12x 12x 2 ⎠ 3⎛ 1 ⎞ 1 1 4 = 2π ∫ ⎜ x 3 + dx ⎟ 1+ 9x − + 1 ⎝ 12x ⎠ 2 144x 4 2 3⎛ 1 ⎞ ⎛ 2 1 ⎞ = 2π ∫ ⎜ x 3 + ⎟⎠ ⎜⎝ 3x + ⎟ dx 1 ⎝ 12x 12x 2 ⎠ 3⎛ 1 ⎞⎛ 2 1 ⎞ = 2π ∫ ⎜ x 3 + ⎟ ⎜ 3x + ⎟ dx 1 ⎝ 12x ⎠ ⎝ 12x 2 ⎠ 3⎛ 3⎛ x x 1 ⎞ x 1 ⎞ = 2π ∫ ⎜ 3x 5 + + + dx = 2π ∫ ⎜ 3x 5 + + ⎟ dx 3⎟ 1 ⎝ 1 ⎠ ⎝ 12 4 144x 3 144x 3 ⎠ 3 ⎡ x6 x2 1 ⎤ S = 2π ⎢ + − = 2295.5 2 ⎥ ⎣ 2 6 288x ⎦1 (b) f ′( x) ( f ( x )) 3 =1⇒ ∫ f (0) = 2 ⇒ Hence, f ′( x) ( f ( x )) 3 dx = ∫ 1dx ⇒ −1 =c 8 −4 4 = 8x − 1 1− 8x 4 f ( x) = ± 1− 8x 1 x≠ 8 ( f ( x )) 2 = −1 2 ( f ( x )) 2 = x+c Scholarship Calculus (93202) 2015 – page 2 of 9 (c) ds 6s = 0.8 × 6 − dt 200 ds 960 − 6s = dt 200 ds 200 ∫ = dt 960 − 6s ∫ 960 − 6s ln A 200 =t −6 6 t 960 − 6s = Ae 200 = Ae −0.03t 960 − Ae −0.03t = 160 − Ce −0.03t 6 t = 0, s = 0.5 × 200 = 100 s= ⇒ 100 = 160 − Ce0 s = 160 − 60e −0.03t t = ?, s = 130 ⇒ 130 = 160 − 60e −0.03t ln0.5 = 23.1 min −0.03 QUESTION TWO (8 marks) (a) (3 ) 2 x+y 2 Scholarship Calculus (93202) 2015 – page 3 of 9 − 32 x+y − 6 = 0 32 x+y = 3, 32 x+y ≠ −2 2x + y = 1 ⇒ y = 1− 2x Substituting: log x+1 ( 4 − 2x ) ( 5 − x ) = 3 20 + 2x 2 − 14x = ( x + 1) 3 x 3 + x 2 + 17x − 19 = 0 x =1 y = −1 (b) The form of the parabola is y = kx 2 . At (100,100), 100 = 100 2 k ⇒ k = 1 100 1 2 x 100 Gradient of the tangent at ( x0 , y0 ) : y= dy x0 = dx 50 y0 = 1 2 x0 100 1 2 x0 50 − 100 x0 gradient of the line Matching gradients: Gradient of tangent: = 50 100 − x0 100x0 − x02 = 2500 − 1 2 x0 2 1 2 x0 − 100x0 + 2500 2 x0 = 29.3 Coordinates of the point (29.3,8.6); 29.3 m east, 8.6 m north. 0= (c) dS = k S(N − S) dt dS ∫ S ( N − S ) = ∫ k dt Using partial fractions: 1 A B 1 1 = + ⇒A= , B= S(N − S) S N − S N N 1 ⎛1 1 ⎞ ⎜⎝ + ⎟ dS = ∫ k dt ∫ N S N − S⎠ Scholarship Calculus (93202) 2015 – page 4 of 9 S 1 N −S ln = kt N A S = Ae kNt N −S t = 0, S = 2 2 ⇒A= N −2 S 2 = e kNt ⇒ S ( N − 2 ) e − kNt = 2 ( N − S ) N −S N −2 S 2 + ( N − 2 ) e − kNt = 2N ( S= ) N 1 1+ ( N − 2 ) e − kNt 2 OR Using differentiation: N 2N 2Ne kNt S (t ) = = = − kNt kNt 1 1+ e − kNt ( N − 2 ) 2 + e ( N − 2 ) 2e + ( N − 2 ) 2 2 kNt kNt kNt kNt dS 2kN e 2e + ( N − 2 ) − 2Ne 2kNe = 2 dt 2e kNt + ( N − 2 ) ( ) ( ) ( ) ( 2 ⎡ 2N 2 e kNt 4N 2 e kNt = k ⎢ kNt − ⎢ 2e + ( N − 2 ) 2e kNt + ( N − 2 ) ⎣ ( ) ( = k NS − S 2 = kS ( N − S ) ) ) 2 ⎤ ⎥ ⎥ ⎦ Scholarship Calculus (93202) 2015 – page 5 of 9 QUESTION THREE (8 marks) (a) z = cosθ + isin θ , z n = cos nθ + sin nθ , z − n = cos ( −nθ ) + isin ( −nθ ) = cos nθ − isin nθ . 