Download Differential Equations Formula Sheet Trigonometric identities • sin 2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Differential Equations Formula Sheet
Trigonometric identities
• sin2 x + cos2 x = 1
• sin 2x = 2 sin x cos x
• cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x
• sec2 x = 1 + tan2 x
• csc2 x = 1 + cot2 x
1
• sin x cos y = [sin(x − y) + sin(x + y)]
2
1
• sin x sin y = [cos(x − y) − cos(x + y)]
2
1
• cos x cos y = [cos(x − y) + cos(x + y)]
2
2t
1 − t2
2t
x
,
cos
x
=
,
and
tan
x
=
• if t = tan then sin x =
2
1 + t2
1 + t2
1 − t2
Hyperbolic identities
• cosh2 x − sinh2 x = 1
• sinh 2x = 2 sinh x cosh x
• cosh 2x = cosh2 x + sinh2 x = 2 cosh2 x − 1 = 2 sinh2 x + 1
• sech2 x = 1 − tanh2 x
• csch2 x = coth2 x − 1
1
• sinh x cosh y = [sinh(x + y) + sinh(x − y)]
2
1
• sinh x sinh y = [cosh(x + y) − cosh(x − y)]
2
1
• cosh x cosh y = [cosh(x + y) + cosh(x − y)]
2
1
Derivatives of trigonometric and hyperbolic functions
d
[sin x] = cos x
dx
d
[cos x] = − sin x
dx
d
[tan x] = sec2 x
dx
d
[cot x] = − csc2 x
dx
d
[sec x] = sec x tan x
dx
d
[csc x] = − csc x cot x
dx
d
1
[tan−1 x] =
dx
1 + x2
d
[sinh x] = cosh x
dx
d
[cosh x] = sinh x
dx
d
[tanh x] = sech2 x
dx
d
[coth x] = −csch2 x
dx
d
[sechx] = −sechx tanh x
dx
d
[cschx] = −cschx coth x
dx
Exponents and logarithms
• y = ax
•
⇔
x = loga y
d x
[a ] = ax · ln a and
dx
and y = ex
d
dx [loga x]
=
⇔
x = ln y
1
x ln a
Matrices
a11 a12
Let A =
.
a21 a22
1
a22 −a12
−1
•A =
.
det A −a21 a11
det A1
det A2
• Cramer’s Rule: the solution of Ax = b is given by x1 =
, x2 =
det A
det A
b a
a11 b1
where A1 = 1 12 , A2 =
.
b2 a22
a21 b2
2
Sums and series
•
n
X
k=
k=1
•
n
X
k2 =
k=1
•
n
X
k=1
n(n + 1)
2
n(n + 1)(2n + 1)
6
n(n + 1)
k =
2
3
2
• Geometric progression:
Geometric series:
∞
X
n−1
X
k=0
rk =
k=0
• Maclaurin series:
k!
∞
X
f (k) (a)
k=0
1
when
1−r
∞
X
f (k) (0)
k=0
• Taylor series:
rk = 1 + r + r2 + · · · + rn−1 =
k!
1 − rn
, r 6= 1
1−r
|r| < 1
xk
(x − a)k
∞
a0 X
• Fourier series for f (x) on [−π, π]:
+
(an cos nx + bn sin nx)
2
n=1
Z π
Z
1 π
1
f (x) cos nx dx, bn =
f (x) sin nx dx.
where an =
π −π
π −π
3
Transforms
Z
∞
f (x)e−sx dt = F (s)
• Laplace transform: L{f (x)} =
0
L{1} =
L{tn } =
1
s
n!
, n a positive integer
sn+1
1
L{eax } =
s−a
s
L{cos ax} = 2
s + a2
a
L{sin ax} = 2
s + a2
L{f 0 (x)} = sF (s) − f (0)
L{f (n) (x} = sn F (s) − sn−1 f (0) − sn−2 f 0 (0) − · · · − sf (n−2) (0) − f (n−1) (0)
Z ∞
• Fourier transform: F{f (x)} =
f (x)eiαx dt = F (α)
−∞
0
F{f (x)} = −iαF (α)
1
Inverse Fourier transform: F −1 {F (α)} =
2π
4
Z
∞
−∞
F (α)e−iαx dα = f (x).
Related documents