Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Differential Equations Formula Sheet Trigonometric identities • sin2 x + cos2 x = 1 • sin 2x = 2 sin x cos x • cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x • sec2 x = 1 + tan2 x • csc2 x = 1 + cot2 x 1 • sin x cos y = [sin(x − y) + sin(x + y)] 2 1 • sin x sin y = [cos(x − y) − cos(x + y)] 2 1 • cos x cos y = [cos(x − y) + cos(x + y)] 2 2t 1 − t2 2t x , cos x = , and tan x = • if t = tan then sin x = 2 1 + t2 1 + t2 1 − t2 Hyperbolic identities • cosh2 x − sinh2 x = 1 • sinh 2x = 2 sinh x cosh x • cosh 2x = cosh2 x + sinh2 x = 2 cosh2 x − 1 = 2 sinh2 x + 1 • sech2 x = 1 − tanh2 x • csch2 x = coth2 x − 1 1 • sinh x cosh y = [sinh(x + y) + sinh(x − y)] 2 1 • sinh x sinh y = [cosh(x + y) − cosh(x − y)] 2 1 • cosh x cosh y = [cosh(x + y) + cosh(x − y)] 2 1 Derivatives of trigonometric and hyperbolic functions d [sin x] = cos x dx d [cos x] = − sin x dx d [tan x] = sec2 x dx d [cot x] = − csc2 x dx d [sec x] = sec x tan x dx d [csc x] = − csc x cot x dx d 1 [tan−1 x] = dx 1 + x2 d [sinh x] = cosh x dx d [cosh x] = sinh x dx d [tanh x] = sech2 x dx d [coth x] = −csch2 x dx d [sechx] = −sechx tanh x dx d [cschx] = −cschx coth x dx Exponents and logarithms • y = ax • ⇔ x = loga y d x [a ] = ax · ln a and dx and y = ex d dx [loga x] = ⇔ x = ln y 1 x ln a Matrices a11 a12 Let A = . a21 a22 1 a22 −a12 −1 •A = . det A −a21 a11 det A1 det A2 • Cramer’s Rule: the solution of Ax = b is given by x1 = , x2 = det A det A b a a11 b1 where A1 = 1 12 , A2 = . b2 a22 a21 b2 2 Sums and series • n X k= k=1 • n X k2 = k=1 • n X k=1 n(n + 1) 2 n(n + 1)(2n + 1) 6 n(n + 1) k = 2 3 2 • Geometric progression: Geometric series: ∞ X n−1 X k=0 rk = k=0 • Maclaurin series: k! ∞ X f (k) (a) k=0 1 when 1−r ∞ X f (k) (0) k=0 • Taylor series: rk = 1 + r + r2 + · · · + rn−1 = k! 1 − rn , r 6= 1 1−r |r| < 1 xk (x − a)k ∞ a0 X • Fourier series for f (x) on [−π, π]: + (an cos nx + bn sin nx) 2 n=1 Z π Z 1 π 1 f (x) cos nx dx, bn = f (x) sin nx dx. where an = π −π π −π 3 Transforms Z ∞ f (x)e−sx dt = F (s) • Laplace transform: L{f (x)} = 0 L{1} = L{tn } = 1 s n! , n a positive integer sn+1 1 L{eax } = s−a s L{cos ax} = 2 s + a2 a L{sin ax} = 2 s + a2 L{f 0 (x)} = sF (s) − f (0) L{f (n) (x} = sn F (s) − sn−1 f (0) − sn−2 f 0 (0) − · · · − sf (n−2) (0) − f (n−1) (0) Z ∞ • Fourier transform: F{f (x)} = f (x)eiαx dt = F (α) −∞ 0 F{f (x)} = −iαF (α) 1 Inverse Fourier transform: F −1 {F (α)} = 2π 4 Z ∞ −∞ F (α)e−iαx dα = f (x).