1 = 2 cos nθ zn Using this zn + 6 1⎞ 15 6 1 ⎛ (2 cosθ )6 = ⎜ z + ⎟ = z 6 + 6z 4 + 15z 2 + 20 + 2 + 4 + 6 ⎝ z⎠ z z z 1⎞ 1⎞ 1⎞ ⎛ ⎛ ⎛ 64 cos 6 θ = ⎜ z 6 + 6 ⎟ + 6 ⎜ z 4 + 4 ⎟ + 15 ⎜ z 2 + 2 ⎟ + 20 ⎝ ⎝ ⎝ z ⎠ z ⎠ z ⎠ = 2 cos 6θ + 12 cos 4θ + 30 cos 2θ + 20 32 cos θ = cos 6θ + 6 cos 4θ + 15 cos 2θ + 10 1 cos 6 θ = ( cos 6θ + 6 cos 4θ + 15 cos 2θ + 10 ) 32 6 (b) 1 Restrictions: sin x > , y < 1 2 log ( 2sin x − 1) − log 2 = log(1− y) − log ( 2sin x − 1) 2 log ( 2sin x − 1) = log 2 + log(1− y) log ( 2sin x − 1) = log 2 (1− y ) 2 ( 2sin x − 1)2 = 2 (1− y ) ( 2sin x − 1)2 y = 1− 2 0 < ( 2sin x − 1) ≤ 1 The range of possible values for y is 1 ∴ ≤ y <1 2 (c) LHS = = = ( cos 2x − 1 8 cos 2 2x − 7 cos 2x − 1 2 = 8sin 4 x 4 sin 2 x 1− cos 2 x 4 cos 2 2x − 4 cos 2x + ( ) ( 8 cos 2x + 1)( cos 2x − 1) = ( 8 cos 2x + 1)( cos 2x − 1) = 8 cos 2x + 1 = RHS 2 2 ( cos 2x − 1) 2 ( cos 2x − 1) (1− cos 2x )2 8 4 ) 4 cos 2 2x − 4 cos 2 x − sin 2 x − sin 2 x 4 cos 2 2x − 4 cos 2 x + 3sin 2 x = ⎛ 5π ⎞ 4 sin 2 x − 4 sin 2 x cos 2 x 4 cos 2 ⎜ − x ⎟ − sin 2 2 ( x − π ) ⎝ 2 ⎠ QUESTION FOUR (8 marks) (a) Scholarship Calculus (93202) 2015 – page 6 of 9 Assume the real root exists and let it be p. 3p 3 + ( 2 − 3ai ) p 2 + ( 6 + 2bi ) p + 4 = 0 Equating real and imaginary: Imaginary: −3ap 2 + 2bp = 0 p ( −3ap + 2b ) = 0 p ≠ 0, p= 2b 3a Real: 3p 3 + 2 p 2 + 6 p + 4 = 0 p 2 ( 3p + 2 ) + 2 ( 3p + 2 ) = 0 ( 3p + 2 )( p 2 + 2 ) = 0 p 2 ≠ −2, Solution exists if (b) p= −2 3 b = −1 a Option 1 AX + BY = OD ⇒ AX + BY = 2OD Trapezium 2 AX = AF and BY = BF distance to directrix = distance to focal point AF + BF = 2OD AB = 2OD 2AO = 2OD AO = OD Scholarship Calculus (93202) 2015 – page 7 of 9 (b) Option 2 Every hour, the maximum number of each type of decoration available is 500 type A, 400 type B and 300 type C. 6x + 2y + 2z ≤ 500 ⇒ 3x + y + z ≤ 250 (1) 3x + 4y + 5z ≤ 400 (2) 2x + 4y + 2z ≤ 300 ⇒ x + 2y + z ≤ 150 ( 3) Every hour, the factory must pack at least 1000 decorations. 11x + 10y + 9z ≥ 1000 ( 4 ) Every hour, the factory must pack more type B decorations than type A decorations. 