Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Quantum Hall effects - an introduction M. Fleischhauer AvH workshop, Vilnius, 03.09.2006 Kaiserslautern, April 2006 quantum Hall history discovery: 1980 IQHE Nobel prize: 1985 K. v. Klitzing FQHE discovery: 1982 Nobel prize: 1998 D. Tsui H. Störmer R. Laughlin Kaiserslautern, April 2006 classical Hall effect (1880 E.H. Hall) Lorentz-force on electron: stationary current: Hall resistance: 2 Dirac flux quantum Kaiserslautern, April 2006 Landau levels Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels Hamiltonian: coordinate transformation: center of radial vector of cyclotron motion cyclotron motion electron R X commutation relations: Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels mapping to oscillator: H = hc R² / 2 l²m = h c ( a † a + ½ ) Landau levels Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels typical scales: B B • length magnetic length • energy cyclotron frequency Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels degeneracy of Landau levels: center of cyclotron motion (X,Y) arbitrary degeneracy • 2D density of states (DOS) one state per area of cyclotron orbit • filling factor # atoms / # flux quanta Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels wavefunction of lowest Landau level (LLL) in symmetric gauge symmetric gauge Landau gauge introduce complex coordinate b LLL analytic Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels angular momentum of Landau levels: eigenstates of n´th Landau level: angular momentum states of LLL: Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels wavefunction: j Kaiserslautern, April 2006 Integer Quantum Hall effect Kaiserslautern, April 2006 Integer Quantum Hall effect spinless (for simplicity) and noninteracting electrons: Pauli principle Slater determinant: Kaiserslautern, April 2006 Integer Quantum Hall effect compressibility: at integer fillings: Kaiserslautern, April 2006 Integer Quantum Hall effect Hall current: Heisenberg drift equations of cycoltron center no plateaus ?! Kaiserslautern, April 2006 Integer Quantum Hall effect Hall plateaus: impurities gap ! impurities pin electrons to localized states electrons in impurity states do not contribute to current gap impurity states fill first Kaiserslautern, April 2006 Fractional Quantum Hall effect Kaiserslautern, April 2006 Fractional Quantum Hall effect Laughlin state: • take e-e interaction into account • generic wavefunction • requirements • wave function anstisymmetric • eigenstate of angular momentum • Coulomb repulsion Jastrow-type of wave function Laughlin wave function Kaiserslautern, April 2006 Fractional Quantum Hall effect angular momentum of Laughlin wave function and filling factor maximum single-particle angular momentum filling factor of Laughlin state Kaiserslautern, April 2006 Fractional Quantum Hall effect fractional Hall plateaus: fractional Hall states are gapped =1 = 1/3 = 1/5 = 1/7 Kaiserslautern, April 2006 composite particle picture of FQHE Kaiserslautern, April 2006 composite particle picture of FQHE composite particle = electron + m magnetic flux quanta + = composite fermion composite boson effective magnetic field composite particle are anyons (fractional statistics) exist only in 2D Kaiserslautern, April 2006 composite particle picture of FQHE some remarks about anyons: • two-particle wave function • exchange particles • exchange particles a second time in 3D: Boson Fermion 3D:no projected area in (xy) 2D always projected area in (xy) A A B B particles can pick up e.g. Aharanov-Bohm phase Kaiserslautern, April 2006 composite particle picture of FQHE =1/m FQE (A) electron + flux quanta form composite boson 0 Bose condensation of composite bosons (B) electron + flux quanta form composite fermion IQHE for composite fermions Kaiserslautern, April 2006 composite particle picture of FQHE Jain hierarchy: • experiment: FQHE also for composite fermion picture: since Kaiserslautern, April 2006 FQHE for interacting bosons Kaiserslautern, April 2006 FQHE for interacting bosons exact diagonalization FQH effect for Laughlin state for point interaction composite fermions: boson + single flux quantum + = IQHE for composite fermions Kaiserslautern, April 2006 Kaiserslautern, April 2006 effective magnetic fields in rotating traps Kaiserslautern, April 2006 atoms in dark states for dark states see e.g.: E. Arimondo, Progress in Optics XXXV (1996) |0> γ Δ Ωp |1> adiabatic eigenstates: Ωs |2> + Ω γ D - γ dark state (no fluoresence): p s Kaiserslautern, April 2006 center of mass motion of atoms in dark states • space-dependent dark states & atomic motion: |0> Ωp R. Dum & M. Olshanii, PRL 76, 1788 (1996) |1> Ωs |2> transformation to local adiabatic basis: gauge potential A + scalar potential Kaiserslautern, April 2006 (i) magnetic fields Ωp Ωs effective vector potential & magnetic field relative momentum vector difference of „center of mass“ of light beams relative orbital angular momentum needed ! Kaiserslautern, April 2006 magnetic fields: (a) vortex light beams V eff ratio of fields B external trap G. Juzeliūnas and P.Öhberg, PRL 93, 033602 (2004) P. Öhberg, J. Ruseckas, G. Juzeliunas, M.F. PRA 73, 025602 (2006) Kaiserslautern, April 2006 magnetic fields: (b) shifted light beams x Veff x y z B = x • Quantum-Hall effect in non-cylindrical systems • non-stationary situation possible (current in z) Kaiserslautern, April 2006 (ii) non-Abelian gauge fields J. Ruseckas, G. Juzeliunas, P. Öhberg, M.F. Phys.Rev.Lett 95 010404 (2005) • more than one relevant adiabatic state ! TRIPOD scheme Ω D1 D2 2 x 2 vector matrix Kaiserslautern, April 2006 magnetic monopole field singularity lines Ω1 Ω3 Ω2 point singularity at the origin Kaiserslautern, April 2006 summary • motion of atom in space-dependent dark states gauge potential A • light beams with relative OAM magnetic field B • vortex light beams • displaced beams (non-cylindrical geometry, currents) • degenerate dark states non-Abelian magnetic fields (monopoles,...) Kaiserslautern, April 2006 quantum gases as many-body model systems • lattice models: Bose-Hubbard model; Bose-Fermi-H. model; spin models • quantum-Hall physics: rotating traps vortices, vortex lattices; lowest Landau level • BCS – BEC crossover: Feshbach resonances; fermionic superfluidity Kaiserslautern, April 2006 quantum gases as many-body model systems • quantum-Hall physics: rotating traps vortices, vortex lattices; lowest Landau level Kaiserslautern, April 2006 magnetic fields: (a) vortex light beams Veff external trap B ratio of fields Kaiserslautern, April 2006 ultra-cold atoms & molecules many-body & solid-state physics instruments of quantum optics & coherent control Kaiserslautern, April 2006 quantum-Hall physics filling factor NФ # flux quanta ~ (R / lm ) N # atoms 2 • hydrodynamics: >> 1 • quantum effects: ~ 1 = 0 Kaiserslautern, April 2006