Download 7.4 Trigonometric Integrals

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
7.4. Trigonometric Integrals
www.ck12.org
7.4 Trigonometric Integrals
1. Let u = cos x. Then du = − sin x dxx.
Z
cos4 x sin x dx = −
Z
u4 du
u5
+C
5
cos5 x
+C
=−
5
=−
2. Let u = 5ϕ. Then du = 5dϕ.
Z
sin2 5ϕdϕ =
=
=
=
=
1
sin2 u du
5
Z
1 1
(1 − cos 2u)du
5 2
1
1
u − sin 2u +C
10
2
1
1
5ϕ − sin(2 × 5ϕ) +C
10
2
1
1
ϕ − sin(10ϕ) +C
2
20
Z
3. Let u = sin 2z. Then du = 2 cos 2z dz.
Z
sin2 2z cos3 2z dz =
Z
sin2 2z cos3 2z(1 − sin2 2z)dz
Z
2
sin 2z cos 2z dz −
=
Z
sin4 2z cos 2z dz
1
1
u2 du −
u4 du
2
2
u3 u5
= − +C
6 10
sin3 2z sin5 2z
=
−
+C
6
10
Z
Z
=
4.
Z
sin x cos
Let u = cos
234
x
2
. Then du = − 12 sin
x
2
x
dx.
2
x
x
cos
cos
dx
2
2
2
Z
x x
= 2 cos2
sin
dx
2
2
Z
dx =
2 sin
x
www.ck12.org
Chapter 7. Integration Techniques, Solution Key
Z
2 cos
2
x
2
sin
x
2
dx = −4
Z
u2 du
4u3
+C
3
x
4
= − cos3
+C
3
2
=−
5. Let u = sec x. Then du = sec x tan x dx.
Z
sec4 x tan3 xdx =
Z
tan2 x sec3 x(sec x tan x)dx
Z
(sec2 x − 1) sec3 x(sec x tan x)dx
Z
sec5 x(sec x tan x)dx −
Z
u5 du −
=
=
=
Z
Z
sec3 x(sec x tan x)dx
u3 du
u6 u4
− +C
6
4
sec6 x sec4 x
=
−
+C
6
4
=
6.
Z
tan4 x sec xdx =
=
Z
(sec2 x − 1)(sec2 x − 1) sec x dx
Z
(sec5 x − 2 sec3 x + sec x)dx
sec3 x tan x 3
sec x tan x
1
+
sec3 x dx − 2
−2×
sec x dx + ln|sec x + tan x|+C
4
4
2
2
Z
sec x tan x
sec3 x tan x 3 sec x tan x 1
+
+
sec x dx − 2
− ln|sec x + tan x|+ − ln|sec x + tan x|+C
=
4
4
2
2
2
sec3 x tan x 5 sec x tan x 3
=
−
+ ln|sec x + tan x|
4
8
8
Z
Z
=
7.
Z √
tan x sec4 x dx =
Z
Z
1
tan 2 x sec4 x dx
1
tan 2 x(tan2 x + 1) sec2 xdx
Z h
i
5
1
=
tan 2 x sec2 x + tan 2 x sec2 x dx
=
Let u = tan x. Then du = sec2 x dx.
235
7.4. Trigonometric Integrals
www.ck12.org
Z h
Z
Z
i
5
1
5
1
tan 2 x sec2 x + tan 2 x sec2 x dx = u 2 du + u 2 du
7
=
u2
7
2
3
+
u2
3
2
7
+C
3
2 tan 2 x 2 tan 2 x
+
+C
=
7
3
8. Let u = 2x . Then du = 12 dx. If x = 0, then u = 0. If x = π2 , then u = π4 .
π
Z2
π
tan5
x
2
Z4
dx =
0
2 tan5 u du
0
π
=
2 tan4 u π
4
4
−2
Z4
0
tan3 u du
0
π
√ !4
Z2
2
2 tan4 u π4
−
=2
+ 2 tan u du
2
2
0
0
√ !2
π
2
8
−
=
− 2ln|cos u|04
16
2
π 8
=
− 1 − 2ln cos
−0
16
4
√ 2
1
= − − 2ln 2 2
4
1
= − + ln 2
2
1
= − + ln2
2
9.
236
www.ck12.org
Chapter 7. Integration Techniques, Solution Key

π
π
Z4
Z4

V = π
cos2 x dx −
0


sin2 x dx
0
π
π
1
x 4
x 4
1
cos x sin x +
− π − cos x sin x +
2
2
2
2 0
0
1 π
1 π
+
− − +
=π
4 8
4 8
1
=π
2
π
=
2
=π
10.
a.
R
x+cot x
csc x dx = csc x csc
csc x+cot x dx
R
Let u = csc x + cot x. Then du = (− csc x cot x − csc2 x)dx.
Z
1
du
u
= −ln|u|+C
csc xdx = −
Z
= −ln|csc x + cot x|+C
b.
Z
1
dx
sin x
Z
sin x
=
dx
2
sin
x
Z
Z
csc x dx =
=
sin x
dx
(1 − cos x)(1 + cos x)
Let u = cos x. Then du = − sin x dx.
237
7.4. Trigonometric Integrals
Z
www.ck12.org
sin x
dx = −
(1 − cos x)(1 + cos x)
du
(1 − u)(1 + u)
Z
Z
A
B
=
du +
du
1−u
1+u
=−
Z
=
Z
Z
1
2
1−u
du −
1
2
1 − cos x
Z
du −
1
2
1+u
Z
du
1
2
1 + cos x
du
1
1
= |1 − cos x|− |1 + cos x|+C
2
2
1 1 − cos x = +C
2 1 + cos x r
1 − cos x
+C
= ln
x
1+xcos
= ln tan
+C
2
OR
r
ln
1 − cos x
+C = ln
1 + cos x
s
s
(1 − cos x) (1 − cos x)
·
+C
(1 + cos x) (1 − cos x)
(1 − cos x)2
+C
1 − cos2 x
1 − cos x +C
= ln sin x 1
cos x = ln −
+C
sin x sin x = ln|csc x − cot x|+C
= ln
238
Related documents