3x + 4y + 5z > 6x + 2y + 2z ⇒ 2y + 3z > 3x ( 5 ) (ii) 3x + y + z ≤ 250 ⇒ 3x + y + 100 − x − y ≤ 250 ⇒ x ≤ 75 (1) 3x + 4y + 5z ≤ 400 ⇒ 3x + 4y + 500 − 5x − 5y ≤ 400 ⇒ 2x + y ≥ 100 x + 2y + z ≤ 150 ⇒ x + 2y + 100 − x − y ≤ 150 ⇒ y ≤ 50 11x + 10y + 9z ≥ 1000 ⇒ 2x + y ≥ 100 2y + 3z > 3x ⇒ y + 6x < 300 (5) (4) ( 3) (2) QUESTION FIVE (8 marks) (a) Scholarship Calculus (93202) 2015 – page 8 of 9 Equation of the Normal The gradient of the tangent line at the point (x0,y0): y = kx 2 dy = 2kx = 2kx0 dx Gradient of the Normal line: −1 m= 2kx0 Equation of the normal: Using y = mx + c at the point (x0,y0) to find c. −1 1 1 y0 = x0 + c ⇒ c = y0 + ⇒ c = kx0 2 + 2k x0 2k 2k y= (b) −1 1⎞ ⎛ x + ⎜ kx02 + ⎟ ⎝ 2kx0 2k ⎠ Intersection of Normal and Parabola: Using the general form of the normal y = mx + c and y = kx2. kx 2 = mx + c kx 2 − mx − c = 0 m ± m 2 + 4kc 2k −1 1 Substitute m = and c = kx0 2 + 2kx0 2k x= x= m ± m 2 + 4c 2 2 ⎛ 1 ⎞ −1 ⎞ −1 1 −1 ⎛ 1 ± ⎜ + 2kx0 ⎟ ± + 4k 2 x02 + 2 ± + 2kx0 ⎟ 2 2 2kx0 ⎝ 2kx0 ⎠ ⎛ 2kx0 4k x0 2kx0 ⎜⎝ 2kx0 ⎠ 1 ⎞ x= = = = x0 , − ⎜ x0 + 2 ⎟ 2k 2k 2k 2k x0 ⎠ ⎝ To find the value of ⎛ ⎝ x0 that makes x = − ⎜ x0 + 1 ⎞ a maximum (least negative): 2k 2 x0 ⎟⎠ ⎛ dx 1 ⎞ 1 1 = − ⎜ 1− 2 2 ⎟ = 0 ⇒ x02 = 2 ⇒ x0 = d ( x0 ) 2k x 2k ⎝ 2k 0 ⎠ Test for maximum d2x −1 1 2 = 2 3 < 0 at x0 = k x 2k d ( x0 ) 0 Equation of Extreme Normal Substituting into y = −1 1 − 2 1 x + kx0 2 + gives y = x+ 2kx0 2k 2 k Scholarship Calculus (93202) 2015 – page 9 of 9 (c) Area The area is an integral given as: x0 ⎛ −1 ⎞ 1 A=∫ x + kx02 + − kx 2 ⎟ dx 1 − x0 − 2 ⎜ 2k ⎠ 2 k x0 ⎝ 2kx0 x0 ⎡ −1 2 ⎛ 1 kx 3 ⎤ ⎞ A=⎢ x +⎜ + kx02 ⎟ x − ⎝ 2k ⎠ 3 ⎥⎦ − x − ⎣ 4kx0 0 1 2 k 2 x0 ⎡ −1 2 ⎛ 1 kx 3 ⎤ ⎞ =⎢ x0 + ⎜ + kx02 ⎟ x0 − 0 ⎥ ⎝ 2k ⎠ 3 ⎦ ⎣ 4kx0 3 ⎡ ⎛ 1 ⎞ ⎤ k ⎜ −x0 − 2 ⎟ ⎥ ⎢ 2 2k x0 ⎠ ⎥ ⎝ −1 ⎛ 1 ⎞ ⎛ 1 1 ⎞ ⎞⎛ −⎢ −x − − + kx02 ⎟ ⎜ −x0 − 2 ⎟ + ⎢ 4kx0 ⎜⎝ 0 2k 2 x0 ⎟⎠ ⎜⎝ 2k ⎥ ⎠⎝ 2k x0 ⎠ 3 ⎢ ⎥ ⎢⎣ ⎥⎦ 3 x 4kx0 1 1 + + 3 Simplifying: A = 0 + 5 3 k 3 48k x0 4k x0 Differentiate to find the minimum dA 1 1 1 = + 4kx02 − − 3 2 =0 5 4 dx0 k 16k x0 4k x0 = ( ) 1 16k 4 x04 + 64k 6 x06 − 1− 4k 2 x02 = 0 16k 5 x04 16k 5 x04 ≠ 0; 16k 4 x04 + 64k 6 x06 − 1− 4k 2 x02 = 0 ( ) ( ) 16k 4 x04 1+ 4k 2 x02 − 1+ 4k 2 x02 = 0 (1+ 4k x )(16k x 2 2 0 4 4 0 ) −1 = 0 1+ 4k x ≠ 0; 16k x − 1 = 0 1 x0 = ± ( x0 > 0 ) 2k 2 2 0 4 4 0 1 2k Test minimum using the first derivative test. Equation of the normal: 3 y = −x + 4k The real positive root is x0 = Minimum Area: 4 Amin = 2 3k